Climate Change, Farm Irrigation Facilities, and Agriculture Total Factor Productivity: Evidence from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.3. Model Specification
2.3.1. Adjustment Model
2.3.2. Mediation Model
2.4. Variables
2.4.1. The Agricultural TFP
2.4.2. Climate Variables
2.4.3. Farm Irrigation Facilities
2.4.4. Control Variables
2.5. Data Sources and Statistical Analysis
3. Results
3.1. Trend and Regional Analysis of Agricultural Total Factor Productivity (TFP)
3.2. Analysis of the Impact of Climate Change on the Agricultural TFP
3.3. Analysis of the Impact of Farm Irrigation Facilities on the Agricultural TFP
3.4. Limitations and Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ur Rahim, H.; Qaswar, M.; Uddin, M.; Giannini, C.; Herrera, M.L.; Rea, G. Nano-Enable Materials Promoting Sustainability and Resilience in Modern Agriculture. Nanomaterials 2021, 11, 2068. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.S.; Uzaiir, M.; Raza, A.; Habib, M.; Xu, Y.; Yousuf, M.; Yang, S.H.; Ramzan Khan, M. Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. Front. Plant. Sci. 2022, 13, 2334. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Li, Y.; Li, J.; Yang, H. Measurement of total factor productivity of green agriculture in China: Analysis of the regional differences based on China. PLoS ONE 2021, 16, e0257239. [Google Scholar] [CrossRef] [PubMed]
- Zawalińska, K.; Wąs, A.; Kobus, P.; Bańkowska, K. A framework linking farming resilience with productivity: Empirical validation from Poland in times of crises. Sustain. Sci. 2022, 17, 81–103. [Google Scholar] [CrossRef]
- Jalal, M.J.E.; Khan, M.A.; Hossain, M.E.; Yedla, S.; Alam, G.M. Does climate change stimulate household vulnerability and income diversity? Evidence from southern coastal region of Bangladesh. Heliyon 2021, 7, e07990. [Google Scholar] [CrossRef]
- Deaton, B.J.; Deaton, B.J. Food security and Canada’s agricultural system challenged by COVID-19. Can. J. Agr. Econ. 2020, 68, 143–149. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Climate change and variability in Kenya: A review of impacts on agriculture and food security. Environ. Dev. Sustain. 2020, 23, 23–43. [Google Scholar] [CrossRef]
- Ainehvand, S.; Raeissi, P.; Ravaghi, H.; Maleki, M. Natural disasters and challenges toward achieving food security response in Iran. J. Educ. Health Promot. 2019, 8, 51. [Google Scholar]
- Xie, W.; Huang, J.; Wang, J.; Cui, Q.; Robertson, R.; Chen, K. Climate change impacts on China’s agriculture: The responses from market and trade. China Econ. Rev. 2020, 62, 101256. [Google Scholar] [CrossRef]
- Renner, T.; Meijerink, S. Policy entrepreneurs in international river basins-getting climate adaptation on the cross-border water policy agenda. Reg. Environ. Chang. 2018, 18, 1287–1298. [Google Scholar] [CrossRef]
- Mkuhlani, S.; Zinyengere, N.; Kumi, N.; Crespo, O. Lessons from integrated seasonal forecast-crop modelling in Africa: A systematic review. Open Life Sci. 2022, 17, 1398–1417. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Knippenberg, E.; Chambers, R.G. Growing climatic sensitivity of U.S. agriculture linked to technological change and regional specialization. Sci. Adv. 2018, 4, eaat4343. [Google Scholar] [CrossRef]
- Villavicencio, X.; McCarl, B.A.; Wu, X.; Huffman, W.E. Climate change influences on agricultural research productivity. Clim. Chang. 2013, 119, 815–824. [Google Scholar] [CrossRef]
- Liang, X.Z.; Wu, Y.; Chambers, R.G.; Schmoldt, D.L.; Gao, W.; Liu, C.; Liu, Y.A.; Sun, C.; Kennedy, J.A. Determining climate effects on US total agricultural productivity. Proc. Natl. Acad. Sci. USA 2017, 114, E2285–E2292. [Google Scholar] [CrossRef]
- Kunimitsu, Y.; Kudo, R.; Iizumi, T.; Yokozawa, M. Technological spillover in Japanese rice productivity under long-term climate change: Evidence from the spatial econometric model. Paddy Water Environ. 2015, 14, 131–144. [Google Scholar] [CrossRef]
- Chen, S.; Gong, B. Response and adaptation of agriculture to climate change: Evidence from China. J. Devel. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- Kusainova, A.A.; Mezentseva, O.V.; Tusupbekov, Z.A. Influence of precipitation variability and temperature conditions on the yield of grain crops in Northern Kazakhstan. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 042026. [Google Scholar] [CrossRef]
- Waller, D.M.; Meyer, A.G.; Raff, Z.; Apfelbaum, S.I. Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed. J. Environ. Manag. 2021, 284, 112019. [Google Scholar] [CrossRef]
- Holtermann, L. Precipitation anomalies, economic production, and the role of “first-nature” and “second-nature” geographies: A disaggregated analysis in high-income countries. Glob. Environ. Chang. 2020, 65, 102167. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, J.; Liu, P.; Zhang, Q.; Sun, F. Use of Fuzzy Analytic Hierarchy Process and Environmental Gini Coefficient for Allocation of Regional Flood Drainage Rights. Int. J. Environ. Res. Public Health 2020, 17, 2063. [Google Scholar] [CrossRef]
- An, M.; Fan, L.; Huang, J.; Yang, W.; Wu, H.; Wang, X.; Khanal, R. The gap of water supply-Demand and its driving factors: From water footprint view in Huaihe River Basin. PLoS ONE 2021, 16, e0247604. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qiu, C.; Sun, M.; Zhang, D. Environmental Performance Evaluation of Key Polluting Industries in China-Taking the Power Industry as an Example. Int. J. Environ. Res. Public Health 2022, 19, 7295. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Niu, H.; Wang, Y. Utility analysis of digital villages to empower balanced urban-rural development based on the three-stage DEA-Malmquist model. PLoS ONE 2022, 17, e0270952. [Google Scholar] [CrossRef] [PubMed]
- Azrour, M.; Mabrouki, J.; Fattah, G.; Guezzaz, A.; Aziz, F. Machine learning algorithms for efficient water quality prediction. Model. Earth Syst. Environ. 2021, 8, 2793–2801. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, N.; Li, X.; Kang, Z.; Cao, N. A Method for Evaluating the Green Economic Efficiency of Resource-Based Cities Based on Neural Network Improved DEA Model. Comput. Intell. Neurosci. 2022, 2022, 9521107. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhong, R.; Zhu, S.; Ramsay, L.C.; Li, F.; Coyte, P.C. Access to Community Living Infrastructure and Its Impact on the Establishment of Community-Based Day Care Centres for Seniors in Rural China. Int. J. Environ. Res. Public Health 2018, 15, 1184. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Song, X. Impacts of Agricultural Capitalization on Regional Paddy Field Change: A Production-Factor Substitution Perspective. Int. J. Environ. Res. Public Health 2021, 18, 1729. [Google Scholar] [CrossRef]
- Liu, C.; Qi, Y.; Wang, Z.; Yu, J.; Li, S.; Yao, H.; Ni, T. Deep learning: To better understand how human activities affect the value of ecosystem services-A case study of Nanjing. PLoS ONE 2020, 15, e0238789. [Google Scholar] [CrossRef]
- Mabrouki, J.; Azrour, M.; Hajjaji, S.E. Use of internet of things for monitoring and evaluating water’s quality: A comparative study. IJCC 2021, 10, 633–644. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, M. The Impact Mechanism and Spillover Effect of Digital Rural Construction on the Efficiency of Green Transformation for Cultivated Land Use in China. Int. J. Environ. Res. Public Health 2022, 19, 16159. [Google Scholar] [CrossRef]
- Shan, T.; Xia, Y.; Hu, C.; Zhang, S.; Zhang, J.; Xiao, Y.; Dan, F. Analysis of regional agricultural carbon emission efficiency and influencing factors: Case study of Hubei Province in China. PLoS ONE 2022, 17, e0266172. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, H.; Liu, H.; Wu, Q. NonLinear Effects of Environmental Regulation on Eco-Efficiency under the Constraint of Land Use Carbon Emissions: Evidence Based on a Bootstrapping Approach and Panel Threshold Model. Int. J. Environ. Res. Public Health 2019, 16, 1679. [Google Scholar] [CrossRef]
- Zhong, R.; He, Q.; Qi, Y. Digital Economy, Agricultural Technological Progress, and Agricultural Carbon Intensity: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 6488. [Google Scholar] [CrossRef]
- Yang, X.; Shang, G. Smallholders’ Agricultural Production Efficiency of Conservation Tillage in Jianghan Plain, China-Based on a Three-Stage DEA Model. Int. J. Environ. Res. Public Health 2020, 17, 7470. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, S.; Qian, Y.; Liu, Y.; Lu, C. Dynamic analysis of agricultural carbon emissions efficiency in Chinese provinces along the Belt and Road. PLoS ONE 2020, 15, e0228223. [Google Scholar] [CrossRef]
- Li, J.; Lin, Q. Can the Adjustment of China’s Grain Purchase and Storage Policy Improve Its Green Productivity? Int. J. Environ. Res. Public Health 2022, 19, 6310. [Google Scholar] [CrossRef]
- Hou, M.; Xi, Z.; Zhao, S. Evaluating the Heterogeneity Effect of Fertilizer Use Intensity on Agricultural Eco-Efficiency in China: Evidence from a Panel Quantile Regression Model. Int. J. Environ. Res. Public Health 2022, 19, 6612. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Z. Evaluation of Financial Subsidy for Agriculture Based on Combined Algorithm. Comput. Intell. Neurosci. 2022, 2022, 6587460. [Google Scholar] [CrossRef]
- Randell, H.; Gray, C. Climate variability and educational attainment: Evidence from rural Ethiopia. Glob. Environ. Chang. 2016, 41, 111–123. [Google Scholar] [CrossRef]
- Yi, F.J.; Feng, J.A.; Wang, Y.J.; Jiang, F. Influence of surface ozone on crop yield of maize in China. J. Integr. Agric. 2020, 19, 578–589. [Google Scholar] [CrossRef]
- Chen, X.; Yang, L. Temperature and industrial output: Firm-level evidence from China. J. Environ. Econ. Manag. 2019, 95, 257–274. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, J.; Li, W.; Na, M.; Yao, M. The Effect of Social Capital on Environmental Pollution in China-Suppression or Promotion? Int. J. Environ. Res. Public Health 2020, 17, 9459. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yuan, C.H. Can China’s industrial policies enhance the green competitiveness of the manufacturing industry? PLoS ONE 2021, 16, e0253774. [Google Scholar] [CrossRef]
- Volsi, B.; Higashi, G.E.; Bordin, I.; Telles, T.S. The diversification of species in crop rotation increases the profitability of grain production systems. Sci. Rep. 2022, 12, 19849. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.; Xu, Y.; Dong, W.; Xian, T.; Xu, H.; Wang, Z. Comprehensive climate factor characteristics and quantitative analysis of their impacts on grain yields in China’s grain-producing areas. Heliyon 2019, 5, e02846. [Google Scholar] [CrossRef]
- Mabrouki, J.; Azoulay, K.; Elfanssi, S.; Bouhachlaf, L.; Mousli, F.; Azrour, M.; El Hajjaji, S. Smart System for Monitoring and Controlling of Agricultural Production by the IoT. In IoT and Smart Devices for Sustainable Environment; Azrour, M., Irshad, A., Chaganti, R., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 103–115. [Google Scholar]
- Mabrouki, J.; Fattah, G.; Kherraf, S.; Abrouki, Y.; Azrour, M.; El Hajjaji, S. Artificial intelligence system for intelligent monitoring and management of water treatment plants. In Emerging Real-World Applications of Internet of Things; Verma, A., Verma, A., Farhaoui, Y., Lv, Z., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 69–87. [Google Scholar]
- Guo, H.; Huang, L.; Liang, D. Further promotion of sustainable development goals using science, technology, and innovation. Innovation 2022, 3, 100325. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.; Lou, S. Research on grain production efficiency in China’s main grain producing areas from the perspective of financial support. PLoS ONE 2021, 16, e0247610. [Google Scholar] [CrossRef]
- Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE 2015, 10, e0124155. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Hu, R.; Yin, S.; Bao, Y.; Ayal, D.Y. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecol. Indic. 2018, 89, 101–109. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef]
- Gray, C.; Wise, E. Country-Specific Effects of Climate Variability on Human Migration. Clim. Chang. 2016, 135, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Li, B.; Wu, H.; Li, M.; Fan, J.; Chen, M.; Long, J. Water consumption prediction and influencing factor analysis based on PCA-BP neural network in karst regions: A case study of Guizhou Province. Environ. Sci. Pollut. Res. Int. 2022, 8, 1–12. [Google Scholar] [CrossRef]
- Liu, T.; Zeng, W.; Lin, H.; Rutherford, S.; Xiao, J.; Li, X.; Li, Z.; Qian, Z.; Feng, B.; Ma, W. Tempo-Spatial Variations of Ambient Ozone-Mortality Associations in the USA: Results from the NMMAPS Data. Int. J. Environ. Res. Public Health 2016, 13, 851. [Google Scholar] [CrossRef]
- Haider, N.; Kirkeby, C.; Kristensen, B.; Kjær, L.J.; Sørensen, J.H.; Bødker, R. Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian climate. Sci. Rep. 2017, 7, 8175. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, F.; Abdullahi, N.M.; Shao, L.; Huo, X. An empirical study on spatial-temporal dynamics and influencing factors of apple production in China. PLoS ONE 2020, 15, e0240140. [Google Scholar] [CrossRef]
- Bolang, P.D.; Osumanu, I.K. Formal sector workers’ participation in urban agriculture in Ghana: Perspectives from the Wa Municipality. Heliyon 2019, 5, e02230. [Google Scholar] [CrossRef]
- Baca, M.; Läderach, P.; Haggar, J.; Schroth, G.; Ovalle, O. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica. PLoS ONE 2014, 9, e88463. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, Y.; Wang, X.; Su, M.; Xu, H.; Zhang, P. Spatiotemporal changes in net primary productivity before and after the development of unused land in the hilly areas of Hebei, China. PLoS ONE 2022, 17, e0270010. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Q.; Luo, Y.; Mason, R.P.; Ge, S.; He, Y.; Yu, C.; Sa, R.; Cao, H.; Wang, X.; et al. Impact of Water-Induced Soil Erosion on the Terrestrial Transport and Atmospheric Emission of Mercury in China. Environ. Sci. Technol. 2018, 52, 6945–6956. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.; Wang, P.; Zhong, H.; Wang, P. Sustainable Agriculture Development in Northwest China Under the Impacts of Global Climate Change. Front. Nutr. 2021, 8, 706552. [Google Scholar] [CrossRef]
First-Level Indicator | Secondary Indicators | Specific Description |
---|---|---|
Explained variable | tfp | Agricultural total factor productivity |
Explanatory variables | pre | Average annual precipitation |
tem | Average temperature | |
Moderator | fru | Effective irrigation area per capita |
tc | Malmquist index | |
Control variable | aff | Affected area/crop sown area |
cap | Water conservancy investment | |
eng | Food consumption expenditure/rural household consumption expenditure | |
fer | Fertilizer application per unit area by region | |
fil | Usage of agricultural plastic film per unit area by region | |
inv | Water conservancy investment | |
wat | Waterlogging area per capita |
Variables | Mean | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|
tfp | 1.01682 | 0. 0936045 | 0. 7184745 | 1.30906 |
pre | 1384.856 | 2262.111 | 167 | 15,574.63 |
tem | 13.84364 | 5.379699 | 2.998849 | 24.80421 |
fru | 1062.781 | 775.7506 | 217.1962 | 4066.159 |
tc | 1.012202 | 0.1122717 | 0.6795132 | 1.363629 |
aff | 0.2085708 | 0.145902 | 0 | 0.6460758 |
cap | 407.8922 | 308.2451 | 38.0959 | 1598.9 |
eng | 0.3802011 | 0.0760678 | 0.259 | 0.56 |
fer | 579.413 | 264.1651 | 170.0166 | 1396.03 |
fil | 31.38759 | 30.8204 | 4.710912 | 148.1515 |
inv | 1218.027 | 1278.347 | 52.809 | 5638.867 |
wat | 3644.95 | 4690.888 | 24.46483 | 21,561.78 |
Province | TFP | EC | TC |
---|---|---|---|
Hebei Province | 1.028 | 1.030 | 0.997 |
The Nei Monggol Autonomous Region | 1.012 | 1.004 | 1.007 |
Liaoning Province | 1.056 | 1.063 | 0.993 |
Jilin Province | 1.328 | 1.326 | 1.001 |
Heilongjiang Province | 1.014 | 1.016 | 0.998 |
Jiangsu Province | 1.230 | 1.225 | 1.004 |
Anhui Province | 1.019 | 1.021 | 0.999 |
Jiangxi Province | 1.008 | 1.003 | 1.005 |
Shandong Province | 1.064 | 1.067 | 0.998 |
Henan Province | 1.034 | 1.033 | 1.001 |
Hubei province | 1.025 | 1.024 | 1.001 |
Hunan Province | 1.026 | 1.025 | 1.001 |
Sichuan Province | 1.025 | 1.023 | 1.002 |
Beijing | 1.071 | 1.046 | 1.024 |
Tianjin | 1.116 | 1.127 | 0.990 |
Shanghai | 1.006 | 1.023 | 0.984 |
Zhejiang Province | 1.112 | 1.108 | 1.003 |
Fujian Province | 1.000 | 0.990 | 1.010 |
Guangdong Province | 0.998 | 1.012 | 0.987 |
Hainan | 0.980 | 0.962 | 1.019 |
Shanxi Province | 1.041 | 1.048 | 0.994 |
The Guangxi Zhuang Autonomous Region | 1.015 | 1.017 | 0.998 |
Guizhou Province | 0.978 | 0.991 | 0.987 |
Yunnan Province | 1.017 | 1.023 | 0.994 |
Shaanxi Province | 0.998 | 0.932 | 1.071 |
Gansu Province | 1.010 | 1.018 | 0.992 |
Qinghai Province | 1.028 | 1.033 | 0.995 |
The Ningxia Hui Autonomous Region | 1.023 | 1.040 | 0.984 |
The Xinjiang Uygur Autonomous Region | 1.009 | 1.002 | 1.007 |
Variables | (1) | (2) |
---|---|---|
lnpre | −0.0160 * (−1.80) | −0.00997 (−1.17) |
tem | 0.0264 ** (2.16) | 0.0289 ** (2.52) |
lnfru | 0.108 *** (3.05) | 0.0818 ** (2.47) |
lncap | 0.0331 (1.33) | 0.0452 * (1.93) |
lnaff | −0.370 *** | −0.266 *** |
(−6.47) | (−4.74) | |
lneng | 0.0563 (1.10) | 0.0275 (0.57) |
lnfer | −0.0756 ** (−2.06) | −0.0661 * (−1.92) |
lninv | −0.0177 * (−1.68) | −0.0124 (−1.25) |
lnfil | −0.0115 (−1.10) | −0.0143 (−1.44) |
lnwat | 0.0120 (0.39) | 0.0150 (0.52) |
tc | 0.324 *** (7.80) | |
c_lncli_tc | 0.0315 (0.55) | |
c_tem_tc | −0.0401 *** (−3.95) | |
_cons | −0.504 (−1.20) | −0.954 (−2.38) |
N | 522 | 522 |
adj. R2 | 0.0658 | 0.1825 |
Variables | (3) lntfp | (4) tc | (5) lntfp | (6) lntfp |
---|---|---|---|---|
lnpre | −0.0160 * (−1.80) | −0.00108 (−0.12) | −0.0157 * (−1.85) | −0.0189 (−1.47) |
tem | 0.0264 ** (2.16) | −0.0000847 (−0.01) | 0.0264 ** (2.27) | 0.0116 ** (2.20) |
lnfru | 0.108 *** (3.05) | 0.0879 * (2.39) | 0.0818 ** (2.42) | 0.0884 (1.52) |
lncap | 0.0331 (1.33) | −0.0171 (−0.66) | 0.0381 (1.60) | 0.0405 (1.44) |
lnaff | −0.370 *** (−6.47) | −0.150 * (−2.52) | −0.326 *** (−5.94) | −0.346 ** (−2.73) |
lneng | 0.0563 (1.10) | 0.110 * (2.06) | 0.0239 (0.49) | −0.122 * (−1.77) |
lnfer | −0.0756 ** (−2.06) | 0.00322 (0.08) | −0.0765 ** (−2.19) | −0.103 * (−2.74) |
lninv | −0.0177 * (−1.68) | −0.00704 (−0.64) | −0.0156 (−1.56) | −0.0390 ** (−2.12) |
lnfil | −0.0115 (−1.10) | 0.0266 * (2.44) | −0.0193 * (−1.92) | 0.0000478 (0.00) |
lnwat | 0.0120 (0.39) | 0.0338 (1.05) | 0.00206 (0.07) | −0.0343 (−1.20) |
tc | 0.293 *** (7.06) | 0.248 * (1.85) | ||
L.lntfp | −0.153 * (−2.02) | |||
_cons | −0.504 (−1.20) | 0.355 (0.81) | −0.608 (−1.52) | |
N | 522 | 522 | 522 | 493 |
adj. R2 | 0.0658 | 0.0290 | 0.1516 | |
AR(1) | −2.84 | |||
AR(1) p-value | 0.005 | |||
AR(2) | −0.14 | |||
AR(2) p-value | 0.888 | |||
Sargan-test | 23.03 | |||
Sargan-test p-value | 0.113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, H. Climate Change, Farm Irrigation Facilities, and Agriculture Total Factor Productivity: Evidence from China. Sustainability 2023, 15, 2889. https://doi.org/10.3390/su15042889
Li H, Liu H. Climate Change, Farm Irrigation Facilities, and Agriculture Total Factor Productivity: Evidence from China. Sustainability. 2023; 15(4):2889. https://doi.org/10.3390/su15042889
Chicago/Turabian StyleLi, Hai, and Hui Liu. 2023. "Climate Change, Farm Irrigation Facilities, and Agriculture Total Factor Productivity: Evidence from China" Sustainability 15, no. 4: 2889. https://doi.org/10.3390/su15042889
APA StyleLi, H., & Liu, H. (2023). Climate Change, Farm Irrigation Facilities, and Agriculture Total Factor Productivity: Evidence from China. Sustainability, 15(4), 2889. https://doi.org/10.3390/su15042889