Effect of Biochar Application on Soil Fertility, Nitrogen Use Efficiency and Balance in Coastal Salt-Affected Soil under Barley–Maize Rotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Properties of Soil and Biochar
2.3. Experimental Design
2.4. Soil and Plant Sampling
2.5. Measurement and Calculation of Related Indexes
2.5.1. Measurement of Related Indexes
2.5.2. Calculation of Related Indexes
2.6. Statistical Analysis
3. Results
3.1. SWC, Salinity and pH
3.2. Soil Fertility
3.3. Crop Yield and N Uptake
3.4. N Fertilizer Use Efficiency
3.5. N Balance
4. Discussion
4.1. Effect of Biochar Application on SWC, EC and pH in Coastal Salt-Affected Soil
4.2. Effect of Biochar Application on Soil Fertility in Coastal Salt-Affected Soil
4.3. Effect of Biochar Application on Crop Yield in Coastal Salt-Affected Soil
4.4. Effect of Biochar Application on N Use Status and N Balance in Coastal Salt-Affected Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wicke, B.; Smeets, E.; Dornburg, V.; Vashev, B.; Gaiser, T.; Turkenburg, W.; Faaij, A. The global technical and economic potential of bioenergy from salt-affected soils. Energ. Env. Sci. 2011, 4, 2669–2681. [Google Scholar] [CrossRef]
- Amini, S.; Ghadiri, H.; Chen, C.R.; Marschner, P. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. J. Soil. Sediment 2016, 16, 939–953. [Google Scholar] [CrossRef]
- Long, X.H.; Liu, L.P.; Shao, T.Y.; Shao, H.B.; Liu, Z.P. Developing and sustainably utilize the coastal mudflat areas in China. Sci. Total Env. 2016, 569, 1077–1086. [Google Scholar] [CrossRef]
- Bai, Y.C.; Mei, L.J.; Zuo, W.G.; Zhang, Y.; Gu, C.H.; Shan, Y.H.; Hu, J.; Dai, Q.G. Response of bacterial communities in coastal mudflat saline soil to sewage sludge amendment. Appl. Soil Ecol. 2019, 144, 107–111. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Qayyum, M.F.; Ok, Y.S.; Ibrahim, M.; Riaz, M.; Arif, M.S.; Hafeez, F.; Al-Wabel, M.I.; Shahzad, A.N. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Env. Sci. Pollut. R 2017, 24, 12700–12712. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.S.; Andersen, M.N.; Liu, F.L. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agr. Water Manag. 2015, 158, 61–68. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Yolcu, G.; Uysal, H.; Lado, M.; Paz, A. Soil structure changes: Aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Aust. J. Soil Res. 2009, 47, 688–696. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.C.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef]
- Duan, Z.H.; Xiao, H.L. Effects of soil properties on ammonia volatilization. Soil Sci. Plant Nutr. 2000, 46, 845–852. [Google Scholar] [CrossRef]
- Li, Y.Y.; Huang, L.H.; Zhang, H.; Wang, M.M.; Liang, Z.W. Assessment of Ammonia Volatilization Losses and Nitrogen Utilization during the Rice Growing Season in Alkaline Salt-Affected Soils. Sustainability 2017, 9, 132. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Yang, J.S.; Yao, R.J.; Wang, X.P.; Xie, W.P.; Zhu, W.; Liu, X.Y.; Cao, Y.F.; Tao, J.Y. Interactive effects of soil amendments (biochar and gypsum) and salinity on ammonia volatilization in coastal saline soil. Catena 2020, 190, 104527. [Google Scholar] [CrossRef]
- Ghosh, U.; Thapa, R.; Desutter, T.; Yangbo, H.E.; Chatterjee, A. Saline–Sodic Soils: Potential Sources of Nitrous Oxide and Carbon Dioxide Emissions? Pedosphere 2017, 27, 65–75. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Wang, J.Y.; Xiong, Z.Q.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. Gcb. Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Sun, H.; Lu, H.; Chu, L.; Shao, H.; Shi, W. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Env. 2016, 575, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Xia, H.; Riaz, M.; Zhang, M.Y.; Liu, B.; El-Desouki, Z.; Jiang, C.C. Biochar increases nitrogen use efficiency of maize by relieving aluminum toxicity and improving soil quality in acidic soil. Ecotoxicol. Environ. Safe 2020, 196, 110531. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, K.R.; Yang, J.E.; Ok, Y.S.; Owens, G.; Nehls, T.; Wessolek, G.; Kim, K.H. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 2016, 142, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Q.; She, D.L.; Fei, Y.H.; Wang, H.D.; Gao, L. Three-dimensional fractal characteristics of soil pore structure and their relationships with hydraulic parameters in biochar-amended saline soil. Soil Till. Res. 2021, 205, 104809. [Google Scholar] [CrossRef]
- Sun, J.N.; Yang, R.Y.; Li, W.X.; Pan, Y.H.; Zheng, M.Z.; Zhang, Z.H. Effect of biochar amendment on water infiltration in a coastal saline soil. J. Soil Sediment 2018, 18, 3271–3279. [Google Scholar] [CrossRef]
- Ali, I.; He, L.; Ullah, S.; Quan, Z.; Wei, S.Q.; Igbal, A.; Munsif, F.; Shah, T.; Xuan, Y.; Luo, Y.O.; et al. Biochar addition coupled with nitrogen fertilization impacts on soil quality, crop productivity, and nitrogen uptake under double-cropping system. Food Energy Secur. 2020, 9, e208. [Google Scholar] [CrossRef]
- Munera-Echeverri, J.L.; Martinsen, V.; Strand, L.T.; Cornelissen, G.; Mulder, J. Effect of conservation farming and biochar addition on soil organic carbon quality, nitrogen mineralization, and crop productivity in a light textured Acrisol in the sub-humid tropics. PLoS ONE 2020, 15, e0228717. [Google Scholar] [CrossRef]
- Yao, R.J.; Yang, J.S.; Wang, X.P.; Xie, W.P.; Zheng, F.L.; Li, H.Q.; Tang, C.; Zhu, H. Response of soil characteristics and bacterial communities to nitrogen fertilization gradients in a coastal salt-affected agroecosystem. Land Degrad. Dev. 2021, 32, 338–353. [Google Scholar] [CrossRef]
- LU, R. Analysis Methods of Soil Agrochemistry; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Hou, X.; Yang, J.; Zhao, M.; Jin, W.; Li, F.; Yao, R.; Yu, S.; Wang, X. Effects of Tillage on Soil Organic Carbon and Stability of Soil Aggregates in Costal Saline Soil Region. Soils 2015, 47, 781–789. [Google Scholar] [CrossRef]
- Lu, Y.H.; Nie, J.; Liao, Y.L.; Zhou, X.; Wang, Y.; Tang, W.G. Effects of urease and nitrification inhibitor on yield, nitrogen efficiency and soil nitrogen balance under double-rice cropping system. J. Plant Nutr. Fertil. 2018, 24, 95–104. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Yao, R.; Yu, S.; Li, F.; Hou, X.; Jin, W.; Wang, X. Dynamics of soil water, salt and crop growth under farmyard manure and mulching in coastal tidal flat soil of northern Jiangsu Province. Trans. Chin. Soc. Agric. Eng. 2013, 29, 116–125. [Google Scholar] [CrossRef]
- Xu, J.; Niu, W.Q.; Zhang, M.Z.; Li, Y.; Lyu, W.; Li, K.Y.; Zou, X.Y.; Liang, B.H. Effect of biochar addition on soil evaporation. Chin. J. Appl. Ecol. 2016, 27, 3505–3513. [Google Scholar] [CrossRef]
- Kinney, T.J.; Masiello, C.A.; Dugan, B.; Hockaday, W.C.; Dean, M.R.; Zygourakis, K.; Barnes, R.T. Hydrologic properties of biochars produced at different temperatures. Biomass Bioenerg. 2012, 41, 34–43. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J.; Ajayi, A.E.; van de Giesen, N. Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sc. 2008, 171, 591–596. [Google Scholar] [CrossRef]
- Thomas, S.C.; Frye, S.; Gale, N.; Garmon, M.; Launchbury, R.; Machado, N.; Melamed, S.; Murray, J.; Petroff, A.; Winsborough, C. Biochar mitigates negative effects of salt additions on two herbaceous plant species. J. Environ. Manag. 2013, 129, 62–68. [Google Scholar] [CrossRef]
- Yue, Y.; Guo, W.N.; Lin, Q.M.; Li, G.T.; Zhao, X.R. Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. J. Soil Water Conserv. 2016, 71, 467–475. [Google Scholar] [CrossRef]
- Smider, B.; Singh, B. Agronomic performance of a high ash biochar in two contrasting soils. Agric. Ecosyst. Environ. 2014, 191, 99–107. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag. 2011, 27, 110–115. [Google Scholar] [CrossRef]
- Chaganti, V.N.; Crohn, D.M. Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline-sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma 2015, 259, 45–55. [Google Scholar] [CrossRef]
- Wang, S.S.; Gao, B.; Li, Y.C.; Mosa, A.; Zimmerman, A.R.; Ma, L.Q.; Harris, W.G.; Migliaccio, K.W. Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresour. Technol. 2015, 181, 13–17. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.Q.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Sun, Y.P.; Yang, J.S.; Yao, R.J.; Chen, X.B.; Wang, X.P. Biochar and fulvic acid amendments mitigate negative effects of coastal saline soil and improve crop yields in a three year field trial. Sci. Rep. 2020, 10, 8946. [Google Scholar] [CrossRef]
- Oladele, S.O. Changes in physicochemical properties and quality index of an Alfisol after three years of rice husk biochar amendment in rainfed rice—Maize cropping sequence. Geoderma 2019, 353, 359–371. [Google Scholar] [CrossRef]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, B.J.; Zhang, Y.H.; Hu, T.L.; Lin, Z.B.; Liu, G.; Wang, X.J.; Ma, J.; Wang, H.; Jin, H.Y.; et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: Options and mitigation strength in a global perspective. Glob. Chang. Biol. 2019, 25, 2077–2093. [Google Scholar] [CrossRef]
- Herath, H.M.S.K.; Camps-Arbestain, M.; Hedley, M. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 2013, 209, 188–197. [Google Scholar] [CrossRef]
- Hua, L.; Lu, Z.Q.; Ma, H.R.; Jin, S.S. Effect of Biochar on Carbon Dioxide Release, Organic Carbon Accumulation, and Aggregation of Soil. Env. Prog. Sustain. 2014, 33, 941–946. [Google Scholar] [CrossRef]
- Han, L.F.; Sun, K.; Yang, Y.; Xia, X.H.; Li, F.B.; Yang, Z.F.; Xing, B.S. Biochar’s stability and effect on the content, composition and turnover of soil organic carbon. Geoderma 2020, 364, 114184. [Google Scholar] [CrossRef]
- Zhao, C.S.; Zhang, Y.P.; Liu, X.B.; Ma, X.W.; Meng, Y.T.; Li, X.Q.; Quan, X.; Shan, J.R.; Zhao, W.; Wang, H.Y. Comparing the Effects of Biochar and Straw Amendment on Soil Carbon Pools and Bacterial Community Structure in Degraded Soil. J. Soil Sci. Plant Nut. 2020, 20, 751–760. [Google Scholar] [CrossRef]
- Dong, X.L.; Guan, T.Y.; Li, G.T.; Lin, Q.M.; Zhao, X.R. Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions. J. Soil Sediment 2016, 16, 1481–1497. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-Based Assessment of Soil pH as a Predictor of Soil Bacterial Community Structure at the Continental Scale. Appl. Environ. Microb. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Fungo, B.; Lehmann, J.; Kalbitz, K.; Thiongo, M.; Okeyo, I.; Tenywa, M.; Neufeldt, H. Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage. Soil Till. Res. 2017, 165, 190–197. [Google Scholar] [CrossRef]
- He, L.L.; Zhao, J.; Yang, S.M.; Zhou, H.; Wang, S.Q.; Zhao, X.; Xing, G.X. Successive biochar amendment improves soil productivity and aggregate microstructure of a red soil in a five-year wheat-millet rotation pot trial. Geoderma 2020, 376, 114570. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.Y.; Deng, X.; Herbert, S.; Xing, B.S. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 2013, 206, 32–39. [Google Scholar] [CrossRef]
- Wei, W.L.; Yang, H.Q.; Fan, M.S.; Chen, H.Q.; Guo, D.Y.; Cao, J.; Kuzyakov, Y. Biochar effects on crop yields and nitrogen loss depending on fertilization. Sci. Total Environ. 2020, 702, 134423. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.H.; Scheer, C.; Rowlings, D.W.; Grace, P.R. Rice husk biochar and crop residue amendment in subtropical cropping soils: Effect on biomass production, nitrogen use efficiency and greenhouse gas emissions. Biol. Fert. Soils 2016, 52, 261–270. [Google Scholar] [CrossRef]
- Sun, H.J.; Zhang, H.C.; Shi, W.M.; Zhou, M.Y.; Ma, X.F. Effect of biochar on nitrogen use efficiency, grain yield and amino acid content of wheat cultivated on saline soil. Plant Soil Env. 2019, 65, 83–89. [Google Scholar] [CrossRef]
- Sha, Z.P.; Li, Q.Q.; Lv, T.T.; Misselbrook, T.; Liu, X.J. Response of ammonia volatilization to biochar addition: A meta-analysis. Sci. Total Env. 2019, 655, 1387–1396. [Google Scholar] [CrossRef]
- Jones, D.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- Mandal, S.; Thangarajan, R.; Bolan, N.S.; Sarkar, B.; Khan, N.; Ok, Y.S.; Naidu, R. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere 2016, 142, 120–127. [Google Scholar] [CrossRef]
- Liu, Z.W.; Zhu, M.T.; Wang, J.M.; Liu, X.X.; Guo, W.J.; Zheng, J.F.; Bian, R.J.; Wang, G.M.; Zhang, X.H.; Cheng, K.; et al. The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments. Gcb. Bioenergy 2019, 11, 1408–1420. [Google Scholar] [CrossRef]
- Abbruzzini, T.F.; Davies, C.A.; Toledo, F.H.; Cerri, C.E.P. Dynamic biochar effects on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical wheat-growing season. J. Environ. Manag. 2019, 252, 109638. [Google Scholar] [CrossRef]
- Li, Q.; Liao, N.; Zhang, N.; Zhou, G.W.; Zhang, W.; Wei, X.; Ye, J.; Hou, Z.N. Effects of cotton (Gossypium hirsutum L.) straw and its biochar application on NH3 volatilization and N use efficiency in a drip-irrigated cotton field. Soil Sci. Plant Nutr. 2016, 62, 534–544. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
EC | pH | SOM | TN | TP | NH4+-N | |
---|---|---|---|---|---|---|
(μS/cm) | (g/kg) | (g/kg) | (g/kg) | (mg/kg) | ||
0–20 cm | 346.1 ± 38.5 | 8.84 ± 0.10 | 8.37 ± 1.24 | 0.40 ± 0.15 | 0.68 ± 0.04 | 3.48 ± 0.34 |
20–40 cm | 544.1 ± 72.3 | 9.20 ± 0.14 | 5.25 ± 0.64 | 0.26 ± 0.03 | 0.57 ± 0.02 | 2.31 ± 0.27 |
Biochar | 7581.5 ± 81.3 | 9.13 ± 0.05 | 719.3 ± 65.4 | 6.64 ± 0.12 | 3.32 ± 0.13 | 35.01 ± 1.65 |
Treatment | Code Name | Biochar Rates (t/hm2) | Chemical Fertilizer Rates (kg/hm2) |
---|---|---|---|
Low biochar rates + fertilizer | B1 | 13.5 | N:225 P205:105 |
Medium biochar rates + fertilizer | B2 | 20.25 | |
High biochar rates + fertilizer | B3 | 27 | |
Fertilizer | CK | 0 | |
No N fertilizer | N0P | 0 | P205:105 |
No fertilizer | N0P0 | 0 | 0 |
Treatments | Yield (kg/hm2) | N content (g/kg) | N accumulation (kg/hm2) | ||||
---|---|---|---|---|---|---|---|
Straw | Grain | Straw | Grain | Straw | Grain | Plant | |
Barley | |||||||
B1 | 15340.7 ± 1850.2 a | 4345.9 ± 375.9 ab | 6.15 ± 1.13 a | 24.17 ± 0.63 a | 94.28 a | 105.03 a | 199.31 a |
B2 | 15559.9 ± 1098.1 a | 4908.9 ± 121.3 ab | 5.84 ± 0.44 a | 21.55 ± 0.95 b | 90.80 ab | 105.77 a | 196.57 a |
B3 | 14039.0 ± 1142.5 a | 5066.2 ± 552.2 a | 5.98 ± 1.02 a | 21.65 ± 0.25 b | 84.02 ab | 109.66 a | 193.68 a |
CK | 14180.2 ± 812.7 a | 4226.0 ± 635.4 b | 5.13 ± 0.48 a | 21.25 ± 0.41 b | 72.81 b | 89.81 b | 162.62 b |
N0P | 7065.4 ± 190.8 b | 2707.2 ± 49.0 c | 3.93 ± 0.10 a | 14.96 ± 0.16 c | 27.75 c | 40.50 c | 68.25 c |
Maize | |||||||
B1 | 7622.5 ± 710.1 bc | 5194.2 ± 79.6 b | 9.71 ± 1.53 c | 16.93 ± 0.74 b | 76.21 c | 87.85 a | 164.06 b |
B2 | 8951.2 ± 47.7 c | 5332.9 ± 154.3 b | 8.72 ± 0.15 bc | 16.68 ± 0.46 b | 78.08 c | 88.99 a | 167.08 b |
B3 | 8514.5 ± 609.8 c | 5400.7 ± 211.0 b | 7.58 ± 0.57 abc | 16.73 ± 0.8 b | 65.25 bc | 90.03 a | 155.28 b |
CK | 7064.4 ± 755.2 abc | 4626.4 ± 145.4 b | 9.49 ± 0.29 c | 16.70 ± 0.34 b | 67.31 bc | 77.37 ab | 144.68 b |
N0P | 5578.2 ± 792.9 a | 3351.0 ± 707.2 a | 6.48 ± 0.50 ab | 15.52 ± 1.31 ab | 35.97 ab | 51.66 ab | 87.63 a |
Treatments | NUE (%) | NAE (kg/kg) | NPFP (kg/kg) | NUEP (%) | NHI (%) |
---|---|---|---|---|---|
Barley | |||||
B1 | 58.25 a | 7.28 a | 19.31 a | 88.58 a | 52.70 b |
B2 | 57.03 a | 9.79 a | 21.82 a | 87.36 a | 53.81 ab |
B3 | 55.75 a | 10.48 a | 22.52 a | 86.08 a | 56.62 ab |
CK | 41.94 b | 6.75 a | 18.78 a | 72.28 b | 55.23 ab |
N0P | - | - | - | - | 59.34 a |
Maize | |||||
B1 | 33.97 a | 8.19 a | 23.09 a | 72.92 a | 53.55 a |
B2 | 35.31 a | 8.81 a | 23.70 a | 74.26 a | 53.26 a |
B3 | 30.07 a | 9.11 a | 24.00 a | 69.01 a | 57.98 a |
CK | 25.36 a | 5.67 b | 20.56 b | 64.30 a | 53.48 a |
N0P | - | - | - | - | 58.95 a |
Treatments | N Input (kg/hm2) | N Output (kg/hm2) | ||||
---|---|---|---|---|---|---|
Fertilizer N | Initial Inorganic N | Net Mineralization | Residual Inorganic N | Plant Uptake | Apparent N Loss | |
Barley | ||||||
B1 | 225 | 28.46 | 53.10 | 26.59 ab | 199.31 a | 80.66 b |
B2 | 225 | 28.46 | 53.10 | 21.70 b | 196.57 a | 88.29 ab |
B3 | 225 | 28.46 | 53.10 | 29.44 ab | 193.68 a | 83.44 b |
CK | 225 | 28.46 | 53.10 | 32.17 a | 162.62 a | 111.77 a |
N0P | 0 | 28.46 | 53.10 | 13.31 b | 68.25 b | 0 |
Maize | ||||||
B1 | 225 | 26.59 | 82.32 | 54.22 a | 164.06 b | 115.63 a |
B2 | 225 | 21.70 | 82.32 | 27.58 b | 167.08 b | 134.36 a |
B3 | 225 | 29.44 | 82.32 | 29.73 b | 155.28 b | 151.75 a |
CK | 225 | 32.17 | 82.32 | 35.93 b | 144.68 b | 158.88 a |
N0P | 0 | 14.53 | 82.32 | 9.22 c | 87.63 a | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, C.; Yang, J.; Xie, W.; Yao, R.; Wang, X. Effect of Biochar Application on Soil Fertility, Nitrogen Use Efficiency and Balance in Coastal Salt-Affected Soil under Barley–Maize Rotation. Sustainability 2023, 15, 2893. https://doi.org/10.3390/su15042893
Tang C, Yang J, Xie W, Yao R, Wang X. Effect of Biochar Application on Soil Fertility, Nitrogen Use Efficiency and Balance in Coastal Salt-Affected Soil under Barley–Maize Rotation. Sustainability. 2023; 15(4):2893. https://doi.org/10.3390/su15042893
Chicago/Turabian StyleTang, Chong, Jingsong Yang, Wenping Xie, Rongjiang Yao, and Xiangping Wang. 2023. "Effect of Biochar Application on Soil Fertility, Nitrogen Use Efficiency and Balance in Coastal Salt-Affected Soil under Barley–Maize Rotation" Sustainability 15, no. 4: 2893. https://doi.org/10.3390/su15042893
APA StyleTang, C., Yang, J., Xie, W., Yao, R., & Wang, X. (2023). Effect of Biochar Application on Soil Fertility, Nitrogen Use Efficiency and Balance in Coastal Salt-Affected Soil under Barley–Maize Rotation. Sustainability, 15(4), 2893. https://doi.org/10.3390/su15042893