Comparative Assessment of the Dyeing Process for Pristine and Modified Cotton Fabrics towards the Reduction of the Environmental Fingerprint
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Cotton Fabrics Treated with Polymers, Dyeing Procedure and Washing Procedure of Colored Fabrics
2.3. Colorimetric Analysis of the Colored Fabrics
2.4. Analysis of Washing Bath through UV/Vis Spectroscopy
2.5. Analysis of Washing Bath through Surface Enhanced Raman Scattering (SERS)
3. Results
3.1. Cotton Fabrics Colored with Acid Dyes
3.1.1. Colorimetric Analysis
3.1.2. Evaluation of the Dye Release on Washing Bath of Fabrics Dyed with Acid Dye
3.2. Tricolored Cotton Fabrics with Reactive Dyes
3.2.1. Colorimetric Analysis
3.2.2. Evaluation of the Dye Release on Wash Water of Fabrics Dyed with Reactive Dyes
3.2.3. Evaluation at Industrial Scale
3.2.4. Evaluation of Washing Bath at Both Lab and Industrial Scale Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Memon, H.A.; Wang, Y.; Marriam, I.; Tebyetekerwa, M. Circular Economy and Sustainability of the Clothing and Textile Industry. Mater. Circ. Econ. 2021, 3, 12. [Google Scholar] [CrossRef]
- Felgueiras, C.; Azoia, N.G.; Gonçalves, C.; Gama, M.; Dourado, F. Trends on the Cellulose-Based Textiles: Raw Materials and Technologies. Front. Bioeng. Biotechnol. 2021, 9, 608826. [Google Scholar] [CrossRef]
- Anam, W.; Ashraf, M.; Qadir, M.B.; Akhtar, K.S.; Ahmad, S.; Afzal, A.; Ullah, T. Influence of Yarn Manufacturing Techniques on Dyeing Behavior of Polyester/Cotton Blended Woven Fabrics. Fibers Polym. 2019, 20, 2550–2555. [Google Scholar] [CrossRef]
- Mijas, G.; Josa, M.; Cayuela, D.; Riba-Moliner, M. Study of Dyeing Process of Hemp/Cotton Fabrics by Using Natural Dyes Obtained from Rubia tinctorum L. and Calendula officialis. Polymers 2022, 14, 4508. [Google Scholar] [CrossRef] [PubMed]
- Chandanshive, V.; Kadam, S.; Rane, N.; Jeon, B.-H.; Jadhav, J.; Govindwar, S. In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Chemosphere 2020, 252, 126513. [Google Scholar] [CrossRef]
- Arif, N.; Eka Mulya, A. A Review of Isocyanate Wood Adhesive: A Case Study in Indonesia. In Applied Adhesive Bonding in Science and Technology; Chapter 5; Halil, Ö., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Khatri, A.; Peerzada, M.H.; Mohsin, M.; White, M. A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. J. Clean. Prod. 2015, 87, 50–57. [Google Scholar] [CrossRef]
- Cai, Y.; Pailthorpe, M.T.; David, S.K. A New Method for Improving the Dyeability of Cotton with Reactive Dyes. Text. Res. J. 1999, 69, 440–446. [Google Scholar] [CrossRef]
- Lewis, D.M.; Vo, L.T.T. Dyeing cotton with reactive dyes under neutral conditions. Color. Technol. 2007, 123, 306–311. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, X.; Sun, D. Chemical modification of cotton fabrics for improving utilization of reactive dyes. Carbohydr. Polym. 2013, 91, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Guo, L.; Ge, H.; Wang, J. A Facile Method for a Quantitative Study of the Mechanical Force Impact on Fabric Dye Loss During Domestic Washing. J. Surfactants Deterg. 2016, 19, 901–907. [Google Scholar] [CrossRef]
- Kamel, M.; Youssef, B.; Shokry, G. Dyeing of cationised cotton with acid dyes. J. Soc. Dye. Colour. 2008, 114, 101–104. [Google Scholar] [CrossRef]
- Yang, H.; Fang, K.; Liu, X.; An, F. High-Quality Images Inkjetted on Different Woven Cotton Fabrics Cationized with P(St-BA-VBT) Copolymer Nanospheres. ACS Appl. Mater. Interfaces 2019, 11, 29218–29230. [Google Scholar] [CrossRef]
- Toprak, T.; Anis, P.; Kutlu, E.; Kara, A. Effect of chemical modification with 4-vinylpyridine on dyeing of cotton fabric with reactive dyestuff. Cellulose 2018, 25, 6793–6809. [Google Scholar] [CrossRef]
- Acharya, S.; Abidi, N.; Rajbhandari, R.; Meulewaeter, F. Chemical cationization of cotton fabric for improved dye uptake. Cellulose 2014, 21, 4693–4706. [Google Scholar] [CrossRef]
- Montazer, M.; Malek, R.M.A.; Rahimi, A. Salt free reactive dyeing of cationized cotton. Fibers Polym. 2007, 8, 608–612. [Google Scholar] [CrossRef]
- Fu, S.; Hinks, D.; Hauser, P.; Ankeny, M. High efficiency ultra-deep dyeing of cotton via mercerization and cationization. Cellulose 2013, 20, 3101–3110. [Google Scholar] [CrossRef]
- Nallathambi, A.; Venkateshwarapuram Rengaswami, G.D. Salt-free reactive dyeing of cotton hosiery fabrics by exhaust application of cationic agent. Carbohydr. Polym. 2016, 152, 1–11. [Google Scholar] [CrossRef]
- Arivithamani, N.; Giri Dev, V.R. Characterization and comparison of salt-free reactive dyed cationized cotton hosiery fabrics with that of conventional dyed cotton fabrics. J. Clean. Prod. 2018, 183, 579–589. [Google Scholar] [CrossRef]
- Zhai, S.; Li, Y.; Dong, W.; Zhao, H.; Ma, K.; Zhang, H.; Cai, Z. Cationic cotton modified by 3-chloro-2-hydroxypropyl trimethyl ammonium chloride for salt-free dyeing with high levelling performance. Cellulose 2022, 29, 633–646. [Google Scholar] [CrossRef]
- Pruś, S.; Kulpiński, P.; Matyjas-Zgondek, E.; Wojciechowski, K. Eco-friendly dyeing of cationised cotton with reactive dyes: Mechanism of bonding reactive dyes with CHPTAC cationised cellulose. Cellulose 2022, 29, 4167–4182. [Google Scholar] [CrossRef]
- Wu, A.; Ma, W.; Yang, Z.; Zhang, S. Efficient Cationization of Cotton for Salt-Free Dyeing by Adjusting Fiber Crystallinity through Alcohol-Water-NaOH Pretreatment. Polymers 2022, 14, 5546. [Google Scholar] [CrossRef] [PubMed]
- Niu, T.; Wang, X.; Wu, C.; Sun, D.; Zhang, X.; Chen, Z.; Fang, L. Chemical Modification of Cotton Fabrics by a Bifunctional Cationic Polymer for Salt-Free Reactive Dyeing. ACS Omega 2020, 5, 15409–15416. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Y.; Lin, H.; Lu, Y. Synthesis of an amino-terminated hyperbranched polymer and its application in reactive dyeing on cotton as a salt-free dyeing auxiliary. Color. Technol. 2007, 123, 351–357. [Google Scholar] [CrossRef]
- Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2021, 12, 70–87. [Google Scholar] [CrossRef]
- Lada, Z.G.; Voyiatzis, G.A.; Aggelopoulos, C.A. A novel, green, low-cost regeneration method for surface enhanced raman scattering (SERS) solid substrates based on nanosecond pulsed cold plasma technology. Surf. Interfaces 2022, 34, 102330. [Google Scholar] [CrossRef]
- Meropoulis, S.; Rassias, G.; Bekiari, V.; Aggelopoulos, C.A. Structure-Degradation efficiency studies in the remediation of aqueous solutions of dyes using nanosecond-pulsed DBD plasma. Sep. Purif. Technol. 2021, 274, 119031. [Google Scholar] [CrossRef]
- Dutta, S.; Bhattacharjee, J. Chapter 1—A comparative study between physicochemical and biological methods for effective removal of textile dye from wastewater. In Development in Wastewater Treatment Research and Processes; Shah, M.P., Rodriguez-Couto, S., Kapoor, R.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–21. [Google Scholar]
- Patil, R.; Zahid, M.; Govindwar, S.; Khandare, R.; Vyavahare, G.; Gurav, R.; Desai, N.; Pandit, S.; Jadhav, J. Chapter 8—Constructed wetland: A promising technology for the treatment of hazardous textile dyes and effluent. In Development in Wastewater Treatment Research and Processes; Shah, M., Rodriguez-Couto, S., Biswas, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 173–198. [Google Scholar]
- Mudhoo, A.; Ramasamy, D.L.; Bhatnagar, A.; Usman, M.; Sillanpää, M. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus. Ecotoxicol. Environ. Saf. 2020, 197, 110587. [Google Scholar] [CrossRef]
- Aksu, Z. Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochem. 2003, 38, 1437–1444. [Google Scholar] [CrossRef]
- Carneiro, P.A.; Umbuzeiro, G.A.; Oliveira, D.P.; Zanoni, M.V.B. Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J. Hazard Mater. 2010, 174, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Arslan İlkiz, B.; Beceren, Y.; Candan, C. An Approach to Estimate Dye Concentration of Domestic Washing Machine Wastewater. Autex Res. J. 2019, 21, 172–181. [Google Scholar] [CrossRef]
- Franco, J.H.; da Silva, B.F.; Zanoni, M.V.B. Assessment of semi-permanent hair dyes in wash water from beauty salons by liquid chromatography-tandem mass spectrometry-selected reaction monitoring (LC-MS/MS-SRM). Anal. Methods 2020, 12, 5415–5423. [Google Scholar] [CrossRef] [PubMed]
- Tsimpouki, L.; Papapetros, K.; Anastasopoulos, C.; Sygellou, L.; Soto-Beobide, A.; Andrikopoulos, K.S.; Voyiatzis, G.A.; Bokias, G.; Kallitsis, J.K. Water-Soluble Quaternized Copolymers as Eco-Friendly Cationic Modifiers of Cotton Fabrics for Salt-Free Reactive Dyeing Applications. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Vu, C.D.; Pham, T.B.; Pham, V.H.; Bui, H.; Vu, T.H.H.; van Hai, P.H.A.M. Detection of Ultra-Low Concentration of Methylene Blue by Porous Silicon Photonic Crystals Covered With Siver Nanoparticles as Efficient Sers Substrate. Commun. Phys. 2021, 31, 381. [Google Scholar]
- Ly, B.C.K.; Dyer, E.B.; Feig, J.L.; Chien, A.L.; Del Bino, S. Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement. J. Investig. Dermatol. 2020, 140, 3–12.e1. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, M. Modelling of CIELAB values in vinyl sulphone dye application using feed-forward neural networks. Dye. Pigment. 2007, 75, 356–361. [Google Scholar] [CrossRef]
- Lee, P.C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Marsich, L.; Bonifacio, A.; Mandal, S.; Krol, S.; Beleites, C.; Sergo, V. Poly-l-lysine-Coated Silver Nanoparticles as Positively Charged Substrates for Surface-Enhanced Raman Scattering. Langmuir 2012, 28, 13166–13171. [Google Scholar] [CrossRef]
- Anastasopoulos, J.A.; Soto Beobide, A.; Manikas, A.C.; Voyiatzis, G.A. Quantitative surface-enhanced resonance Raman scattering analysis of methylene blue using silver colloid. J. Raman Spectrosc. 2017, 48, 1762–1770. [Google Scholar] [CrossRef]
- Mathioudakis, G.N.; Soto Beobide, A.; Anastasiadis, S.H.; Voyiatzis, G.A. Surface enhanced Raman scattering of brilliant green: Packing density and stabilizing effect of the cationic surfactant CTAB on the “hotspot” spacing. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125912. [Google Scholar] [CrossRef]
Sample | Color Indexes | ΔΕ* for Each Modified/Unmodified Couple | |||
---|---|---|---|---|---|
L | a* | b* | K/S | ||
Modified with Polymer 1 | 31.01 | 2.62 | −34.56 | 14.78 | 51.59 |
Unmodified | 75.64 | −4.74 | −9.75 | 0.39 | |
Modified with Polymer 2 | 30.05 | 3.11 | −36.49 | 17.17 | 50.72 |
Unmodified | 73.71 | −4.85 | −11.94 | 0.48 |
Sample | Concentration (μg/mL) | Κ/S | Normalization of Release with K/S |
---|---|---|---|
Modified with Polymer 1 | 24.16 | 14.78 | 1.63 |
Unmodified | 2.53 | 0.39 | 6.49 |
Modified with Polymer 2 | 28.5 | 17.17 | 1.66 |
Unmodified | 2.41 | 0.48 | 5.03 |
Sample | Color Indexes | ΔΕ* for Each Modified/Unmodified Couple | |||
---|---|---|---|---|---|
L | a* | b* | K/S | ||
Modified with Polymer 1 | 29.24 | 7.73 | 2.96 | 9.03 | 12.30 |
Unmodified | 41.19 | 7.61 | 0.07 | 3.93 | |
Modified with Polymer 2 | 27.58 | 7.93 | 3.39 | 10.35 | 11.19 |
Unmodified | 38.39 | 6.53 | 0.88 | 4.68 |
Sample | Concentration (μg/mL) | ||
---|---|---|---|
NY | NR | NDB | |
Modified with Polymer 1 | 3.27 | 7.20 | 4.2 |
Modified with Polymer 2 | 10.5 | 9.86 | 4.2 |
Sample | Color Indexes | ΔΕ* for Each Modified/Unmodified Couple | |||
---|---|---|---|---|---|
L | a* | b* | K/S | ||
Modified with Polymer 1 | 33.85 | 5.35 | 7.95 | 7.91 | 1.34 |
Unmodified | 57.71 | 0.42 | 17.25 | 2.30 | 1.63 |
Modified with Polymer 2 | 35.91 | 6.20 | 10.15 | 7.46 | 1.32 |
Sample | Concentration (μg/mL) | ||
---|---|---|---|
NY | NR | NDB | |
Modified with Polymer 1 | 3.86 | 8.37 | 5.28 |
Modified with Polymer 2 | 1.2 | 2.9 | 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lada, Z.G.; Mathioudakis, G.N.; Pavlidou, S.; Goulas, G.; Anastasopoulos, C.; Bokias, G.; Andrikopoulos, K.S.; Voyiatzis, G.A. Comparative Assessment of the Dyeing Process for Pristine and Modified Cotton Fabrics towards the Reduction of the Environmental Fingerprint. Sustainability 2023, 15, 3144. https://doi.org/10.3390/su15043144
Lada ZG, Mathioudakis GN, Pavlidou S, Goulas G, Anastasopoulos C, Bokias G, Andrikopoulos KS, Voyiatzis GA. Comparative Assessment of the Dyeing Process for Pristine and Modified Cotton Fabrics towards the Reduction of the Environmental Fingerprint. Sustainability. 2023; 15(4):3144. https://doi.org/10.3390/su15043144
Chicago/Turabian StyleLada, Zoi G., Georgios N. Mathioudakis, Silvia Pavlidou, Georgios Goulas, Charalampos Anastasopoulos, Georgios Bokias, Konstantinos S. Andrikopoulos, and George A. Voyiatzis. 2023. "Comparative Assessment of the Dyeing Process for Pristine and Modified Cotton Fabrics towards the Reduction of the Environmental Fingerprint" Sustainability 15, no. 4: 3144. https://doi.org/10.3390/su15043144
APA StyleLada, Z. G., Mathioudakis, G. N., Pavlidou, S., Goulas, G., Anastasopoulos, C., Bokias, G., Andrikopoulos, K. S., & Voyiatzis, G. A. (2023). Comparative Assessment of the Dyeing Process for Pristine and Modified Cotton Fabrics towards the Reduction of the Environmental Fingerprint. Sustainability, 15(4), 3144. https://doi.org/10.3390/su15043144