Carbon Neutrality Potential of Textile Products Made from Plant-Derived Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carbon Storage Quantification
2.1.1. Carbon Storage in Soil
2.1.2. Carbon Storage in Plant
2.2. Temporary Carbon Storage Effects
3. Case Study
3.1. Carbon Storage Quantification of Hemp Textile Products
3.2. Carbon Storage Effect of Hemp Textiles
3.3. Carbon Neutrality of Plant-Derived Fibers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gbolarumi, F.T.; Wong, K.Y.; Olohunde, S.T. Sustainability Assessment in The Textile and Apparel Industry: A Review of Recent Studies. Mater. Sci. Eng. 2021, 1051, 12099. [Google Scholar] [CrossRef]
- Akhtar, S.; Baig, S.F.; Saif, S.; Mahmood, A.; Ahmad, S.R. Five Year Carbon Footprint of a Textile Industry: A Podium to incorporate Sustainability. Nat. Environ. Pollut. Technol. 2017, 16, 125–132. [Google Scholar]
- Brandão, M.; Levasseur, A.; Kirschbaum, M.U.F.; Weidema, B.P.; Cowie, A.L.; Jørgensen, S.V.; Hauschild, M.Z.; Pennington, M.Z.; Chomkhamsri, K. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int. J. Life Cycle Assess. 2012, 18, 230–240. [Google Scholar] [CrossRef]
- Guest, G.; Cherubini, F.; Strømman, A.H. Global Warming Potential of Carbon Dioxide Emissions from Biomass Stored in the Anthroposphere and Used for Bioenergy at End of Life. J. Ind. Ecol. 2013, 17, 20–30. [Google Scholar] [CrossRef]
- Muthu, S.S.; Li, Y.; Hu, J.Y.; Mok, P.Y. Quantification of environmental impact and ecological sustainability for textile fibres. Ecol. Indic. 2012, 13, 66–74. [Google Scholar] [CrossRef]
- Yang, Z.P.; Zhang, J.C.; Zhang, H.; Zhang, X.X.; Gao, Z.Q. Assessing of carbon footprint of hemp product according to PAS2050. J. Text. Res. 2012, 33, 140–144. [Google Scholar] [CrossRef]
- PAS2050: 2011; Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services. BSI (British Standards Institution): London, UK, 2015.
- Sykes, A.J.; Macleod, M.; Eory, V.; Rees, R.M.; Payen, F.; Myrgiotis, V.; Williams, M.; Sohi, S.; Hillier, J.; Moran, D.; et al. Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Glob. Chang. Biol. 2020, 26, 1085–1108. [Google Scholar] [CrossRef]
- Shen, Z.; Tiruta-Barna, L.; Hamelin, L. From hemp grown on carbon-vulnerable lands to long-lasting bio-based products: Uncovering trade-offs between overall environmental impacts, sequestration in soil, and dynamic influences on global temperature. Sci. Total Environ. 2022, 846, 157331. [Google Scholar] [CrossRef]
- Liu, J.; Jing, F.; Jiang, G.Y.; Liu, J.G. Effects of Straw Incorporation on Soil Organic Carbon Density and the Carbon Pool Management Index under Long-Term Continuous Cotton. Commun. Soil. Sci. Plant. Anal. 2017, 48, 412–422. [Google Scholar] [CrossRef]
- Navare, K.; Arts, W.; Faraca, G.; Van den Bossche, G.; Sels, B.; Van Acker, K. Environmental impact assessment of cascading use of wood in bio-fuels and bio-chemicals. Resour. Conserv. Recycl. 2022, 186, 106588. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Neugebauer, S.; Berger, M. Carbon footprint of recycled biogenic products: The challenge of modelling CO2 removal credits. Int. J. Sustain. Eng. 2013, 6, 66–73. [Google Scholar] [CrossRef]
- Pivato, A.; Girotto, F.; Megido, L.; Raga, R. Estimation of global warming emissions in waste incineration and landfilling: An environmental forensic case study. Environ. Forensics 2018, 19, 253–264. [Google Scholar] [CrossRef]
- Li, L.; Du, G.; Yan, B.; Wang, Y.; Zhao, Y.; Su, J.; Li, H.; Du, Y.; Sun, Y.; Chen, G.; et al. Carbon Footprint Analysis of Sewage Sludge Thermochemical Conversion Technologies. Sustainability 2023, 15, 4170. [Google Scholar] [CrossRef]
- Di Paolo, L.; Abbate, S.; Celani, E.; Di Battista, D.; Candeloro, G. Carbon Footprint of Single-Use Plastic Items and Their Substitution. Sustainability 2022, 14, 16563. [Google Scholar] [CrossRef]
- Kirschbaum, M.U. Temporary carbon sequestration cannot prevent climate change. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 1151–1164. [Google Scholar] [CrossRef]
- Garcia, R.; Freire, F. Carbon footprint of particleboard: A comparison between ISO/TS 14067, GHG Protocol, PAS 2050 and Climate Declaration. J. Clean. Prod. 2013, 66, 199–209. [Google Scholar] [CrossRef]
- Shahzad, A. Hemp fiber and its composites—A review. J. Compos. Mater. 2012, 46, 973–986. [Google Scholar] [CrossRef]
- Lawson, L.; Degenstein, L.M.; Bates, B.; Chute, W.; King, D.; Dolez, P.I. Cellulose Textiles from Hemp Biomass: Opportunities and Challenges. Sustainability 2022, 14, 15337. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Foley, J.A. An equilibrium model of the terrestrial carbon budget. Tellus B Chem. Phys. Meteorol. 1995, 47, 310–319. [Google Scholar] [CrossRef]
- Lazzerini, G.; Manzini, J.; Lucchetti, S.; Nin, S.; Nicese, F.P. Greenhouse Gas Emissions and Carbon Sequestration from Conventional and Organic Olive Tree Nurseries in Tuscany, Italy. Sustainability 2022, 14, 16526. [Google Scholar] [CrossRef]
- Fu, D.; Bu, B.; Wu, J.; Singh, R.P. Investigation on the carbon sequestration capacity of vegetation along a heavy traffic load expressway. J. Environ. Manag. 2019, 241, 549–557. [Google Scholar] [CrossRef]
- Zhang, B.; Xie, Z.X.; Gao, J.X. Assessment on the Carbon Fixation of Urban Forests and their Efficacy on Offsetting Energy Carbon Emissions in Shanghai. Acta Ecol. Sin. 2021, 41, 8906–8920. [Google Scholar] [CrossRef]
- Ravindranath, N.H. Carbon Inventory Methods; China Forestry Publishing House: Beijing, China, 2009. [Google Scholar]
- Solomon, S. IPCC (2007): Climate Change the Physical Science Basis; AGU Fall Meeting Abstracts: San Francisco, CA, USA, 2007; Volume 9, pp. 123–124. [Google Scholar]
- Clift, R.; Brandão, M. Carbon Storage and Timing of Emissions; Centre for Environmental Strategy, University of Surrey: Guildford, UK, 2008. [Google Scholar]
- Flavio, S.; Carlo, I.; Chadi, M.; Tala, M.; Guillaume, P.; Antonio, M.; Claudia, A.; Francesco, A. Energy and carbon footprint assessment of production of hemp hurds for application in buildings. Environ. Impact Assess. Rev. 2020, 84, 106417. [Google Scholar] [CrossRef]
- Zampori, L.; Dotelli, G.; Vernelli, V. Life Cycle Assessment of Hemp Cultivation and Use of Hemp-Based Thermal Insulator Materials in Buildings. Environ. Sci. Technol. 2013, 47, 7413–7420. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.D.; Lawrence, M.; Blanchet, P.; Amor, B. Regionalised Life Cycle Assessment of Bio-Based Materials in Construction; the Case of Hemp Shiv Treated with Sol-Gel Coatings. Materials 2019, 12, 2987. [Google Scholar] [CrossRef] [PubMed]
- Maris, S.; Philip, V.D.H.; Nele, D.B.; Diana, B.; Genadijs, S.; Aleksandrs, K. Comparative life cycle assessment of magnesium binders as an alternative for hemp concrete. Resour. Conserv. Recycl. 2018, 133, 288–299. [Google Scholar] [CrossRef]
- Vogtländer, J.G.; van der Velden, N.M.; van der Lugt, P. Carbon sequestration in LCA, a proposal for a new approach based on the global carbon cycle; cases on wood and on bamboo. Int. J. Life Cycle Assess. 2014, 19, 13–23. [Google Scholar] [CrossRef]
- Blackburn, R.S. Sustainable Apparel: Production, Processing and Recycling; Woodhead Publishing: Cambridge, UK, 2015. [Google Scholar]
Coefficients | Time Constants (Years) |
---|---|
a0 = 0.217 | |
a1 = 0.259 | τ1 = 172.9 years |
a2 = 0.338 | τ2 = 18.51 years |
a3 = 0.186 | τ3 = 1.186 years |
Initial Year of Accounting Period | ||||
---|---|---|---|---|
6333 (kg C/mu) | 0.69 | 1.0 | 1.0 | 10 mu |
Last year of accounting period | ||||
6333 (kg C/mu) | 0.69 | 1.08 | 1.11 | 10 mu |
Product | Fiber Content (%) | Weight (kg Biomass) | CO2 Storage of Products (kg CO2) | Life Span (Year) | Effects of Delaying (%) |
---|---|---|---|---|---|
New hemp T-shirt | 100 | 0.2 | 0.3666 | 5 | 3.83 |
New hemp slipcover | 100 | 1.0 | 1.8333 | 25 | 19.68 |
New hemp fiber handicraft | 100 | 0.5 | 0.9165 | 50 | 41.12 |
Product | Hemp T-Shirt | Hemp Slipcover | Hemp Fiber Handicraft | ||||||
---|---|---|---|---|---|---|---|---|---|
Incineration | Landfill | Hybrid Scenario | Incineration | Landfill | Hybrid Scenario | Incineration | Landfill | Hybrid Scenario | |
Weighting factor | 0.96 | 0.85 | / | 0.81 | 0.64 | / | 0.62 | 0.42 | / |
Negative carbon emission (kg CO2e/product) | 0.701 | 0.715 | 0.707 | 1.718 | 2.058 | 1.854 | 0.743 | 1.084 | 0.879 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, S.; Zhu, L.; Sun, L.; Zhang, Y.; Li, X.; Wang, L. Carbon Neutrality Potential of Textile Products Made from Plant-Derived Fibers. Sustainability 2023, 15, 7070. https://doi.org/10.3390/su15097070
Liu J, Liu S, Zhu L, Sun L, Zhang Y, Li X, Wang L. Carbon Neutrality Potential of Textile Products Made from Plant-Derived Fibers. Sustainability. 2023; 15(9):7070. https://doi.org/10.3390/su15097070
Chicago/Turabian StyleLiu, Junran, Shuyi Liu, Lisha Zhu, Lirong Sun, Ying Zhang, Xin Li, and Laili Wang. 2023. "Carbon Neutrality Potential of Textile Products Made from Plant-Derived Fibers" Sustainability 15, no. 9: 7070. https://doi.org/10.3390/su15097070
APA StyleLiu, J., Liu, S., Zhu, L., Sun, L., Zhang, Y., Li, X., & Wang, L. (2023). Carbon Neutrality Potential of Textile Products Made from Plant-Derived Fibers. Sustainability, 15(9), 7070. https://doi.org/10.3390/su15097070