Access and Control of Resources and Participation in Rice-Breeding Activities among Men and Women Farmers in Southern Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Analytical Methods
3. Results and Discussions
3.1. Demographic, Institutional, and Farm-Level Characteristics of Farmers
3.2. Perceptions of Rice-Breeding Activities among Men and Women Farmers
3.3. Access and Control of Resources by Men and Women Rice Farmers in Southern Ghana
“…men have more access but women are now trying to manipulate things for equality in resource access. But in general, its men because like I said earlier it’s an existing norm and most women too feel inferior with regards to resource access.”(Agricultural Extension Officer, Aframso)
“…the men always have easy access to these inputs because men have the strength to work efficiently than women. And also men are always the decision makers in the household[.]”(Man farmer, Aframso)
“Men are more superior and the head of the family in this our community so they tend to have an upper hand when it comes to control over resources.”
“…Men have control, because it has been the tradition and moreover modernization as to superiority just started in the community unlike the tradition/norm which has been there for centuries and just can’t be changed at once. So, as it stands now men have control over resources of production.”
“...Even if they are in the same family, the men still have the advantage to use the land because definitely, the male will be the household head in his nuclear family, and also society has made it so.”
3.4. Participation in Rice-Breeding Activities among Men and Women Farmers
3.5. Factors Influencing Participation in Rice-Breeding Activities among Women and Men Farmers in Southern Ghana
3.6. Factors Influencing Access to Resources in Rice-Breeding Activities among Men and Women Farmers in Southern Ghana
3.7. Factors Influencing Control of Resources in Rice-Breeding Activities among Men and Women Farmers in Southern Ghana
4. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Coef. | Std.Err. | z | P > z | [95%Conf. | Interval] | |
---|---|---|---|---|---|---|
Seed access | ||||||
Years of schooling | −0.047 | 0.012 | −3.96 | 0 | −0.07 | −0.024 |
Rice-farming experience | −0.001 | 0.005 | −0.16 | 0.874 | −0.011 | 0.01 |
Credit access | −0.458 | 0.127 | −3.6 | 0 | −0.708 | −0.209 |
FBO | 0.157 | 0.117 | 1.34 | 0.18 | −0.072 | 0.385 |
Extension visits | −0.054 | 0.024 | −2.25 | 0.025 | −0.101 | −0.007 |
Number of plots | −0.347 | 0.138 | −2.52 | 0.012 | −0.618 | −0.077 |
Farm size (acre) | 0.023 | 0.034 | 0.67 | 0.503 | −0.044 | 0.089 |
Market distance (km) | −0.028 | 0.013 | −2.18 | 0.029 | −0.052 | −0.003 |
Dependency ratio | −0.427 | 0.303 | −1.41 | 0.16 | −1.021 | 0.168 |
Constant | 0.715 | 0.286 | 2.5 | 0.012 | 0.155 | 1.275 |
Labor access | ||||||
Years of schooling | 0.02 | 0.012 | 1.6 | 0.11 | −0.004 | 0.044 |
Rice-farming experience | 0.005 | 0.005 | 0.96 | 0.335 | −0.005 | 0.016 |
Credit access | 0.004 | 0.121 | 0.03 | 0.974 | −0.233 | 0.241 |
FBO | 0.209 | 0.116 | 1.8 | 0.071 | −0.018 | 0.435 |
Extension visits | 0.088 | 0.023 | 3.8 | 0 | 0.043 | 0.134 |
Number of plots | 0.271 | 0.119 | 2.27 | 0.023 | 0.038 | 0.505 |
Farm size (acre) | −0.001 | 0.034 | −0.03 | 0.979 | −0.067 | 0.065 |
Market distance (km) | 0.013 | 0.012 | 1.09 | 0.275 | −0.01 | 0.036 |
Dependency ratio | 1.043 | 0.322 | 3.24 | 0.001 | 0.412 | 1.674 |
Constant | −0.921 | 0.267 | −3.45 | 0.001 | −1.444 | −0.397 |
Land access | ||||||
Years of schooling | 0.018 | 0.012 | 1.42 | 0.156 | −0.007 | 0.042 |
Rice-farming experience | −0.007 | 0.006 | −1.22 | 0.221 | −0.019 | 0.004 |
Credit access | 0.14 | 0.12 | 1.16 | 0.247 | −0.096 | 0.375 |
FBO | 0.69 | 0.12 | 5.76 | 0 | 0.455 | 0.925 |
Extension visits | −0.088 | 0.023 | −3.92 | 0 | −0.132 | −0.044 |
Number of plots | 0.313 | 0.14 | 2.23 | 0.026 | 0.037 | 0.588 |
Farm size (acre) | 0.076 | 0.033 | 2.32 | 0.02 | 0.012 | 0.141 |
Market distance (km) | 0.002 | 0.013 | 0.12 | 0.903 | −0.024 | 0.027 |
Dependency ratio | 1.999 | 0.321 | 6.24 | 0 | 1.371 | 2.627 |
Constant | −1.437 | 0.303 | −4.74 | 0 | −2.031 | −0.843 |
Fertilizer access | ||||||
Years of schooling | 0.034 | 0.013 | 2.68 | 0.007 | 0.009 | 0.06 |
Rice-farming experience | 0.001 | 0.007 | 0.22 | 0.824 | −0.011 | 0.014 |
Credit access | 0.219 | 0.128 | 1.71 | 0.088 | −0.033 | 0.47 |
FBO | 0.517 | 0.133 | 3.9 | 0 | 0.257 | 0.777 |
Extension visits | −0.007 | 0.022 | −0.31 | 0.758 | −0.05 | 0.036 |
Number of plots | −0.21 | 0.121 | −1.73 | 0.083 | −0.447 | 0.027 |
Farm size (acre) | 0.021 | 0.032 | 0.64 | 0.522 | −0.042 | 0.083 |
Market distance (km) | −0.016 | 0.012 | −1.37 | 0.172 | −0.04 | 0.007 |
Dependency ratio | −0.407 | 0.337 | −1.21 | 0.227 | −1.066 | 0.253 |
Constant | 0.667 | 0.286 | 2.33 | 0.02 | 0.107 | 1.227 |
Insecticide access | ||||||
Years of schooling | 0.042 | 0.015 | 2.75 | 0.006 | 0.012 | 0.071 |
Rice-farming experience | 0.003 | 0.008 | 0.36 | 0.716 | −0.012 | 0.018 |
Credit access | 0.355 | 0.171 | 2.08 | 0.038 | 0.02 | 0.69 |
FBO | −0.079 | 0.146 | −0.54 | 0.59 | −0.365 | 0.208 |
Extension visits | 0.075 | 0.033 | 2.27 | 0.023 | 0.01 | 0.139 |
Number of plots | −0.075 | 0.111 | −0.68 | 0.5 | −0.291 | 0.142 |
Farm size (acre) | −0.103 | 0.035 | −2.9 | 0.004 | −0.172 | −0.033 |
Market distance (km) | −0.004 | 0.014 | −0.27 | 0.785 | −0.032 | 0.024 |
Dependency ratio | −0.308 | 0.312 | −0.99 | 0.323 | −0.921 | 0.304 |
Constant | 1.545 | 0.319 | 4.84 | 0 | 0.919 | 2.17 |
Weedicide access | ||||||
Years of schooling | 0.006 | 0.015 | 0.43 | 0.664 | −0.023 | 0.036 |
Rice-farming experience | 0.003 | 0.007 | 0.38 | 0.703 | −0.012 | 0.017 |
Credit access | 0.249 | 0.156 | 1.59 | 0.111 | −0.057 | 0.555 |
FBO | 0.37 | 0.152 | 2.44 | 0.015 | 0.073 | 0.668 |
Extension visits | 0.102 | 0.036 | 2.86 | 0.004 | 0.032 | 0.172 |
Number of plots | −0.089 | 0.118 | −0.75 | 0.45 | −0.319 | 0.142 |
Farm size (acre) | −0.045 | 0.042 | −1.07 | 0.284 | −0.128 | 0.038 |
Market distance (km) | −0.031 | 0.011 | −2.75 | 0.006 | −0.054 | −0.009 |
Dependency ratio | −0.693 | 0.316 | −2.2 | 0.028 | −1.312 | −0.075 |
Constant | 1.576 | 0.275 | 5.74 | 0 | 1.038 | 2.114 |
Coef. | Std.Err. | z | P > z | [95%Conf. | Interval] | |
---|---|---|---|---|---|---|
Seed access | ||||||
Years of schooling | 0.008 | 0.015 | 0.540 | 0.587 | −0.021 | 0.037 |
Rice-farming experience | 0.001 | 0.008 | 0.120 | 0.901 | −0.015 | 0.017 |
Credit access | −0.234 | 0.170 | −1.380 | 0.168 | −0.568 | 0.099 |
FBO | 0.054 | 0.144 | 0.380 | 0.707 | −0.228 | 0.336 |
Extension visits | −0.028 | 0.026 | −1.080 | 0.281 | −0.080 | 0.023 |
Number of plots | 0.061 | 0.177 | 0.340 | 0.731 | −0.286 | 0.407 |
Farm size (acre) | −0.028 | 0.040 | −0.700 | 0.484 | −0.105 | 0.050 |
Market distance (km) | −0.037 | 0.013 | −2.890 | 0.004 | −0.063 | −0.012 |
Dependency ratio | −0.096 | 0.236 | −0.410 | 0.684 | −0.559 | 0.366 |
Constant | −0.076 | 0.262 | −0.290 | 0.773 | −0.589 | 0.438 |
Labor access | ||||||
Years of schooling | 0.002 | 0.005 | 0.320 | 0.746 | −0.008 | 0.012 |
Rice-farming experience | 0.008 | 0.003 | 3.040 | 0.002 | 0.003 | 0.014 |
Credit access | 0.196 | 0.058 | 3.350 | 0.001 | 0.081 | 0.310 |
FBO | 0.113 | 0.050 | 2.280 | 0.022 | 0.016 | 0.211 |
Extension visits | 0.017 | 0.009 | 1.770 | 0.076 | −0.002 | 0.035 |
Number of plots | 0.194 | 0.062 | 3.150 | 0.002 | 0.073 | 0.315 |
Farm size (acre) | 0.053 | 0.013 | 4.020 | 0.000 | 0.027 | 0.078 |
Market distance (km) | −0.004 | 0.004 | −0.940 | 0.346 | −0.012 | 0.004 |
Dependency ratio | 0.146 | 0.077 | 1.900 | 0.058 | −0.005 | 0.297 |
Constant | −0.110 | 0.091 | −1.210 | 0.225 | −0.288 | 0.068 |
Fertilizer access | ||||||
Years of schooling | −0.004 | 0.005 | −0.770 | 0.444 | −0.014 | 0.006 |
Rice-farming experience | 0.000 | 0.003 | 0.120 | 0.902 | −0.005 | 0.006 |
Credit access | −0.003 | 0.058 | −0.060 | 0.952 | −0.117 | 0.110 |
FBO | 0.179 | 0.049 | 3.650 | 0.000 | 0.083 | 0.275 |
Extension visits | 0.015 | 0.009 | 1.640 | 0.102 | −0.003 | 0.033 |
Number of plots | 0.294 | 0.061 | 4.810 | 0.000 | 0.174 | 0.413 |
Farm size (acre) | −0.031 | 0.013 | −2.380 | 0.017 | −0.056 | −0.005 |
Market distance (km) | −0.001 | 0.004 | −0.200 | 0.843 | −0.009 | 0.007 |
Dependency ratio | −0.070 | 0.076 | −0.920 | 0.356 | −0.220 | 0.079 |
Constant | 0.388 | 0.090 | 4.320 | 0.000 | 0.212 | 0.564 |
Insecticide access | ||||||
Years of schooling | −0.006 | 0.004 | −1.290 | 0.196 | −0.014 | 0.003 |
Rice-farming experience | −0.002 | 0.002 | −0.910 | 0.363 | −0.007 | 0.003 |
Credit access | 0.031 | 0.051 | 0.600 | 0.546 | −0.068 | 0.130 |
FBO | 0.179 | 0.043 | 4.170 | 0.000 | 0.095 | 0.263 |
Extension visits | 0.007 | 0.008 | 0.810 | 0.419 | −0.009 | 0.022 |
Number of plots | 0.059 | 0.053 | 1.110 | 0.265 | −0.045 | 0.164 |
Farm size (acre) | −0.000 | 0.011 | −0.020 | 0.986 | −0.022 | 0.022 |
Market distance (km) | −0.002 | 0.004 | −0.660 | 0.510 | −0.009 | 0.005 |
Dependency ratio | −0.065 | 0.067 | −0.980 | 0.329 | −0.196 | 0.066 |
Constant | 0.745 | 0.079 | 9.480 | 0.000 | 0.591 | 0.899 |
Weedicide access | ||||||
Years of schooling | 0.002 | 0.005 | 0.460 | 0.646 | −0.007 | 0.011 |
Rice-farming experience | −0.004 | 0.002 | −1.480 | 0.138 | −0.008 | 0.001 |
Credit access | 0.064 | 0.051 | 1.250 | 0.211 | −0.036 | 0.165 |
FBO | 0.139 | 0.044 | 3.190 | 0.001 | 0.054 | 0.225 |
Extension visits | 0.009 | 0.008 | 1.070 | 0.286 | −0.007 | 0.025 |
Number of plots | 0.029 | 0.054 | 0.540 | 0.590 | −0.077 | 0.135 |
Farm size (acre) | −0.033 | 0.011 | −2.890 | 0.004 | −0.056 | −0.011 |
Market distance (km) | −0.001 | 0.004 | −0.380 | 0.700 | −0.008 | 0.006 |
Dependency ratio | −0.033 | 0.068 | −0.480 | 0.630 | −0.165 | 0.100 |
Constant | 0.815 | 0.080 | 10.210 | 0.000 | 0.658 | 0.972 |
Land access | ||||||
Years of schooling | −0.006 | 0.005 | −1.100 | 0.272 | −0.016 | 0.005 |
Rice-farming experience | −0.004 | 0.003 | −1.350 | 0.178 | −0.010 | 0.002 |
Credit access | −0.162 | 0.060 | −2.690 | 0.007 | −0.279 | −0.044 |
FBO | 0.225 | 0.051 | 4.410 | 0.000 | 0.125 | 0.325 |
Extension visits | 0.029 | 0.010 | 3.060 | 0.002 | 0.011 | 0.048 |
Number of plots | 0.120 | 0.063 | 1.890 | 0.058 | −0.004 | 0.245 |
Farm size (acre) | −0.004 | 0.013 | −0.280 | 0.782 | −0.030 | 0.023 |
Market distance (km) | −0.001 | 0.004 | −0.200 | 0.840 | −0.009 | 0.007 |
Dependency ratio | 0.133 | 0.079 | 1.680 | 0.094 | −0.023 | 0.288 |
Constant | 0.149 | 0.094 | 1.590 | 0.112 | −0.035 | 0.332 |
Coef. | Std.Err. | z | P > z | [95%Conf. | Interval] | |
---|---|---|---|---|---|---|
Land control | ||||||
Years of schooling | −0.003 | 0.013 | −0.230 | 0.818 | −0.028 | 0.022 |
Rice-farming experience | 0.008 | 0.006 | 1.260 | 0.207 | −0.004 | 0.020 |
Credit access | 0.412 | 0.131 | 3.150 | 0.002 | 0.155 | 0.669 |
FBO | 0.581 | 0.124 | 4.670 | 0.000 | 0.337 | 0.825 |
Extension visits | −0.055 | 0.023 | −2.370 | 0.018 | −0.100 | −0.009 |
Number of plots | −0.374 | 0.127 | −2.940 | 0.003 | −0.624 | −0.125 |
Farm size (acre) | 0.109 | 0.033 | 3.280 | 0.001 | 0.044 | 0.174 |
Market distance (km) | 0.003 | 0.013 | 0.210 | 0.835 | −0.022 | 0.028 |
Dependency ratio | −0.438 | 0.335 | −1.310 | 0.191 | −1.094 | 0.219 |
Constant | 0.612 | 0.294 | 2.080 | 0.038 | 0.035 | 1.189 |
Labor control | ||||||
Years of schooling | 0.015 | 0.013 | 1.220 | 0.224 | −0.009 | 0.040 |
Rice-farming experience | 0.001 | 0.006 | 0.120 | 0.902 | −0.011 | 0.012 |
Credit access | 0.403 | 0.122 | 3.300 | 0.001 | 0.164 | 0.642 |
FBO | 0.379 | 0.118 | 3.210 | 0.001 | 0.148 | 0.611 |
Extension visits | 0.070 | 0.023 | 3.130 | 0.002 | 0.026 | 0.115 |
Number of plots | −0.148 | 0.123 | −1.200 | 0.232 | −0.389 | 0.094 |
Farm size (acre) | 0.029 | 0.034 | 0.870 | 0.383 | −0.036 | 0.095 |
Market distance (km) | −0.004 | 0.012 | −0.310 | 0.754 | −0.027 | 0.019 |
Dependency ratio | −0.108 | 0.343 | −0.310 | 0.753 | −0.780 | 0.564 |
Constant | 0.032 | 0.296 | 0.110 | 0.913 | −0.548 | 0.613 |
Improved seed control | ||||||
Years of schooling | −0.010 | 0.012 | −0.810 | 0.417 | −0.034 | 0.014 |
Rice-farming experience | 0.007 | 0.005 | 1.250 | 0.211 | −0.004 | 0.017 |
Credit access | 0.364 | 0.121 | 3.000 | 0.003 | 0.126 | 0.601 |
FBO | −0.064 | 0.116 | −0.560 | 0.579 | −0.292 | 0.163 |
Extension visits | 0.001 | 0.022 | 0.050 | 0.961 | −0.042 | 0.044 |
Number of plots | −0.168 | 0.119 | −1.410 | 0.159 | −0.401 | 0.066 |
Farm size (acre) | 0.019 | 0.031 | 0.590 | 0.555 | −0.043 | 0.080 |
Market distance (km) | 0.015 | 0.011 | 1.330 | 0.184 | −0.007 | 0.037 |
Dependency ratio | 0.059 | 0.324 | 0.180 | 0.856 | −0.576 | 0.694 |
Constant | 0.172 | 0.273 | 0.630 | 0.529 | −0.363 | 0.706 |
Fertilizer control | ||||||
Years of schooling | −0.042 | 0.013 | −3.280 | 0.001 | −0.066 | −0.017 |
Rice-farming experience | 0.002 | 0.006 | 0.300 | 0.765 | −0.009 | 0.013 |
Credit access | −0.262 | 0.121 | −2.170 | 0.030 | −0.499 | −0.025 |
FBO | 0.036 | 0.119 | 0.300 | 0.761 | −0.197 | 0.269 |
Extension visits | −0.064 | 0.023 | −2.800 | 0.005 | −0.109 | −0.019 |
Number of plots | −0.510 | 0.109 | −4.660 | 0.000 | −0.724 | −0.295 |
Farm size (acre) | 0.073 | 0.031 | 2.350 | 0.019 | 0.012 | 0.134 |
Market distance (km) | −0.004 | 0.012 | −0.370 | 0.711 | −0.027 | 0.019 |
Dependency ratio | −0.292 | 0.330 | −0.880 | 0.376 | −0.938 | 0.355 |
Constant | 1.149 | 0.279 | 4.120 | 0.000 | 0.603 | 1.696 |
Weedicide control | ||||||
Years of schooling | −0.016 | 0.012 | −1.280 | 0.199 | −0.040 | 0.008 |
Rice-farming experience | 0.005 | 0.006 | 0.900 | 0.367 | −0.006 | 0.016 |
Credit access | 0.037 | 0.119 | 0.310 | 0.756 | −0.197 | 0.271 |
FBO | 0.211 | 0.118 | 1.780 | 0.075 | −0.021 | 0.443 |
Extension visits | −0.044 | 0.023 | −1.930 | 0.053 | −0.088 | 0.001 |
Number of plots | −0.302 | 0.112 | −2.690 | 0.007 | −0.522 | −0.082 |
Farm size (acre) | −0.033 | 0.030 | −1.100 | 0.270 | −0.093 | 0.026 |
Market distance (km) | 0.037 | 0.011 | 3.270 | 0.001 | 0.015 | 0.060 |
Dependency ratio | −0.759 | 0.332 | −2.290 | 0.022 | −1.408 | −0.109 |
Constant | 0.683 | 0.283 | 2.410 | 0.016 | 0.128 | 1.237 |
Insecticide control | ||||||
Years of schooling | −0.027 | 0.013 | −2.120 | 0.034 | −0.052 | −0.002 |
Rice-farming experience | 0.003 | 0.006 | 0.470 | 0.639 | −0.008 | 0.013 |
Credit access | 0.319 | 0.120 | 2.650 | 0.008 | 0.083 | 0.555 |
FBO | 0.416 | 0.121 | 3.450 | 0.001 | 0.179 | 0.653 |
Extension visits | 0.002 | 0.023 | 0.100 | 0.924 | −0.042 | 0.047 |
Number of plots | −0.267 | 0.114 | −2.340 | 0.019 | −0.490 | −0.044 |
Farm size (acre) | 0.047 | 0.032 | 1.500 | 0.134 | −0.015 | 0.109 |
Market distance (km) | −0.002 | 0.012 | −0.140 | 0.885 | −0.024 | 0.021 |
Dependency ratio | −0.728 | 0.330 | −2.200 | 0.028 | −1.375 | −0.081 |
Constant | 0.495 | 0.285 | 1.740 | 0.082 | −0.063 | 1.053 |
Coef. | Std.Err. | z | P > z | [95%Conf. | Interval] | |
---|---|---|---|---|---|---|
Land control | ||||||
Years of schooling | −0.049 | 0.014 | −3.410 | 0.001 | −0.078 | −0.021 |
Rice-farming experience | −0.031 | 0.010 | −3.050 | 0.002 | −0.050 | −0.011 |
Credit access | −0.404 | 0.175 | −2.300 | 0.021 | −0.747 | −0.060 |
FBO | 0.510 | 0.146 | 3.500 | 0.000 | 0.224 | 0.796 |
Extension visits | 0.101 | 0.030 | 3.340 | 0.001 | 0.042 | 0.160 |
Number of plots | 0.966 | 0.169 | 5.700 | 0.000 | 0.634 | 1.298 |
Farm size (acre) | −0.070 | 0.035 | −2.000 | 0.045 | −0.138 | −0.002 |
Market distance (km) | −0.042 | 0.012 | −3.430 | 0.001 | −0.066 | −0.018 |
Dependency ratio | 0.117 | 0.158 | 0.740 | 0.461 | −0.194 | 0.427 |
Constant | −0.344 | 0.233 | −1.480 | 0.140 | −0.800 | 0.113 |
Labor control | ||||||
Years of schooling | −0.008 | 0.015 | −0.580 | 0.562 | −0.037 | 0.020 |
Rice-farming experience | −0.004 | 0.008 | −0.490 | 0.625 | −0.020 | 0.012 |
Credit access | 0.641 | 0.191 | 3.360 | 0.001 | 0.267 | 1.015 |
FBO | 0.197 | 0.145 | 1.360 | 0.174 | −0.087 | 0.482 |
Extension visits | −0.001 | 0.030 | −0.040 | 0.970 | −0.061 | 0.058 |
Number of plots | −0.331 | 0.151 | −2.200 | 0.028 | −0.627 | −0.036 |
Farm size (acre) | 0.031 | 0.037 | 0.830 | 0.406 | −0.042 | 0.105 |
Market distance (km) | −0.037 | 0.012 | −3.210 | 0.001 | −0.060 | −0.014 |
Dependency ratio | 0.109 | 0.252 | 0.430 | 0.666 | −0.385 | 0.603 |
Constant | 0.530 | 0.262 | 2.020 | 0.043 | 0.017 | 1.043 |
Improved seed control | ||||||
Years of schooling | 0.029 | 0.015 | 1.980 | 0.048 | 0.000 | 0.057 |
Rice-farming experience | −0.004 | 0.007 | −0.550 | 0.585 | −0.019 | 0.010 |
Credit access | 0.342 | 0.164 | 2.080 | 0.037 | 0.020 | 0.665 |
FBO | −0.177 | 0.139 | −1.270 | 0.203 | −0.449 | 0.096 |
Extension visits | −0.001 | 0.029 | −0.050 | 0.960 | −0.057 | 0.055 |
Number of plots | −0.408 | 0.183 | −2.230 | 0.026 | −0.767 | −0.049 |
Farm size (acre) | −0.004 | 0.034 | −0.110 | 0.913 | −0.071 | 0.064 |
Market distance (km) | −0.016 | 0.012 | −1.390 | 0.165 | −0.040 | 0.007 |
Dependency ratio | 0.275 | 0.149 | 1.840 | 0.065 | −0.018 | 0.568 |
Constant | 0.250 | 0.250 | 1.000 | 0.317 | −0.240 | 0.739 |
Fertilizer control | ||||||
Years of schooling | −0.025 | 0.015 | −1.710 | 0.087 | −0.055 | 0.004 |
Rice-farming experience | −0.006 | 0.007 | −0.830 | 0.407 | −0.020 | 0.008 |
Credit access | 0.391 | 0.166 | 2.360 | 0.018 | 0.066 | 0.716 |
FBO | 0.645 | 0.143 | 4.520 | 0.000 | 0.366 | 0.925 |
Extension visits | 0.139 | 0.033 | 4.210 | 0.000 | 0.074 | 0.203 |
Number of plots | 0.234 | 0.173 | 1.350 | 0.176 | −0.105 | 0.572 |
Farm size (acre) | −0.053 | 0.036 | −1.480 | 0.139 | −0.124 | 0.017 |
Market distance (km) | 0.013 | 0.012 | 1.060 | 0.289 | −0.011 | 0.038 |
Dependency ratio | −0.310 | 0.216 | −1.440 | 0.150 | −0.733 | 0.112 |
Constant | −0.554 | 0.270 | −2.050 | 0.040 | −1.083 | −0.025 |
Weedicide control | ||||||
Years of schooling | 0.020 | 0.015 | 1.300 | 0.195 | −0.010 | 0.050 |
Rice-farming experience | −0.007 | 0.008 | −0.990 | 0.323 | −0.022 | 0.007 |
Credit access | 0.874 | 0.173 | 5.070 | 0.000 | 0.536 | 1.212 |
FBO | 0.289 | 0.148 | 1.950 | 0.051 | −0.001 | 0.579 |
Extension visits | −0.008 | 0.029 | −0.280 | 0.777 | −0.066 | 0.049 |
Number of plots | 0.050 | 0.181 | 0.280 | 0.782 | −0.305 | 0.405 |
Farm size (acre) | −0.205 | 0.045 | −4.540 | 0.000 | −0.293 | −0.116 |
Market distance (km) | −0.008 | 0.012 | −0.650 | 0.515 | −0.030 | 0.015 |
Dependency ratio | −0.370 | 0.257 | −1.440 | 0.151 | −0.874 | 0.134 |
Constant | 0.369 | 0.266 | 1.390 | 0.166 | −0.152 | 0.890 |
Insecticide control | ||||||
Years of schooling | 0.012 | 0.015 | 0.820 | 0.413 | −0.017 | 0.041 |
Rice-farming experience | −0.011 | 0.007 | −1.530 | 0.126 | −0.025 | 0.003 |
Credit access | 0.009 | 0.164 | 0.050 | 0.958 | −0.312 | 0.329 |
FBO | 0.127 | 0.142 | 0.900 | 0.371 | −0.151 | 0.404 |
Extension visits | 0.011 | 0.030 | 0.370 | 0.708 | −0.047 | 0.069 |
Number of plots | 0.156 | 0.179 | 0.870 | 0.384 | −0.195 | 0.506 |
Farm size (acre) | −0.089 | 0.040 | −2.210 | 0.027 | −0.168 | −0.010 |
Market distance (km) | −0.028 | 0.012 | −2.330 | 0.020 | −0.051 | −0.004 |
Dependency ratio | −0.108 | 0.245 | −0.440 | 0.660 | −0.588 | 0.372 |
Constant | −0.102 | 0.259 | −0.390 | 0.693 | −0.610 | 0.406 |
Coef. | Std.Err. | z | P > z | [95%Conf. | Interval] | |
---|---|---|---|---|---|---|
Field days | ||||||
Years of schooling | 0.011 | 0.013 | 0.820 | 0.413 | −0.015 | 0.037 |
Rice-farming experience | 0.002 | 0.006 | 0.280 | 0.776 | −0.011 | 0.014 |
Credit access | 0.265 | 0.127 | 2.080 | 0.037 | 0.015 | 0.515 |
FBO | 0.750 | 0.121 | 6.190 | 0.000 | 0.513 | 0.987 |
Extension visits | 0.093 | 0.024 | 3.850 | 0.000 | 0.046 | 0.141 |
Number of plots | 0.546 | 0.143 | 3.810 | 0.000 | 0.265 | 0.827 |
Farm size (acre) | 0.131 | 0.035 | 3.690 | 0.000 | 0.061 | 0.200 |
Market distance (km) | −0.042 | 0.012 | −3.570 | 0.000 | −0.066 | −0.019 |
Dependency ratio | 2.302 | 0.340 | 6.770 | 0.000 | 1.635 | 2.969 |
Constant | −2.184 | 0.314 | −6.950 | 0.000 | −2.800 | −1.568 |
On-farm evaluation | ||||||
Years of schooling | 0.042 | 0.013 | 3.230 | 0.001 | 0.017 | 0.068 |
Rice-farming experience | 0.013 | 0.005 | 2.420 | 0.016 | 0.003 | 0.024 |
Credit access | 0.383 | 0.132 | 2.890 | 0.004 | 0.123 | 0.642 |
FBO | 0.697 | 0.124 | 5.620 | 0.000 | 0.454 | 0.941 |
Extension visits | 0.001 | 0.022 | 0.060 | 0.952 | −0.041 | 0.044 |
Number of plots | 0.285 | 0.130 | 2.190 | 0.028 | 0.030 | 0.540 |
Farm size (acre) | 0.104 | 0.035 | 2.990 | 0.003 | 0.036 | 0.172 |
Market distance (km) | −0.047 | 0.011 | −4.230 | 0.000 | −0.069 | −0.025 |
Dependency ratio | 1.100 | 0.348 | 3.160 | 0.002 | 0.418 | 1.781 |
Constant | −1.590 | 0.308 | −5.160 | 0.000 | −2.194 | −0.986 |
Coef. | Std.Err. | z | P > z | [95%Conf. | Interval] | |
---|---|---|---|---|---|---|
Field days | ||||||
Years of schooling | −0.046 | 0.015 | −2.990 | 0.003 | −0.077 | −0.016 |
Rice-farming experience | −0.004 | 0.009 | −0.390 | 0.694 | −0.022 | 0.015 |
Credit access | −0.037 | 0.181 | −0.210 | 0.836 | −0.392 | 0.318 |
FBO | 0.793 | 0.157 | 5.040 | 0.000 | 0.485 | 1.102 |
Extension visits | 0.116 | 0.028 | 4.150 | 0.000 | 0.061 | 0.170 |
Number of plots | 0.905 | 0.164 | 5.520 | 0.000 | 0.584 | 1.226 |
Farm size (acre) | 0.175 | 0.045 | 3.870 | 0.000 | 0.086 | 0.264 |
Market distance (km) | −0.088 | 0.020 | −4.460 | 0.000 | −0.127 | −0.049 |
Dependency ratio | 1.706 | 0.423 | 4.030 | 0.000 | 0.877 | 2.535 |
Constant | −2.727 | 0.337 | −8.100 | 0.000 | −3.386 | −2.067 |
On-farm evaluation | ||||||
Years of schooling | 0.014 | 0.016 | 0.900 | 0.368 | −0.017 | 0.044 |
Rice-farming experience | 0.015 | 0.008 | 1.770 | 0.077 | −0.002 | 0.031 |
Credit access | 0.078 | 0.175 | 0.440 | 0.658 | −0.266 | 0.421 |
FBO | 0.885 | 0.162 | 5.450 | 0.000 | 0.566 | 1.203 |
Extension visits | −0.004 | 0.036 | −0.110 | 0.911 | −0.075 | 0.067 |
Number of plots | 0.621 | 0.191 | 3.250 | 0.001 | 0.246 | 0.996 |
Farm size (acre) | 0.102 | 0.044 | 2.340 | 0.019 | 0.017 | 0.187 |
Market distance (km) | −0.102 | 0.021 | −4.940 | 0.000 | −0.143 | −0.062 |
Dependency ratio | 1.404 | 0.351 | 4.000 | 0.000 | 0.717 | 2.091 |
Constant | −2.301 | 0.305 | −7.540 | 0.000 | −2.899 | −1.703 |
References
- Feder, A.F.; Jones, T.V.; Madsen, R.W.; Kao, R.L. Analyzing the relationship between dietary intake and BMI in adolescents using adjusted cluster sampling. J. Adolesc. Health 2014, 54, S69–S76. [Google Scholar] [CrossRef]
- Hailu, B.; Siraj, S.; Hailemariam, D.; Fekadu, A. Health-related quality of life and its socio-demographic determinants among people with epilepsy in Ethiopia. BMC Res. Notes 2014, 7, 1–6. [Google Scholar] [CrossRef]
- Ragasa, C. Gender and Institutional Dimensions of Agricultural Technology Adoption: A Review of Literature and Synthesis of 35 Case Studies; International Association of Agricultural Economists: Foz do Iguacu, Brazil, 2012; pp. 18–24. [Google Scholar]
- Doss, H.; Morris, M. A comparison of computer-based and pencil-and-paper testing of mathematics concepts. J. Educ. Comput. Res. 2001, 24, 159–167. [Google Scholar]
- Collett, D.; Gale, C. Catching up with the big players: The link between size and innovation. Int. J. Bus. Sci. Appl. Manag. 2009, 4, 1–11. [Google Scholar]
- Kinkinghoun-Medagabé, M.; Adoukonou-Sagbadja, H.; Agossou, J.; Bankolé, H. Ethnobotanical study of plants used for treatment of schistosomiasis in selected communities of the Plateau Region, Togo. J. Appl. Biosci. 2008, 7, 241–248. [Google Scholar]
- Tiruneh, M.; Hecht, R.; Käser, M.; Utzinger, J. Treatment of urinary schistosomiasis in an endemic community in Ethiopia: Side-effects of praziquantel and albendazole. Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 38–42. [Google Scholar]
- Gilbert, N.L.; Sakala, W.D.; Benson, M.K. The impact of parasitic infections and malnutrition on the performance of primary school children in Zambia. Early Child Dev. Care 2002, 172, 579–585. [Google Scholar] [CrossRef]
- Sanginga, N.; Woomer, P.L.; Okogun, J.A. Integrated Soil Fertility Management in Africa: From Soil Science to Agricultural Impact; Earthscan: Oxford, UK, 2007. [Google Scholar]
- Agboh, G.C.; Asamoah, J.; Mensah, I.; Iddrisu, I.M. Determinants of access to water and sanitation among persons with disabilities in Tamale Metropolis of Ghana. Disabil. CBR Incl. Dev. 2013, 24, 65–80. [Google Scholar]
- Daplah, S.Y. A survey of the challenges faced by small-scale private health facilities in Ghana. Int. J. Health Plan. Manag. 2013, 28, e273–e288. [Google Scholar] [CrossRef]
- Mwangi, M.; Kariuki, S. Factors determining adoption of new agricultural technology by smallholder farmers in developing countries. J. Econ. Sustain. Dev. 2015, 6, 104–113. [Google Scholar]
- Haile, S.; Emmanuel, T.; Dzathor, A. Barriers and challenges confronting women for leadership and management positions: Review and analysis. Int. J. Bus. Public Adm. 2016, 13, 36–52. [Google Scholar]
- Chattier, P. Gendered Priorities to Move Out of Poverty: Findings from Fiji: Part 2. SSGM Brief 2014, 20. Available online: https://pacificwomen.org/research/gendered-priorities-to-move-out-of-poverty-findings-from-fiji-part-2/ (accessed on 11 December 2022).
- Mudege, N.N.; Kapalasa, E.; Chevo, T.; Nyekanyeka, T.; Demo, P. Gender norms and the marketing of seeds and ware potatoes in Malawi. J. Gend. Agric. Food Secur. 2015, 1, 18–41. [Google Scholar]
- Njuguna, E.M.; Liani, M.L.; Beyene, M.; Ojiewo, C.O. Exploration of cultural norms and practices influencing women’s participation in chickpea participatory varietal selection training activities: A case study of Ada’a and Ensaro districts, Ethiopia. J. Gend. Agric. Food Secur. 2016, 1, 40–63. [Google Scholar]
- Asfaw, Z.; Woldu, Z.; Demissew, S. Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia. J. Ethnobiol. Ethnomed. 2010, 6, 11. [Google Scholar] [CrossRef]
- Asante, O.B.; Villano, A.R.; Battese, E.G. The effect of the adoption of yam minisett technology on the technical efficiency of yam farmers in the forest-savanna transition zone of Ghana. Afr. J. Agric. Resour. Econ. 2014, 9, 75–90. [Google Scholar]
- Enwelu, I.A.; Morah, U.L.; Dimelu, M.U.; Ezeano, C.I. Women farmers’ access and use of land for agriculture in selected communities of Anambra state, Nigeria. Mediterr. J. Soc. Sci. 2014, 5, 37. [Google Scholar] [CrossRef]
- Etwire, P.M.; Dogbe, W.; Wiredu, A.N.; Martey, E.; Etwire, E.; Owusu, R.K.; Wahaga, E. Factors Influencing Farmer’s Participation in Agricultural Projects: The case of the Agricultural Value Chain Mentorship Project in the Northern Region of Ghana. J. Econ. Sustain. Dev. 2013, 4, 36–43. [Google Scholar]
- Centre for Remote Sensing and Geographic Information Services (CERGIS). PMB L17, Annie Jiagge St, University of Ghana—Legon-Accra. Available online: https://cersgis.org/ (accessed on 4 February 2022).
- Rahm, J.; Huffman, W.E. The rate of obsolescence of scientific and technical information: A study of the aerospace and aeronautics literature. J. Am. Soc. Inf. Sci. 1984, 35, 387–393. [Google Scholar] [CrossRef]
- Mulwa, C.Y.; Marenya, P.P.; Rahut, D.B.; Kassie, M. Response to information on new agricultural production technologies: Evidence from the lab and the field. Agric. Econ. 2017, 48, 207–218. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach; South-Western College Publishing: Mason, OH, USA, 2003. [Google Scholar]
- Danso-Abbeam, G.; Cobbina, M.T.; Antwi, R.A. Agricultural credit utilization among farmers in Bole District of Northern Region, Ghana. Russ. J. Agric. Socio-Econ. Sci. 2016, 3, 70–80. [Google Scholar] [CrossRef]
- Asante, A.D.; Adu, E.O.; Debrah, P.; Ameyaw, E.O.; Twumasi, J. Farmers’ perception and knowledge of climate change and its impacts on cocoa production in Ghana. Sustainability 2021, 13, 3497. [Google Scholar] [CrossRef]
- Farid, K.S.; Tanny, N.; Sarma, P. Factors affecting adoption of improved farm practices by the farmers of Northern Bangladesh. Department of Rural Sociology and Bangladesh Agricultural University Research System, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh. J. Bangladesh Agril. Univ. 2015, 13, 291–298. [Google Scholar] [CrossRef]
- Van Eerdewijk, A.; Danielsen, K. Gender Matters in Farm Power; KIT: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Lavison, R. Factors Influencing the Adoption of Organic Fertilizers in Vegetable Production in Accra. Ph.D. Thesis, (MPHIL)-University of Ghana, Accra, Ghana, 2013. [Google Scholar]
- Uaiene, R.; Arndt, C.; Masters, W. Determinants of Agricultural Technology Adoption in Mozambique. Discussion papers No. 67. 2009. Available online: https://www.wider.unu.edu/sites/default/files/DP2009-67.pdf (accessed on 5 June 2022).
- Donald, A.; Goldstein, M.; Rouanet, L. Two Heads Are Better than One; Word Bank: Washington, DC, USA, 2022. [Google Scholar]
- Ali, E.; Awade, N.E. Credit constraints and soybean farmers’ welfare in subsistence in Togo. Heliyon 2019, 5, e01550. [Google Scholar] [CrossRef]
- Ankrah, D.A.; Freeman, C.Y.; Afful, A. Gendered access to productive resources—Evidence from small holder farmers in Awutu Senya West District of Ghana. Sci. Afr. 2020, 10, e00604. [Google Scholar] [CrossRef]
- Matuschke, I.; Qaim, M. The impact of social networks on hybrid seed adoption in India. Agric. Econ. 2009, 40, 493–505. [Google Scholar] [CrossRef]
- Muange, E.; Schwarze, S.; Qaim, M. Social networks and farmer exposure to improved crop varieties in Tanzania. Agric. Econ. 2014, 45, 339–348. [Google Scholar]
- Dittoh, S.; Snyder, K.A.; Lefore, N. Gender Policies and Implementation in Agriculture, Natural Resources and Poverty Reduction: Case Study of Ghana’s Upper East Region; WLE Research for Development (R4D); Learning Series 3; International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems: Colombo, Sri Lanka, 2015. [Google Scholar] [CrossRef]
- Kaaria, S.; Osorio, M.; Wagner, S.; Gallina, A. Rural women’s participation in producer organizations: An analysis of the barriers that women face and strategies to foster equitable and effective participation. J. Gend. Agric. Food Secur. 2016, 1, 148–167. [Google Scholar]
- Khoza, T.M.; Senyolo, G.M.; Mmbengwa, V.M.; Soundy, P. Socio-economic factors influencing smallholder farmers’ decision to participate in agro-processing industry in Gauteng province, South Africa. Cogent Soc. Sci. 2019, 5, 1664193. [Google Scholar] [CrossRef]
- Akpan, S.B.; Patrick, I.V.; Udoka, S.J.; Offiong, E.A.; Okon, U.E. Determinants of Credit Access and Demand among Poultry Farmers in Akwa Ibom State, Nigeria. Am. J. Exp. Agric. 2013, 3, 293–307. [Google Scholar] [CrossRef]
- Nowakowski, K. International Women’s Day 2014: Revealing the Gap between Men and Women Farmers. Natl. Geogr. 2014. Available online: https://www.nationalgeographic.com/people-and-culture/food/the-plate/2014/03/07/international-womens-day-2014-revealing-the-gap-between-men-and-women-farmers/ (accessed on 5 June 2022).
- Ghana News Agency. Extension Officer—Farmer ratio to be improved. Influence of productive resources on bean production in male-and female-headed households in selected bean corridors of Kenya. Agric. Food Secur. 2004, 7, 85. [Google Scholar]
- Manfre, C.; Rubin, D.; Allen, A.; Summerfield, G.; Colverson, K.; Akeredolu, M. Reducing the Gender Gap in Agricultural Extension and Advisory Services: MEAS Discussion Paper; Cultural Practice: Washington, DC, USA, 2013. [Google Scholar]
- Pelekamoyo, J.; Umar, B.B. Access to and control over agricultural labor and income in smallholder farming households: A gendered look from Chipata, Eastern Zambia. J. Gend. Agric. Food Secur. (Agri-Gend.) 2019, 4, 42–57. [Google Scholar]
- Netsayi, N.; Biey, E.M.; Chanda-Kapata, P.; Chilengi, R.; Mwaba, P.; Shibemba, A.; Kapata, N. Towards eliminating tuberculosis in Zambia: The contribution of the national tuberculosis programme. Med. J. Zamb. 2017, 44, 3–10. [Google Scholar]
- FAO. Access to and Control over Land from a Gender Perspective; FAO: Rome, Italy, 2004. [Google Scholar]
- FAO. The State of Food and Agriculture: Women in Agriculture, Closing the Gender Gap for Development’, Rome; FAO: Rome, Italy, 2011. [Google Scholar]
- UNDP. Sustainable Energy for all: A Framework for Action. 2012. Available online: https://www.undp.org/content/dam/undp/library/Environment%20and%20Energy/Climate%20Mitigation/Sustainable%20Energy%20for%20All%20-%20A%20Framework%20for%20Action.pdf (accessed on 5 June 2022).
- Martey, E.; Drechsel, P.; Ayivor, J.S.; Huibers, F.; Konradsen, F.; Dalsgaard, A. Manure management in the urban farming systems of West Africa. Agric. Ecosyst. Environ. 2013, 181, 106–113. [Google Scholar] [CrossRef]
- Abebe, M.T.; Synnevag, G.; Aune, J.B. Gendered constraints for adopting climate-smart agriculture amongst smallholder Ethiopian women farmers. Sci. Afr. 2020, 7, e00250. [Google Scholar] [CrossRef]
- Okoruwa, V.O.; Abass, A.B.; Akin-Olagunju, O.A.; Akinola, N.A. Does institution type affect access to finance cassava actors in Nigeria? J. Agric. Food Res. 2020, 2, 100023. [Google Scholar] [CrossRef]
- Eneyew, A. Determinants of livelihood diversification in pastoral societies of Southern Ethiopia. J. Agric. Biodivers. Res. 2012, 1, 43–52. [Google Scholar]
Variable | Measurement | Expected Sign | Source |
---|---|---|---|
Years of schooling | Years | + | [12,27] |
Experience in rice farming | Years | + | [18,20,28] |
Farm size | Acre | + | [12,29,30] |
Dependency ratio | Number | + | [31] |
Credit access | 1 = Yes and 0 = No | + | [32,33] |
Participation FBOs | 1 = Yes and 0 = No | + | [27,34,35] |
Extension contacts | 1 = Yes and 0 = No | + | [36,37] |
Number of rice plots | Number | + | [29,30] |
Market distance | Km | − | [38] |
Gender | |||||||
---|---|---|---|---|---|---|---|
Variables | Women (N = 146) | Men (N = 169) | Pooled (N = 315) | t-Stat. | |||
Mean | SD | Mean | SD | Mean | SD | ||
Age | 46 | 11.51 | 45 | 12.95 | 46 | 12.29 | 0.57 |
Years of schooling | 4 | 4.61 | 7 | 4.77 | 6 | 4.95 | −5.97 *** |
Rice experience | 10 | 8.10 | 13 | 10.46 | 12 | 9.56 | −2.74 *** |
Off-farm income/Yr. (GHC) | 2501 | 1.51 | 3754 | 1.56 | 3049 | 1.40 | −1.76 ** |
Total HHM | 8 | 4.27 | 7 | 3.63 | 7 | 3.94 | 0.77 |
ª Credit access (Yes = 1) | 0.21 | 0.42 | 0.35 | 0.43 | 0.29 | 0.42 | −2.82 *** |
Cash credit accessed (GHC) | 1100 | 0.90 | 1516 | 0.88 | 1341 | 0.90 | −2.53 *** |
Extension visit/year | 2 | 2.65 | 2 | 2.25 | 2 | 2.44 | −0.62 |
ª FBO Membership (Yes = 1) | 0.39 | 0.50 | 0.53 | 0.50 | 0.47 | 0.50 | −2.54 ** |
Gender | |||||||
---|---|---|---|---|---|---|---|
Variables | Women (N = 146) | Men (N = 169) | Pooled (N = 315) | t-Stat. | |||
Mean | SD | Mean | SD | Mean | SD | ||
HHM in rice production | 3 | 1.90 | 3 | 1.78 | 3 | 1.84 | −0.01 |
Total land size (acres) | 2 | 1.71 | 3 | 1.86 | 2 | 1.80 | −1.66 ** |
Number of plots | 1 | 1.09 | 1 | 0.57 | 1 | 0.85 | 0.82 |
Number of cultivation times | 1 | 0.50 | 1 | 0.39 | 1 | 0.45 | 0.08 |
Lowland rice ecology | 0.94 | 0.02 | 0.96 | 0.01 | 0.95 | 0.12 | −0.92 |
Women (N = 146) | Men (N = 169) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Perceptions | SD (1) | D (2) | N (3) | A (4) | SA ‡ (5) | Index | SD (1) | D (2) | N (3) | A (4) | SA (5) | Index |
Offers rice farmers opportunity to express their preference for a new rice variety | - | 4 (3) | 20 (14) | 85 (58) | 37 (25) | 4.06 | - | - | 20 (12) | 100 (59) | 49 (29) | 4.17 |
Allows rice farmers to be actively involved in rice variety development process | - | 4 (3) | 23 (16) | 81 (56) | 38(26) | 4.05 | - | 1 (1) | 24 (14) | 97 (57) | 47(28) | 4.12 |
Gives rice farmers a sense of owning the new variety | - | 2 (1) | 30 (21) | 82 (56) | 32(22) | 3.99 | - | 5 (3) | 27 (16) | 101 (60) | 36(21) | 3.99 |
Involves the preferences of both men and women | - | 3 (2) | 28 (19) | 79 (54) | 36 (25) | 4.01 | 1 (1) | 3 (2) | 25 (15) | 87 (52) | 53(31) | 4.11 |
Women’s opinions are fully taken into consideration | 2 (1) | 10 (7) | 41 (28) | 63 (43) | 30 (21) | 3.75 | 1 (1) | 20 (12) | 37 (22) | 70 (41) | 41 (24) | 3.77 |
There is high women involvement in this community | 1 (1) | 7 (5) | 44 (30) | 59 (40) | 35 (24) | 3.82 | - | 16 (10) | 37 (22) | 73 (43) | 43 (25) | 3.85 |
Facilitates adoption of improved rice varieties | - | 3 (2) | 28 (19) | 87 (60) | 28 (19) | 3.96 | 1 (1) | 4 (2) | 26 (15) | 101 (60) | 37 (22) | 4.00 |
Facilitates strong researcher–farmer collaboration for development | 1 (1) | 1 (1) | 25 (17) | 95 (65) | 24 (16) | 3.96 | - | 3 (2) | 26 (15) | 99 (59) | 41 (24) | 4.05 |
Overall Perception Index | 3.95 | 4.01 |
(a) | |||||||
Gender | |||||||
Resource | Women (N = 146) | Men (N = 169) | Pooled (N = 315) | t-Stat. | |||
Mean | SD | Mean | SD | Mean | SD | ||
Land (acre) | 0.49 | 0.50 | 0.65 | 0.48 | 0.58 | 0.49 | −2.93 *** |
Labor (man-days) | 0.47 | 0.50 | 0.63 | 0.48 | 0.56 | 0.49 | −2.98 *** |
Improved seeds (kilo) | 0.61 | 0.49 | 0.75 | 0.43 | 0.69 | 0.46 | −2.76 *** |
Fertilizers (kg) | 0.67 | 0.47 | 0.78 | 0.41 | 0.73 | 0.44 | −2.34 ** |
Weedicides (liter) | 0.80 | 0.40 | 0.91 | 0.28 | 0.86 | 0.34 | −2.77 *** |
Insecticides (liter) | 0.81 | 0.40 | 0.94 | 0.24 | 0.87 | 0.32 | −3.76 *** |
(b) | |||||||
Gender | |||||||
Resource | Women (N = 146) | Men (N = 169) | Pooled (N = 315) | t-Stat. | |||
Mean | SD | Mean | SD | Mean | SD | ||
Land | 0.62 | 0.49 | 0.67 | 0.43 | 0.70 | 0.46 | −2.76 *** |
Labor | 0.49 | 0.50 | 0.61 | 049 | 0.56 | 0.50 | −2.16 ** |
Improved seeds | 0.46 | 0.50 | 0.61 | 0.49 | 0.54 | 0.50 | −2.69 *** |
Fertilizers | 0.42 | 0.50 | 0.56 | 0.50 | 0.50 | 0.50 | −2.45 ** |
Weedicides | 0.44 | 0.50 | 0.54 | 0.50 | 0.49 | 0.50 | −1.66 * |
Insecticides | 0.33 | 0.47 | 0.57 | 0.50 | 0.46 | 0.50 | −4.36 *** |
Rice-Breeding Activities | Gender | t-Stat. | |||||
---|---|---|---|---|---|---|---|
Women (N = 146) | Men (N = 169) | Pooled (N = 315) | |||||
Mean | SD | Mean | SD | Mean | SD | ||
ª On-farm Evaluation | 0.38 | 0.04 | 0.53 | 0.03 | 0.47 | 0.03 | −2.56 *** |
ª Field Days | 0.37 | 0.04 | 0.58 | 0.04 | 0.49 | 0.02 | −3.67 *** |
Variable | Women | Men | ||
---|---|---|---|---|
Field Days | On-Farm Evaluation | Field Days | On-Farm Evaluation | |
ME † | ME | ME | ME | |
Years of Schooling | 0.0153 *** | 0.0018 | −0.0005 | 0.0107 *** |
(0.0043) | (0.0047) | (0.0039) | (0.0041) | |
Experience in rice farming | −0.0021 | 0.0049 * | −0.0005 | 0.0042 ** |
(0.0025) | (0.0026) | (0.0017) | (0.0019) | |
Credit access | −0.0107 | −0.0260 | 0.0735 * | 0.1160 *** |
(0.0515) | (0.0538) | (0.0380) | (0.0404) | |
Participation FBOs | 0.1755 *** | 0.2596 *** | 0.2077 *** | 0.2466 *** |
(0.0403) | (0.0457) | (0.0357) | (0.0399) | |
Extension contacts | 0.0391 *** | 0.0056 | 0.0349 *** | 0.0003 |
(0.0085) | (0.0086) | (0.0073) | (0.0074) | |
Number of rice plots | 0.2265 *** | 0.1878 *** | 0.1551 *** | 0.1048 ** |
(0.0489) | (0.0568) | (0.0580) | (0.0422) | |
Farm size (acre) | 0.0452 *** | 0.0250 ** | 0.0356 *** | 0.0390 *** |
(0.0117) | (0.0120) | (0.0113) | (0.0107) | |
Market distance (km) | −0.0158 *** | −0.0158 *** | −0.0115 *** | −0.0178 *** |
(0.0049) | (0.0038) | (0.0034) | (0.0040) | |
Dependency ratio | 0.3903 *** | 0.2098 *** | 0.7511 *** | 0.4239 *** |
(0.1092) | (0.0710) | (0.0954) | (0.1048) | |
Observations | 146 | 169 | ||
Wald chi2(9) | 85.64 | 115.28 | ||
LR test | 87.8484 | 206.17 | ||
Prob > chi2 | 0.000 | 0.000 |
Variables | Women | Men | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Land | Labor | Improved Seed | Fertilizer | Weedicide | Insecticide | Land | Labor | Improved Seed | Fertilizer | Weedicide | Insecticide | |
ME | ME | ME | ME | ME | ME | ME | ME | ME | ME | ME | ME | |
Years of Schooling | 0.0058 | 0.0017 | 0.0029 | 0.0039 | 0.0021 | 0.0057 | 0.0065 | 0.0074 * | 0.0154 *** | 0.0113 *** | 0.0027 | 0.0054 ** |
(0.0053) | (0.0051) | (0.0054) | (0.0051) | (0.0045) | (0.0044) | (0.0042) | (0.0043) | (0.0041) | (0.0039) | (0.0026) | (0.0023) | |
Experience in rice farming | −0.0039 | 0.0085 *** | 0.0004 | 0.0003 | −0.0036 | −0.0022 | −0.0014 | 0.0013 | −0.0003 | 0.0009 | 0.0001 | −0.0002 |
(0.0029) | (0.0028) | (0.0029) | (0.0028) | (0.0025) | (0.0024) | (0.0019) | (0.0020) | (0.0020) | (0.0018) | (0.0012) | (0.0011) | |
Credit access | 0.1616 *** | 0.1958 *** | 0.0857 | 0.0034 | 0.0642 | 0.0305 | 0.0561 | 0.0027 | 0.1538 *** | 0.0731 * | 0.0558 ** | 0.0576 *** |
(0.0601) | (0.0584) | (0.0618) | (0.0577) | (0.0513) | (0.0505) | (0.0410) | (0.0418) | (0.0405) | (0.0377) | (0.0252) | (0.0223) | |
Participation FBOs | 0.2249 *** | 0.1133 ** | 0.0197 | 0.1790 *** | 0.1391 *** | 0.1790 *** | 0.2242 *** | 0.0606 | 0.0527 | 0.1428 *** | 0.0426 * | −0.0091 |
(0.0510) | (0.0496) | (0.0526) | (0.0490) | (0.0436) | (0.0429) | (0.0404) | (0.0412) | (0.0403) | (0.0372) | (0.0249) | (0.0220) | |
Extension contacts | 0.0294 *** | 0.0165 * | 0.0104 | 0.0151 | 0.0088 | 0.0065 | 0.0272 *** | 0.0262 *** | 0.0181 ** | 0.0013 | 0.0116 ** | 0.0055 |
(0.0096) | (0.0093) | (0.0096) | (0.0092) | (0.0082) | (0.0081) | (0.0075) | (0.0077) | (0.0077) | (0.0069) | (0.0046) | (0.0041) | |
Number of rice plots | 0.1203 * | 0.1943 *** | 0.0222 | 0.2936 *** | 0.0292 | 0.0595 | 0.0655 | 0.0766 * | −0.1200 ** | −0.0702 * | −0.0115 | −0.0219 |
(0.0635) | (0.0617) | (0.0646) | (0.0610) | (0.0542) | (0.0534) | (0.0428) | (0.0436) | (0.0495) | (0.0394) | (0.0263) | (0.0232) | |
Farm size | −0.0037 | 0.0525 *** | −0.0101 | −0.0308 ** | −0.0332 *** | −0.0002 | 0.0244 ** | 0.0028 | 0.0076 | 0.0061 | −0.0071 | −0.0128 ** |
(0.0135) | (0.0131) | (0.0144) | (0.0129) | (0.0115) | (0.0113) | (0.0109) | (0.0111) | (0.0110) | (0.0100) | (0.0067) | (0.0059) | |
Market distance (km) | −0.0009 | −0.0039 | −0.0137 *** | −0.0008 | −0.0014 | −0.0023 | 0.0005 | 0.0051 | −0.0093 ** | −0.0048 | −0.0066 *** | −0.0006 |
(0.0042) | (0.0041) | (0.0046) | (0.0041) | (0.0036) | (0.0035) | (0.0040) | (0.0041) | (0.0044) | (0.0037) | (0.0025) | (0.0022) | |
Dependency ratio | 0.1330 * | 0.1463 * | −0.0351 | −0.0704 | −0.0326 | −0.0651 | 0.6847 *** | 0.3565 *** | −0.1439 | −0.1039 | −0.0857 | −0.0139 |
(0.0793) | (0.0771) | (0.0862) | (0.0762) | (0.0678) | (0.0667) | (0.1062) | (0.1083) | (0.1061) | (0.0977) | (0.0654) | (0.0577) | |
Observations | 146 | 169 | ||||||||||
Wald chi2(9) | 322.03 | 402.83 | ||||||||||
LR test | 54.65 | 233.50 | ||||||||||
Prob > chi2 | 0.000 | 0.000 |
Variables | Women | Men | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Land | Labor | Improved Seed | Fertilizer | Weedicide | Insecticide | Land | Labor | Improved Seed | Fertilizer | Weedicide | Insecticide | |
ME | ME | ME | ME | ME | ME | ME | ME | ME | ME | ME | ME | |
Years of Schooling | −0.0165 *** | −0.0029 | 0.0104 * | −0.0116 ** | 0.0011 | 0.0037 | −0.0019 | 0.0030 | −0.0058 | −0.0160 *** | −0.0056 | −0.0105 ** |
(0.0051) | (0.0054) | (0.0056) | (0.0054) | (0.0055) | (0.0055) | (0.0040) | (0.0043) | (0.0045) | (0.0045) | (0.0046) | (0.0046) | |
Experience in rice farming | −0.0115 *** | −0.0028 | −0.0018 | −0.0051 * | −0.0028 | −0.0041 | 0.0020 | 0.0004 | 0.0030 | 0.0008 | 0.0026 | 0.0017 |
(0.0028) | (0.0029) | (0.0031) | (0.0029) | (0.0030) | (0.0030) | (0.0020) | (0.0020) | (0.0021) | (0.0021) | (0.0021) | (0.0021) | |
Credit access | 0.1349 ** | 0.2374 *** | 0.1120 * | 0.1591 *** | 0.2671 *** | 0.0328 | 0.1332 *** | 0.1252 *** | 0.1330 *** | 0.1008 ** | 0.0139 | 0.1042 ** |
(0.0590) | (0.0617) | (0.0639) | (0.0613) | (0.0622) | (0.0621) | (0.0398) | (0.0420) | (0.0442) | (0.0440) | (0.0447) | (0.0445) | |
Participation FBOs | 0.1785 *** | 0.0942 * | −0.0471 | 0.2463 *** | 0.1031 * | 0.0504 | 0.1780 *** | 0.1412 *** | −0.0315 | 0.0019 | 0.0857 * | 0.1453 *** |
(0.0499) | (0.0524) | (0.0543) | (0.0521) | (0.0528) | (0.0527) | (0.0380) | (0.0414) | (0.0436) | (0.0434) | (0.0441) | (0.0440) | |
Extension contacts | 0.0293 *** | 0.0011 | 0.0002 | 0.0346 *** | 0.0013 | 0.0041 | 0.0194 *** | 0.0232 *** | 0.0019 | 0.0223 *** | 0.0123 | 0.0013 |
(0.0109) | (0.0099) | (0.0102) | (0.0098) | (0.0099) | (0.0099) | (0.0070) | (0.0077) | (0.0081) | (0.0081) | (0.0082) | (0.0082) | |
Number of rice plots | 0.3203 *** | −0.1225 * | −0.1724 ** | 0.0781 | 0.0047 | 0.0378 | −0.1188 *** | −0.0553 | −0.0455 | −0.1812 *** | −0.1029 ** | −0.0682 |
(0.0703) | (0.0652) | (0.0675) | (0.0648) | (0.0657) | (0.0656) | (0.0363) | (0.0438) | (0.0461) | (0.0459) | (0.0467) | (0.0465) | |
Farm size | −0.0229 * | 0.0133 | −0.0058 | −0.0181 | −0.0615 *** | −0.0306 ** | 0.0372 *** | 0.0061 | 0.0124 | 0.0320 *** | −0.0113 | 0.0174 |
(0.0132) | (0.0138) | (0.0143) | (0.0137) | (0.0139) | (0.0139) | (0.0107) | (0.0111) | (0.0117) | (0.0117) | (0.0119) | (0.0118) | |
Market distance (km) | −0.0145 *** | −0.0133 *** | −0.0059 | 0.0043 | −0.0021 | −0.0089 ** | −0.0001 | −0.0015 | 0.0061 | −0.0021 | 0.0145 *** | −0.0007 |
(0.0040) | (0.0043) | (0.0045) | (0.0043) | (0.0044) | (0.0044) | (0.0037) | (0.0041) | (0.0043) | (0.0043) | (0.0044) | (0.0044) | |
Dependency ratio | 0.0600 | 0.0700 | 0.1216 | −0.0923 | −0.0641 | −0.0639 | −0.1366 | −0.0365 | −0.0009 | −0.1275 | −0.2579 ** | −0.2426 ** |
(0.0787) | (0.0814) | (0.0844) | (0.0809) | (0.0821) | (0.0820) | (0.1048) | (0.1088) | (0.1144) | (0.1139) | (0.1158) | (0.1154) | |
Observations | 146 | 169 | ||||||||||
Wald chi2(9) | 439.50 | 289.89 | ||||||||||
LR test | 489.205 *** | 642.654 *** | ||||||||||
Prob > chi2 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asante, B.O.; Puskur, R.; Garner, E.; Mangheni, M.N.; Adabah, R.; Asante, M.D.; Frimpong, B.N.; Prah, S. Access and Control of Resources and Participation in Rice-Breeding Activities among Men and Women Farmers in Southern Ghana. Sustainability 2023, 15, 7069. https://doi.org/10.3390/su15097069
Asante BO, Puskur R, Garner E, Mangheni MN, Adabah R, Asante MD, Frimpong BN, Prah S. Access and Control of Resources and Participation in Rice-Breeding Activities among Men and Women Farmers in Southern Ghana. Sustainability. 2023; 15(9):7069. https://doi.org/10.3390/su15097069
Chicago/Turabian StyleAsante, Bright Owusu, Ranjitha Puskur, Elizabeth Garner, Margaret Najjingo Mangheni, Richard Adabah, Maxwell Darko Asante, Benedicta Nsiah Frimpong, and Stephen Prah. 2023. "Access and Control of Resources and Participation in Rice-Breeding Activities among Men and Women Farmers in Southern Ghana" Sustainability 15, no. 9: 7069. https://doi.org/10.3390/su15097069
APA StyleAsante, B. O., Puskur, R., Garner, E., Mangheni, M. N., Adabah, R., Asante, M. D., Frimpong, B. N., & Prah, S. (2023). Access and Control of Resources and Participation in Rice-Breeding Activities among Men and Women Farmers in Southern Ghana. Sustainability, 15(9), 7069. https://doi.org/10.3390/su15097069