Estimating the Effects of Deficit Irrigation on Water Absorption and Utilization of Tomatoes Grown in Greenhouse with Hydrus-1D Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Measurement and Analysis
2.3. Model Description
2.3.1. Water Flow
2.3.2. Reference Crop Evapotranspiration (ET0)
2.3.3. RWU
2.3.4. Initial and Boundary Conditions
2.3.5. Model Calibration and Validation
2.4. Statistical Analysis
3. Results
3.1. Root Growth of Greenhouse Tomato
3.1.1. Distribution of Tomato Water-Absorbed Root Length Density
3.1.2. Distribution Function of Tomato Water-Absorbed Root Length Density
3.2. Evaluation of Model Performance
3.3. Spatio-Temporal Distribution of RWU under Deficit Irrigation
3.4. Soil Water Balance in the Root Zone and Water Use Efficiency
4. Discussion
4.1. Effects of Deficit Irrigation on Tomato Root Growth
4.2. Simulated Performance of Hydrus-1D
4.3. Relationship between RWU, Root Distribution of Greenhouse Tomato and Soil Moisture
4.4. Effects of Deficit Irrigation on the Proportion of Evapotranspiration in Drip Irrigation under Plastic Film
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, J.; Li, H.J.; Zhao, Y.; Shao, M.A.; Zhang, H.L.; Liu, M.X. Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region. Agric. Water Manag. 2022, 265, 107543. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, Y.; Liu, M.H.; Huang, Q.A.; Huang, G.H. Modeling and assessing agrohydrological processes and irrigation water saving in the middle Heihe River basin. Agric. Water Manag. 2019, 211, 152–164. [Google Scholar] [CrossRef]
- Painagan, M.S.; Ella, V.B. Modeling the impact of deficit irrigation on corn production. Sustainability 2022, 14, 10401. [Google Scholar] [CrossRef]
- Rabbi, B.; Chen, Z.H.; Sethuvenkatraman, S. Protected cropping in warm climates: A review of humidity control and cooling methods. Energies 2019, 12, 2737. [Google Scholar] [CrossRef]
- Geng, W.C.; Ma, Y.; Zhang, Y.C.; Zhu, F. Research progress in soil health regulation technology for protected agriculture. Chin. J. Eco-Agric. 2022, 30, 1973–1984. [Google Scholar]
- Li, R.F.; Ma, J.J.; Sun, X.H.; Guo, X.H.; Zheng, L.J. Simulation of soil water and heat flow under plastic mulching and different ridge patterns. Agriculture 2021, 11, 1099. [Google Scholar] [CrossRef]
- Han, M.; Zhao, C.Y.; Feng, G.; Yan, Y.Y.; Sheng, Y. Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D. Water 2015, 7, 2622–2640. [Google Scholar] [CrossRef]
- Du, T.S.; Kang, S.Z.; Zhang, J.H.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef]
- Zhou, H.P.; Chen, J.L.; Wang, F.; Li, X.J.; Génard, M.; Kang, S.Z. An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China. Agric. Water Manag. 2020, 241, 106331. [Google Scholar] [CrossRef]
- Liang, S.S.; Li, L.; An, P.; Chen, S.Y.; Shao, L.W.; Zhang, X.Y. Spatial soil water and nutrient distribution affecting the water productivity of winter wheat. Agric. Water Manag. 2021, 256, 107114. [Google Scholar] [CrossRef]
- Gorni, P.H.; Lima, G.R.; Pereira, L.M.O.; Spera, K.D.; Lapazc, A.M.; Pacheco, A.C. Increasing plant performance, fruit production and nutritional value of tomato through foliar applied rutin. Sci. Hortic. 2022, 294, 110755. [Google Scholar] [CrossRef]
- Guo, L.J.; Cao, H.X.; Helgason, W.D.; Yang, H.; Wu, X.Y.; Li, H.Z. Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China. Agric. Water Manag. 2022, 270, 107731. [Google Scholar] [CrossRef]
- Zhu, J.W.; Zhao, C.J.; Guo, R.R.; Zhou, L.L. Water-saving irrigation regime for winter wheat in county areas under water resources constraints. Trans. CSAE 2021, 37, 92–100. [Google Scholar]
- Mai, T.H.; Schnepf, A.; Vereecken, H.; Vanderborght, J. Continuum multiscale model of root water and nutrient uptake from soil with explicit consideration of the 3D root architecture and the rhizosphere gradients. Plant Soil 2019, 439, 273–292. [Google Scholar] [CrossRef]
- Besharat, S.; Nazemi, A.H.; Sadraddini, A.A. Parametric modeling of root length density and root water uptake in unsaturated soil. Turk. J. Agric. For. 2010, 34, 439–449. [Google Scholar]
- Wang, X.K.; Yun, J.; Shi, P.; Li, Z.B.; Li, P.; Xing, Y.Y. Root growth, fruit yield and water use efficiency of greenhouse grown tomato under different irrigation regimes and nitrogen levels. J. Plant Growth Regul. 2018, 38, 400–415. [Google Scholar] [CrossRef]
- Shabbir, A.; Mao, H.P.; Ullah, I.; Buttar, N.A.; Ajmal, M.; Solangi, K.A. Improving water use efficiency by optimizing the root distribution patterns under varying drip emitter density and drought stress for cherry tomato. Agronomy 2021, 11, 3. [Google Scholar] [CrossRef]
- Liu, R.; Yang, Y.; Wang, Y.S.; Wang, X.C.; Rengel, Z.; Zhang, W.J.; Shu, L.Z. Alternate partial root-zone drip irrigation with nitrogen fertigation promoted tomato growth, water and fertilizer-nitrogen use efficiency. Agric. Water Manag. 2020, 233, 106049. [Google Scholar] [CrossRef]
- Ullah, I.; Mao, H.P.; Rasool, G.; Gao, H.Y.; Javed, Q.; Sarwar, A.; Khan, M.I. Effect of deficit irrigation and reduced N fertilization on plant growth, root morphology and water use efficiency of tomato grown in soilless culture. Agronomy 2021, 11, 228. [Google Scholar] [CrossRef]
- Ge, J.K.; Ping, Y.L.; Gong, X.W.; Wang, L.; Xing, Q.C.; Zhang, L.; Liu, H.H. The Effects of water deficit on root growth and water uptake of mulched greenhouse tomato under drip irrigation. J. Irrig. Drain. 2022, 41, 1–9. [Google Scholar]
- Cao, X.Q.; Yang, P.L.; Engel, B.A.; Li, P.F. The effects of rainfall and irrigation on cherry root water uptake under drip irrigation. Agric. Water Manag. 2018, 197, 9–18. [Google Scholar] [CrossRef]
- Clement, C.; Sleiderink, J.; Svane, S.F.; Smith, A.G.; Diamantopoulos, E.; Desbroll, D.B.; Thorup-Kristensen, K. Comparing the deep root growth and water uptake of intermediate wheatgrass (Kernza (R)) to alfalfa. Plant Soil 2022, 472, 369–390. [Google Scholar] [CrossRef]
- Wang, X.W.; Cai, H.J.; Zheng, Z.; Yu, L.Y.; Wang, Z.S.; Li, L. Modelling root water uptake under deficit irrigation and rewetting in Northwest China. Agron. J. 2020, 112, 158–174. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Huang, M.B. Analysis of influential factors for maize root water uptake based on Hydrus-1D model. Trans. CSAE 2011, 27, 66–73. [Google Scholar]
- Zhao, D.X.; Eyre, J.X.; Wilkus, E.; Voil, P.; Broad, I.; Rodriguez, D. 3D characterization of crop water use and the rooting system in field agronomic research. Comput. Electron. Agric. 2022, 202, 107409. [Google Scholar] [CrossRef]
- Yang, P.L.; Hao, Z.Y. Developments of plant root water uptake models. J. China Agric. Univ. 1999, 4, 67–73. [Google Scholar]
- Kumar, R.; Shankar, V.; Jat, M.K. Evaluation of root water uptake models—A review. ISH J. Hydraul. Eng. 2015, 21, 115–124. [Google Scholar]
- Albasha, R.; Mailhol, J.C.; Cheviron, B. Compensatory uptake functions in empirical macroscopic root water uptake models-experimental and numerical analysis. Agric. Water Manag. 2015, 155, 22–39. [Google Scholar] [CrossRef]
- Peddinti, S.R.; Kambhammettu, B.V.N.P.; Lad, R.S.; Simunek, J.; Gade, R.M.; Adinarayana, J. A macroscopic soil-water transport model to simulate root water uptake in the presence of water and disease stress. J. Hydrol. 2020, 587, 124940. [Google Scholar] [CrossRef]
- Chen, W.L.; Wang, J.J.; Liu, Y.F.; Jin, M.G.; Liang, X.; Wang, Z.M.; Ferré, T.P.A. Using bromide data tracer and HYDRUS-1D to estimate groundwater recharge and evapotranspiration under film mulched drip irrigation in an arid Inland Basin, Northwest China. Hydrol Process. 2021, 35, e14290. [Google Scholar] [CrossRef]
- Iqbal, M.; Kamal, M.R.; Mohd, F.M.; Man, H.C.; Wayayok, A. HYDRUS-1D simulation of soil water dynamics for sweet corn under tropical rainfed condition. Appl. Sci. 2020, 10, 1219. [Google Scholar] [CrossRef]
- Zheng, L.J.; Ma, J.J.; Sun, X.H.; Guo, X.H.; Cheng, Q.Y.; Shi, X.K. Estimating the root water uptake of surface-irrigated apples using water stable isotopes and the Hydrus-1D model. Water 2018, 10, 1624. [Google Scholar] [CrossRef]
- Kanzari, S.; Daghari, I.; Šimůnek, J.; Younes, A.; Ilahy, R.; Mariem, S.B.; Rezig, M.; Nouna, B.B.; Bahrouni, H.; Abdallah, M.A.B. Simulation of water and salt dynamics in the soil profile in the semi-arid region of Tunisia—Evaluation of the irrigation method for a tomato crop. Water 2020, 12, 1594. [Google Scholar] [CrossRef]
- Wang, X.F.; Li, Y.; Chau, H.W.; Tang, D.X.; Chen, J.Y.; Bayad, M. Reduced root water uptake of summer maize grown in water-repellent soils simulated by HYDRUS-1D. Soil Tillage Res. 2021, 209, 104925. [Google Scholar] [CrossRef]
- Li, B.B.; Wang, Y.Q.; Hill, R.L.; Li, Z. Effects of apple orchards converted from farmlands on soil water balance in the deep loess deposits based on HYDRUS-1D model. Agric. Ecosyst. Environ. 2019, 285, 106645. [Google Scholar] [CrossRef]
- Er-Raki, S.; Ezzahar, J.; Merlin, O.; Amazirh, A.; Hssaine, B.A.; Kharrou, M.H.; Khabba, S.; Chehbouni, A. Performance of the HYDRUS-1D model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco. Agric. Water Manag. 2021, 244, 106546. [Google Scholar] [CrossRef]
- Tang, H.G.; Zhou, T.Z.; Xin, P. Stimulation of sediment deposition to root water uptake and soil water change in wetland near sea. Water Res. Prot. 2020, 36, 87–92. [Google Scholar]
- Yuan, C.F.; Feng, S.Y.; Huo, Z.L.; Ji, Q.Y. Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agric. Water Manag. 2019, 212, 424–432. [Google Scholar] [CrossRef]
- Ding, C.M.; Wu, P.N.; Yue, L.; Li, Y.H.; Guan, X.K.; Wang, T.C. Modelling the effect of tillage on soil water dynamics in corn field. J. Irrig. Drain. 2020, 39, 24–31. [Google Scholar]
- FAO. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998. [Google Scholar]
- Zheng, S.R.; Hu, Q.; He, H.Y.; Xing, M.Y.; Gao, H.R.; Liu, Y.Y.; Ma, X.Q.; Pan, X.B. Temporal and spatial variation characteristics of radiation in winter wheat-summer maize growing season in the North China Plain during 1961–2020. J. China Agric. Univ. 2022, 27, 26–37. [Google Scholar]
- Almorox, J.; Quej, V.H.; Martí, P. Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes. J. Hydrol. 2015, 528, 514–522. [Google Scholar] [CrossRef]
- Feddes, R.A. Simulation of field water use and crop yield. Soil Sci. 1978, 129, 193. [Google Scholar]
- Alrajhi, A.; Beecham, S.; Hassanli, A. Effects of partial root-zone drying irrigation and water quality on soil physical and chemical properties. Agric. Water Manag. 2017, 182, 117–125. [Google Scholar] [CrossRef]
- Flynn, N.E.; Comas, L.H.; Stewart, C.E.; Fonte, S.J. Deficit irrigation drives maize root distribution and soil microbial communities with implications for soil carbon dynamics. Soil Sci. Soc. Am. J. 2021, 85, 412–422. [Google Scholar] [CrossRef]
- Sharma, S.P.; Leskovar, D.I.; Volder, A.; Crosby, K.M.; Ibrahim, A.M.H. Root distribution patterns of reticulatus and inodorus melon (Cucumis melo L.) under subsurface deficit irrigation. Irrig. Sci. 2018, 36, 301–317. [Google Scholar] [CrossRef]
- dos Santos, M.R.; Martinez, M.A.; Donato, S.L.R.; Coelho, E.F. Fruit yield and root system distribution of ‘Tommy Atkins’mango under different irrigation regimes. Rev. Bras. Eng. Agric. Ambi. 2015, 18, 362–369. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Ma, J.J.; Sun, X.H.; Guo, X.H. Spatial distribution of soil moisture and fine roots of apple trees under water storage pit irrigation. J. Irrig. Drain Eng. 2014, 140, 1–4. [Google Scholar] [CrossRef]
- González, M.G.; Ramos, T.B.; Carlesso, R.; Paredes, P.; Petry, M.T.; Martins, J.D.; Aires, N.P.; Pereira, L.S. Modelling soil water dynamics of full and deficit drip irrigated maize cultivated under a rain shelter. Biosyst. Eng. 2015, 132, 1–18. [Google Scholar] [CrossRef]
- Ramos, T.; Šimůnek, J.; Gonçalves, M.; Martins, J.; Prazeres, A.; Castanheira, N.; Pereira, L. Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters. J. Hydrol. 2011, 407, 129–144. [Google Scholar] [CrossRef]
- Ling, Z.; Shi, Z.T.; Gu, S.X.; He, G.X.; Liu, X.Y.; Wang, T.; Zhu, W.W.; Gao, L. Estimation of applicability of soil model for Rubber (Hevea brasiliensis) plantations in Xishuangbanna, Southwest China. Water 2022, 14, 295. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, H.Y.; Hu, W.L.; Yang, H.D.; Xu, Y.; Ma, X.W.; Zhao, P.Y.; Liu, H.B. Effect of film thickness on crop yield and soil environment. J. Agro-Environ. Sci. 2017, 36, 293–301. [Google Scholar]
- Yang, B.F.; Feng, L.; Li, X.F.; Yang, G.Z.; Ma, Y.Y.; Li, Y.B. Effects of plastic film mulching on the spatiotemporal distribution of soil water, temperature, and photosynthetic active radiation in a cotton field. PeerJ 2022, 10, e13894. [Google Scholar] [CrossRef] [PubMed]
- Thidar, M.; Gong, D.Z.; Mei, X.R.; Gao, L.L.; Li, H.R.; Hao, W.P.; Gu, F.X. Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China. Agric. Water Manag. 2020, 241, 106340. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, W.Y.; Sun, B.P.; Yang, Y.; Li, J.F.; Li, J.R.; Cao, B.; Zhong, H. Root distribution of three desert shrubs and soil moisture in Mu Us Sandy Land. Res. Soil Water Conserv. 2010, 17, 129–133. [Google Scholar]
- Eltarabily, M.G.; Berndtsson, R.; Abdou, N.M.; El-Rawy, M.; Selim, T. A comparative analysis of root growth modules in HYDRUS for SWC of rice under deficit drip irrigation. Water 2021, 13, 1892. [Google Scholar] [CrossRef]
- Musa, A.; Zhang, Y.H.; Cao, J.; Wang, Y.C.; Liu, Y. Relationship between root distribution characteristics of Mongolian pine and the soil water content and groundwater table in Horqin Sandy Land, China. Trees 2019, 33, 1203–1211. [Google Scholar] [CrossRef]
- Pei, Y.W.; Huang, L.M.; Li, R.L.; Shao, M.A.; Zhang, Y.L. Root water source of Pinus sylvestris L. var. Mongholica Litv. and influencing factors in the southeastern part of Mu Us Sandy Land, China. Acta Pedol. Sin. 2022, 59, 1336–1348. [Google Scholar]
- Li, Y.; Shao, M.A.; Wang, W.Y.; Wang, Q.J.; Horton, R. Open hole effects of perforated plastic mulches on soil water evaporation. Soil Sci. 2003, 168, 751–758. [Google Scholar] [CrossRef]
- Zhang, H.M.; Huang, G.H.; Xu, X.; Xiong, Y.W.; Huang, Q.Z. Estimating evapotranspiration of processing tomato under plastic mulch using the SIMDualKc model. Water 2018, 10, 1088. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.Y.; Shi, H.B.; Yan, J.W.; Hu, Q.; Zhang, Y.H. Assessment and modeling of maize evapotranspiration and yield with plastic and biodegradable film mulch. Agric. For. Meteorol. 2021, 307, 108474. [Google Scholar] [CrossRef]
Soil Layer cm | Soil Particle Fraction (%) | Bulk Density (g cm−3) | Field Capacity (cm3 cm−3) | pH | ||
---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||
0–20 | 22.39 | 52.67 | 24.94 | 1.19 | 0.40 | 8.34 |
20–40 | 20.73 | 51.80 | 27.47 | 1.59 | 0.38 | 8.28 |
40–60 | 15.73 | 57.00 | 27.27 | 1.58 | 0.37 | 8.51 |
T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | T9 | |
---|---|---|---|---|---|---|---|---|---|
Stage Ⅰ | 70–90% θf | 70–90% θf | 70–90% θf | 60–80% θf | 60–80% θf | 60–80% θf | 50–70% θf | 50–70% θf | 50–70% θf |
Stage Ⅱ | 60–80% θf | 50–70% θf | 40–60% θf | 60–80% θf | 50–70% θf | 40–60% θf | 60–80% θf | 50–70% θf | 40–60% θf |
Soil Layer cm | θr (cm3 cm−3) | θs (cm3 cm−3) | α (cm−1) | n | Ks (cm d−1) |
---|---|---|---|---|---|
0–40 | 0.0790 | 0.4789 | 0.0064 | 1.5764 | 36.2855 |
40–60 | 0.0752 | 0.3878 | 0.0077 | 1.4836 | 4.3555 |
2020 | 2021 | |||||
---|---|---|---|---|---|---|
a | c | R2 | a | c | R2 | |
T1 | 0.086 | 0.085 | 0.962 | 0.077 | 0.076 | 0.932 |
T2 | 0.078 | 0.077 | 0.929 | 0.075 | 0.074 | 0.906 |
T3 | 0.073 | 0.072 | 0.932 | 0.073 | 0.072 | 0.925 |
T4 | 0.065 | 0.064 | 0.975 | 0.065 | 0.064 | 0.989 |
T5 | 0.063 | 0.061 | 0.977 | 0.062 | 0.060 | 0.969 |
T6 | 0.051 | 0.048 | 0.950 | 0.056 | 0.054 | 0.920 |
T7 | 0.054 | 0.051 | 0.946 | 0.042 | 0.038 | 0.775 |
T8 | 0.045 | 0.041 | 0.882 | 0.041 | 0.036 | 0.940 |
T9 | 0.042 | 0.038 | 0.960 | 0.038 | 0.033 | 0.982 |
Season | Treatment | I (mm) | RWU (mm) | E (mm) | ΔW (mm) | Yield (kg hm−2) | WUE (kg m−3) |
---|---|---|---|---|---|---|---|
2020 | T1 | 276.00 | 285.87 | 16.83 | −26.70 | 83.30 ± 4.4 | 27.52 |
T2 | 248.40 | 259.69 | 13.33 | −24.62 | 82.20 ± 3.9 | 30.11 | |
T3 | 220.80 | 257.07 | 10.59 | −46.86 | 81.70 ± 4.2 | 30.52 | |
T4 | 248.40 | 265.31 | 12.88 | −29.79 | 69.40 ± 2.4 | 24.95 | |
T5 | 220.80 | 257.18 | 11.02 | −47.40 | 68.90 ± 2.4 | 25.69 | |
T6 | 193.20 | 218.82 | 9.74 | −35.36 | 64.40 ± 2.9 | 28.18 | |
T7 | 193.20 | 216.14 | 9.59 | −32.53 | 58.30 ± 2.6 | 25.83 | |
T8 | 165.60 | 213.26 | 7.68 | −55.34 | 51.70 ± 2.6 | 23.40 | |
T9 | 138.00 | 203.72 | 7.26 | −72.98 | 48.90 ± 4.8 | 23.18 | |
2021 | T1 | 303.60 | 317.51 | 15.61 | −29.52 | 93.50 ± 0.8 | 28.07 |
T2 | 276.00 | 289.49 | 15.05 | −28.54 | 91.20 ± 0.4 | 29.95 | |
T3 | 248.40 | 285.47 | 14.12 | −51.19 | 90.30 ± 0.5 | 30.14 | |
T4 | 248.40 | 277.62 | 14.84 | −44.06 | 71.90 ± 0.9 | 24.58 | |
T5 | 220.80 | 260.07 | 14.22 | −53.49 | 69.90 ± 1.3 | 25.48 | |
T6 | 193.20 | 250.87 | 13.90 | −71.57 | 69.10 ± 0.6 | 26.10 | |
T7 | 220.80 | 218.42 | 10.58 | −8.20 | 57.00 ± 1.6 | 24.89 | |
T8 | 193.20 | 222.75 | 8.79 | −38.34 | 55.50 ± 1.7 | 23.97 | |
T9 | 165.60 | 205.34 | 7.90 | −47.64 | 56.00 ± 1.3 | 26.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ma, J.; Sun, X.; Zheng, L.; Chen, R.; An, J. Estimating the Effects of Deficit Irrigation on Water Absorption and Utilization of Tomatoes Grown in Greenhouse with Hydrus-1D Model. Sustainability 2023, 15, 3216. https://doi.org/10.3390/su15043216
Li X, Ma J, Sun X, Zheng L, Chen R, An J. Estimating the Effects of Deficit Irrigation on Water Absorption and Utilization of Tomatoes Grown in Greenhouse with Hydrus-1D Model. Sustainability. 2023; 15(4):3216. https://doi.org/10.3390/su15043216
Chicago/Turabian StyleLi, Xufeng, Juanjuan Ma, Xihuan Sun, Lijian Zheng, Ruixia Chen, and Jianglong An. 2023. "Estimating the Effects of Deficit Irrigation on Water Absorption and Utilization of Tomatoes Grown in Greenhouse with Hydrus-1D Model" Sustainability 15, no. 4: 3216. https://doi.org/10.3390/su15043216
APA StyleLi, X., Ma, J., Sun, X., Zheng, L., Chen, R., & An, J. (2023). Estimating the Effects of Deficit Irrigation on Water Absorption and Utilization of Tomatoes Grown in Greenhouse with Hydrus-1D Model. Sustainability, 15(4), 3216. https://doi.org/10.3390/su15043216