Recent Development of Smart Field Deployment for Mature Waterflood Reservoirs
Abstract
:1. Introduction
Current Status of Data Foundation Construction
2. Research Progress of the Application of AI Algorithms
3. Application Scenarios and Overall Deployment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ertekin, T.; Sun, Q.J. Artificial intelligence applications in reservoir engineering: A status check. Energies 2019, 12, 2897. [Google Scholar] [CrossRef] [Green Version]
- Mogollon, J.L.; Tillero, E.; Calad, C.; Lake, L. Comparative analysis of data-driven, physics-based and hybrid reservoir modeling approaches in waterflooding. In Proceedings of the SPE Annual Technical Conference and Exhibition 2022, Houston, TX, USA, 3–5 October 2022. [Google Scholar]
- Zhang, H.; Gu, L.; Hao, W. Stratified water injection development strategy in huzhuangji oilfield. Inn. Mong. Petrochem. Ind. 2008, 2, 131–132. [Google Scholar]
- Gang, Z.; Wang, X. Review and prospect of mechanical stratified water injection technology in Daqing Oilfield. Spec. Oil Gas Reserv. 2006, 4–9+103. [Google Scholar]
- Cao, F.L.; Haishan Lake Larry, W. Development of a fully coupled two-phase flow based capacitance resistance model CRM. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014. [Google Scholar]
- Cao, F.L.; Lake, H.; Larry, W. Oil-rate forecast by inferring fractional-flow models from field data with Koval method combined with the capacitance/resistance model. In Proceedings of the SPE Reservoir Evaluation Engineering, Houston, TX, USA, 23–25 February 2015; pp. 534–553. [Google Scholar]
- Lu, X.X.J. Waterflooding optimization: A pragmatic and cost-effective approach to improve oil recovery from mature fields. In Proceedings of the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Jakarta, Indonesia, 17–19 October 2017. [Google Scholar]
- Sayarpour, M.K.; Lake, S.; Wayne, L. Field applications of capacitance-resistance models in waterfloods. SPE Reserv. Eval. Eng. 2009, 12, 853–864. [Google Scholar] [CrossRef]
- Qun, L.; Dingwei, W.; Jianhui, L.; Zhang, J.; Yiliang, L.; Xin, W.; Baoshan, G. Achievements and future work of oil and gas production engineering of CNPC. Pet. Explor. Dev. 2019, 46, 145–152. [Google Scholar]
- Hymel, M. United States’ Experience with Energy-Based Tax Incentives: The Evidence Supporting Tax Incentives for Renewable Energy. Loy. U. Chi. LJ 2006, 38, 43. [Google Scholar]
- Li, Y.; Zhou, D.-H.; Wang, W.-H.; Jiang, T.-X.; Xue, Z.-J. Development of unconventional gas and technologies adopted in China. Energy Geosci. 2020, 1, 55–68. [Google Scholar] [CrossRef]
- Jia, D.; Liu, H.; Zhang, J.; Gong, B.; Pei, X.; Wang, Q.; Yang, Q. Optimization method of fine water injection in old Oilfield driven by big data. Pet. Explor. Dev. 2020, 47, 629–636. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. In Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 1995, 1995, 1942–1948. [Google Scholar]
- Shen, A.; Kamp, H.D.; Gründling, A.; Higgins, D.E. A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev. 2006, 20, 3283–3295. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Qiu, X. Application of particle swarm optimization for enhanced cyclic steam stimulation in a offshore heavy oil reservoir. arXiv 2013, arXiv:1306.4092. [Google Scholar] [CrossRef]
- Humphries, T.D.; Haynes, R.D. Joint optimization of well placement and control for nonconventional well types. J. Pet. Sci. Eng. 2015, 126, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Kuang, L.; He, L.; Yili, R.; Kai, L.; Mingyu, S.; Jian, S.; Xin, L. Development, Application and development trend of artificial intelligence in petroleum exploration and development. Pet. Explor. Dev. 2021, 48, 1–14. [Google Scholar] [CrossRef]
- Pandey, R.K.; Dahiya, A.K.; Mandal, A.J.E.T. Identifying applications of machine learning and data analytics based approaches for optimization of upstream petroleum operations. Energy Technol. 2021, 9, 2000749. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, X.; Wang, Z.; Zhang, Z.; Chang, A.J.G. Quantitative Prediction of Low-Permeability Sandstone Grain Size Based on Conventional Logging Data by Deep Neural Network-Based BP Algorithm. Geofluids 2022, 2022, 7498449. [Google Scholar] [CrossRef]
- Syed, F.I.; AlShamsi, A.; Dahaghi, A.K.; Neghabhan, S.J.P. Application of ML & AI to model petrophysical and geomechanical properties of shale reservoirs–A systematic literature review. Petroleum 2022, 8, 158–166. [Google Scholar]
- Moazzeni, A.; Haffar, M.A. Artificial intelligence for lithology identification through real-time drilling data. J. Earth Sci. Clim. Chang. 2015, 6, 1–4. [Google Scholar]
- Lowell, J.; Szafian, P. Fault Detection from 3D Seismic Data Using Artificial Intelligence, Second EAGE Workshop on Machine Learning, 2021; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2021; pp. 1–3. [Google Scholar]
- Yang, W.; Wei, X.; He, X. Development Plan for Intelligent Geophysical Prospecting Technology of Applied Geophysical+ AI. Oil Forum 2019, 38, 40–47. [Google Scholar]
- Singh, D.; Kumar, P.C.; Sain, K.J. Engineering, Interpretation of gas chimney from seismic data using artificial neural network: A study from Maari 3D prospect in the Taranaki basin, New Zealand. J. Nat. Gas Sci. Eng. 2016, 36, 339–357. [Google Scholar] [CrossRef]
- Artun, E.; Mohaghegh, S.D.; Toro, J.; Wilson, T.; Sanchez, A. Reservoir characterization using intelligent seismic inversion. In Proceedings of the SPE Eastern Regional Meeting, Morgantown, WV, USA, 14–16 September 2005. [Google Scholar]
- Chang, D.; Yang, W.; Yong, X.; Li, H. Generative adversarial networks for seismic data interpolation. In Proceedings of the SEG 2018 Workshop: SEG Maximizing Asset Value through Artificial Intelligence and Machine Learning, Beijing, China, 17–19 September 2018; pp. 40–43. [Google Scholar]
- Mikhailiuk, A.; Faul, A. Deep learning applied to seismic data interpolation. In Proceedings of the 80th EAGE Conference and Exhibition 2018, Copenhagen, Denmark, 11–14 June 2018; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2018; pp. 1–5. [Google Scholar]
- Abdulaziz, A.M.; Mahdi, H.A.; Sayyouh, M.H. Prediction of reservoir quality using well logs and seismic attributes analysis with an artificial neural network: A case study from Farrud Reservoir, Al-Ghani Field, Libya. J. Appl. Geophys. 2019, 161, 239–254. [Google Scholar] [CrossRef]
- Ashena, R.; Rabiei, M.; Rasouli, V.; Mohammadi, A.H.; Mishani, S.J. Drilling parameters optimization using an innovative artificial intelligence model. J. Energy Resour. Technol. 2021, 143, 052110. [Google Scholar] [CrossRef]
- Elzenary, M.N. Real-time solution for down hole torque estimation and drilling optimization in high deviated wells using Artificial intelligence. In Proceedings of the SPE Symposium: Artificial Intelligence-Towards a Resilient and Efficient Energy Industry, Virtual, 18–19 October 2021. [Google Scholar]
- Li, G.; Song, X.; Tian, S. Intelligent drilling technology research status and development trends. Petrol. Drill. Tech. 2020, 48, 1–8. [Google Scholar]
- Negash, B.M.; Yaw, A.D.J.P.E. Development, Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection. Pet. Explor. Dev. 2020, 47, 383–392. [Google Scholar] [CrossRef]
- Cheng, H.; Yang, D.; Lu, C.; Qin, Q.; Cadasse, D.J.W.C.; Computing, M. Intelligent oil production stratified water injection technology. Wirel. Commun. Mob. Comput. 2022, 2022, 3954446. [Google Scholar] [CrossRef]
- Ghedan, S.; Surendra, M.; Maqui, A.; Elwan, M.; Kansao, R.; Mousa, H.; Jha, R.; Korish, M.; Olalotiti-lawal, F.; Shahin, E. Rapid and efficient waterflood optimization using augmented AI approach in a complex offshore field. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 15–18 November 2021. [Google Scholar]
- Shahvali, M.; Mallison, B.; Wei, K.; Gross, H. An alternative to streamlines for flow diagnostics on structured and unstructured grids. SPE J. 2012, 17, 768–778. [Google Scholar] [CrossRef]
- Kansao, R.; Yrigoyen, A.; Haris, Z.; Saputelli, L. Waterflood performance diagnosis and optimization using data-driven predictive analytical techniques from capacitance resistance models CRM. In Proceedings of the SPE Europec featured at 79th EAGE Conference and Exhibition, Abu Dhabi, United Arab Emirates, 15–18 November 2017. [Google Scholar]
- Guo, Z.; Reynolds, A.C. INSIM-FT-3D: A three-dimensional data-driven model for history matching and waterflooding optimization. In Proceedings of the SPE Reservoir Simulation Conference, Galveston, TX, USA, 10–11 April 2019. [Google Scholar]
- Zhong, Z.; Sun, A.Y.; Jeong, H.J.W.R.R. Predicting CO2 plume migration in heterogeneous formations using conditional deep convolutional generative adversarial network. Water Resour. Res. 2019, 55, 5830–5851. [Google Scholar] [CrossRef]
- Zubarev, D.I. Pros and cons of applying proxy-models as a substitute for full reservoir simulations. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 4–7 October 2009. [Google Scholar]
- Deng, L.; Pan, Y. Engineering, Data-driven proxy model for waterflood performance prediction and optimization using Echo State Network with Teacher Forcing in mature fields. J. Pet. Sci. Eng. 2021, 197, 107981. [Google Scholar] [CrossRef]
- Wang, Z.; He, J.; Milliken, W.J.; Wen, X.-H. Fast history matching and optimization using a novel physics-based data-driven model: An application to a diatomite reservoir. SPE J. 2021, 26, 4089–4108. [Google Scholar] [CrossRef]
- Deng, L.; Pan, Y. Engineering, Machine-learning-assisted closed-loop reservoir management using echo state network for mature fields under waterflood. SPE Reserv. Eval. Eng. 2020, 23, 1298–1313. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Al-Yousef, H.Y.; Gajbhiye, R. Applications, A novel empirical correlation for waterflooding performance prediction in stratified reservoirs using artificial intelligence. Neural Comput. Appl. 2021, 33, 2497–2514. [Google Scholar] [CrossRef]
- Bikmukhametov, T.; Jäschke, J. Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models. Comput. Chem. Eng. 2020, 138, 106834. [Google Scholar] [CrossRef]
- Zhao, X. Research on management informatization construction of electric power enterprise based on big data technology. Energy Rep. 2022, 8, 535–545. [Google Scholar] [CrossRef]
- Al-Khodhori, S.M. Smart well technologies implementation in PDO for production & reservoir management & control. In Proceedings of the Middle East Oil Show, Manama, Bahrain, 9–12 June 2003. [Google Scholar]
- Zhang, W.; Li, H.; Li, Y.; Liu, H.; Chen, Y.; Ding, X. Application of deep learning algorithms in geotechnical engineering: A short critical review. Artif. Intell. Rev. 2021, 54, 5633–5673. [Google Scholar] [CrossRef]
- He, G.; Dang, Y.; Zhou, L.; Dai, Y.; Que, Y.; Ji, X. Architecture model proposal of innovative intelligent manufacturing in the chemical industry based on multi-scale integration and key technologies. Comput. Chem. Eng. 2020, 141, 1069. [Google Scholar] [CrossRef]
- Liu, H.; Pei, X.; Jia, D.; Sun, F.; Guo, T. Connotation, application and prospect of the fourth-generation separated layer water injection technology. Pet. Explor. Dev. 2017, 44, 644–651. [Google Scholar] [CrossRef]
- Hendih, A.R.; Rinaldi, I.; Williams, L.L. Investigation for mature Minas waterflood optimization. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Melbourne, Australia, 8–10 October 2002. [Google Scholar]
- Zhang, J.; Cong, H.; Li, G.; Zhang, Z.; Wang, C.; Han, W.; Guo, D. Development of constant flow eccentric water distributor without plug. China Petrol. Mach. 2001, 11, 17–18+60. [Google Scholar]
- Yang, H.; Yu, X.; Qi, D.; Zhao, J.; Zhang, J.; Shui, S.; Gong, Y. Application of eccentric bridge water distribution string in stratification test. China Pet. Mach. 2009, 37, 59–60+63. [Google Scholar]
- Pei, X.; Li, B.; Yaning, L. History and actuality of separate layer oil production technologies in daqing oilfield. In Proceedings of the International Oil & Gas Conference and Exhibition in China, Beijing, China, 5–7 December 2006. [Google Scholar]
- Jia, D.; Wang, F.; Xu, J.; Xu, S. Variable domain adaptive fuzzy hierarchical water injection process control. Electr. Mach. Control. 2012, 16, 66–70. [Google Scholar]
- Liu, H.; Xiao, G.; Sun, F.; Pei, X.; Hu, H.; Gong, H.; Li, L. New concentric stratified water injection technology for highly deviated Wells. Pet. Explor. Dev. 2015, 42, 512–517. [Google Scholar] [CrossRef]
- Zhao, X. Application of intelligent water distribution technology in injection well. Inn. Mong. Petrochem. Ind. 2013, 39, 96–99. [Google Scholar]
- Liu, H.; Pei, X.; Jia, D.; Sun, F.; Guo, T. Connotation, application and prospect of the fourth generation stratified water injection technology. Pet. Explor. Dev. 2017, 44, 608–614+637. [Google Scholar] [CrossRef]
- Jia, D.; Yu, Y.; Chen, Z.; Zhou, T.; Zhao, M. Study on signal processing method of vortex flowmeter in stratified water injection process. J. Transduct. Technol. 2015, 28, 1513–1519. [Google Scholar]
- Oliver, D.S.; Chen, Y. Recent progress on reservoir history matching: A review. Computational Geosciences 2010, 15, 185–221. [Google Scholar] [CrossRef]
- Kitanidis, P.K. Parameter Uncertainty in Estimation of Spatial Functions: Bayesian Analysis. Water Resour. Res. 1986, 22, 499–507. [Google Scholar] [CrossRef]
- Oliver, D.S.; He, N.; Reynolds, A.C. Conditioning permeability fields to pressure data. In Proceedings of the ECMOR V—5th European Conference on the Mathematics of Oil Recovery, Leoben, Austria, 3–6 September 1996. [Google Scholar]
- Gao, G.; Zafari, M.; Reynolds, A.C. Quantifying Uncertainty for the PUNQ-S3 Problem in a Bayesian Setting with RML and EnKF. SPE J. 2006, 11, 506–515. [Google Scholar] [CrossRef]
- Liu, N.; Oliver, D.S. Evaluation of Monte Carlo Methods for Assessing Uncertainty. SPE J. 2003, 8, 188–195. [Google Scholar] [CrossRef]
- Mosegaard, K.; Tarantola, A. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. Solid Earth 1995, 100, 12431–12447. [Google Scholar] [CrossRef]
- Park, H.; Scheidt, C.; Fenwick, D.; Boucher, A.; Caers, J. History matching and uncertainty quantification of facies models with multiple geological interpretations. Comput. Geosci. 2013, 17, 609–621. [Google Scholar] [CrossRef]
- Aanonsen, S.I.; Nævdal, G.; Oliver, D.S.; Reynolds, A.C.; Vallès, B. The Ensemble Kalman Filter in Reservoir Engineering—A Review. SPE J. 2009, 14, 393–412. [Google Scholar] [CrossRef]
- Evensen, G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean. Dyn. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- Reichle, R.H.; McLaughlin, D.; Entekhabi, D. Hydrologic Data Assimilation with the Ensemble Kalman Filter. Mon. Weather. Rev. 2002, 130, 103–114. [Google Scholar] [CrossRef]
- Wen, X.-H.; Chen, W.H. Real-Time Reservoir Model Updating Using Ensemble Kalman Filter with Confirming Option. SPE J. 2006, 11, 431–442. [Google Scholar] [CrossRef]
- Emerick, A.A.; Reynolds, A.C. Investigation of the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci. 2013, 17, 325–350. [Google Scholar] [CrossRef]
- Ehrendorfer, M. A review of issues in ensemble-based Kalman filtering. Meteorol. Z. 2007, 16, 795–818. [Google Scholar] [CrossRef]
- van Leeuwen, P.J.; Evensen, G. Data Assimilation and Inverse Methods in Terms of a Probabilistic Formulation. Mon. Weather. Rev. 1996, 124, 2898–2913. [Google Scholar] [CrossRef]
- Skjervheim, J.A.; Evensen, G. An ensemble smoother for assisted history matching. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 21–23 February 2011. [Google Scholar]
- Emerick, A.A.; Reynolds, A.C. Ensemble smoother with multiple data assimilation. Comput. Geosci. 2013, 55, 3–15. [Google Scholar] [CrossRef]
- Emerick, A.A.; Reynolds, A.C. History-matching production and seismic data in a real field case using the ensemble smoother with multiple data assimilation. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 18–20 February 2013. [Google Scholar]
- Jenni, S.; Hu, L.Y.; Basquet, R.; Marsily, G.D.; Bourbiaux, B. History Matching of a Stochastic Model of Field- Scale Fractures: Methodology and Case Study. Oil Gas Sci. Technol.-Rev. D’ifp Energ. Nouv. 2007, 62, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Scheidt, C.; Renard, P.; Caers, J. Prediction-Focused Subsurface Modeling: Investigating the Need for Accuracy in Flow-Based Inverse Modeling. Math. Geosci. 2014, 47, 173–191. [Google Scholar] [CrossRef] [Green Version]
- Satija, A.; Caers, J. Direct forecasting of subsurface flow response from non-linear dynamic data by linear least- squares in canonical functional principal component space. Adv. Water Resour. 2015, 77, 69–81. [Google Scholar] [CrossRef]
- Satija, A.; Scheidt, C.; Li, L.; Caers, J. Direct forecasting of reservoir performance using production data without history matching. Comput. Geosci. 2017, 21, 315–333. [Google Scholar] [CrossRef]
- Yang, G. Holistic Strategies for Prediction Uncertainty Quantification of Contaminant Transport and Reservoir Production in Field Cases. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2017. [Google Scholar]
- He, J.; Sarma, P.; Bhark, E.; Tanaka, S.; Chen, B.; Wen, X.-H.; Kamath, J. Quantifying Expected Uncertainty Reduction and Value of Information Using Ensemble-Variance Analysis. SPE J. 2018, 23, 428–448. [Google Scholar] [CrossRef]
- Sun, W.; Durlofsky, L.J. A New Data-Space Inversion Procedure for Efficient Uncertainty Quantification in Subsurface Flow Problems. Math. Geosci. 2017, 49, 679–715. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, W.; Durlofsky, L.J. A data-space inversion procedure for well control optimization and closed- loop reservoir management. Comput. Geosci. 2019, 24, 361–379. [Google Scholar] [CrossRef]
- Doren, J.V.; Markovinovic, R.; Jansen, J.-D. Reduced-order optimal control of water flooding using proper orthogonal decomposition. Comput. Geosci. 2006, 10, 137–158. [Google Scholar] [CrossRef]
- Cardoso, M.A.; Durlofsky, L.J.; Sarma, P. Development and application of reduced-order modeling procedures for subsurface flow simulation. Int. J. Numer. Methods Eng. 2009, 77, 1322–1350. [Google Scholar] [CrossRef]
- He, J.; Durlofsky, L.J. Reduced-Order Modeling for Compositional Simulation by Use of Trajectory Piecewise Linearization. SPE J. 2014, 19, 858–872. [Google Scholar] [CrossRef]
- Yang, Y.; Ghasemi, M.; Gildin, E.; Efendiev, Y.; Calo, V. Fast Multiscale Reservoir Simulations With POD- DEIM Model Reduction. SPE J. 2016, 21, 2141–2154. [Google Scholar] [CrossRef]
- Jin, Z.L.; Durlofsky, L.J. Reduced-order modeling of CO2 storage operations. Int. J. Greenh. Gas Control. 2018, 68, 49–67. [Google Scholar] [CrossRef]
- He, J.; Sarma, P.; Durlofsky, L.J. Reduced-order flow modeling and geological parameterization for ensemble- based data assimilation. Comput. Geosci. 2013, 55, 54–69. [Google Scholar] [CrossRef]
- Xiao, C.; Leeuwenburgh, O.; Lin, H.X.; Heemink, A. Non-intrusive subdomain POD-TPWL for reservoir history matching. Comput. Geosci. 2018, 23, 537–565. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Huang, G.; Dong, M.; Feng, G. Development of an artificial neural network model for predicting minimum miscibility pressure in CO2 flooding. J. Pet. Sci. Eng. 2003, 37, 83–95. [Google Scholar] [CrossRef]
- Ahmadi, M.A.; Ebadi, M.; Shokrollahi, A.; Majidi, S.M.J. Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Appl. Soft Comput. 2013, 13, 1085–1098. [Google Scholar] [CrossRef]
- Hamdi, H.; Couckuyt, I.; Sousa, M.C.; Dhaene, T. Gaussian Processes for history-matching: Application to an unconventional gas reservoir. Comput. Geosci. 2017, 21, 267–287. [Google Scholar] [CrossRef]
- Bazargan, H.; Christie, M.; Elsheikh, A.H.; Ahmadi, M. Surrogate accelerated sampling of reservoir models with complex structures using sparse polynomial chaos expansion. Adv. Water Resour. 2015, 86, 385–399. [Google Scholar] [CrossRef]
- Costa, L.A.N.; Maschio, C.; Schiozer, D.J. Application of artificial neural networks in a history matching process. J. Pet. Sci. Eng. 2014, 123, 30–45. [Google Scholar] [CrossRef]
- Baltrušaitis, T.; Robinson, P.; Morency, L.-P. Constrained local neural fields for robust facial landmark detection in the wild. In Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 1–8 December 2013. [Google Scholar]
- Liu, F.; Shen, C.; Lin, G. Deep convolutional neural fields for depth estimation from a single image. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Dziugaite, G.K.; Roy, D.M. Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural Networks with Many More Parameters than Training Data. arXiv 2017, arXiv:1703.11008. [Google Scholar]
- Arora, S.; Ge, R.; Neyshabur, B.; Zhang, Y. Stronger generalization bounds for deep nets via a compression approach. In Proceedings of the 35th International Conference on Machine Learning, ICML, Stockholmsmässan, Stockholm, 10–15 July 2018. [Google Scholar]
- Zhu, Y.; Zabaras, N. Bayesian Deep Convolutional encoder-decoder Networks for Surrogate Modeling and Uncertainty Quantification. J. Comput. Phys. 2018, 366, 415–447. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Zabaras, N.; Koutsourelakis, P.-S.; Perdikaris, P. Physics-constrained deep learning for high- dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 2019, 394, 56–81. [Google Scholar] [CrossRef] [Green Version]
- Mo, S.; Zabaras, N.; Shi, X.; Wu, J. Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification. Water Resour. Res. 2019, 55, 3856–3881. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.L.; Liu, Y.; Durlofsky, L.J. Deep-learning-based reduced-order modeling for subsurface flow simulation. arXiv 2019, arXiv:1906.03729. [Google Scholar]
- Mohaghegh, S. Data-Driven Reservoir Modeling; Society of Petroleum Engineers: San Antonio, TX, USA, 2017. [Google Scholar] [CrossRef]
- Gu, J.; Zhou, M.; Li, Z.; Jia, X.; Liang, Y. Oil well production prediction method based on long short-term memory network model based on data mining. Spec. Oil Gas Reserv. 2019, 26, 77–81+131. [Google Scholar]
- Chaki, J.; Ganesh, S.T.; Cidham, S.; Theertan, S.A. Machine learning and artificial intelligence based diabetes mellitus detection and self-management: A systematic review. J. King Saud Univ. Comput. Inf. Sci. 2020, 34, 3204–3225. [Google Scholar] [CrossRef]
- Jung, Y.; Jung, J.; Kim, B.; Han, S. Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: Case study of South Korea. J. Clean. Prod. 2020, 250, 119476. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Du, B.; Ding, C.; Sun, L. Parallel architecture of convolutional bi-directional LSTM neural networks for network-wide metro ridership prediction. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2278–2288. [Google Scholar] [CrossRef]
- Biswas, R.; Vassiliou, A.; Stromberg, R.; Sen, M.K. Estimating normal moveout velocity using the recurrent neural network. Interpretation 2019, 7, T819–T827. [Google Scholar] [CrossRef]
- Temizel, C.; Canbaz, C.H.; Saracoglu, O.; Putra, D.; Baser, A.; Erfando, T.; Krishna, S.; Saputelli, L. Production forecasting in shale reservoirs through conventional DCA and machine/deep learning methods. In Proceedings of the Unconventional Resources Technology Conference, 20–22 July 2020; pp. 4843–4894. [Google Scholar]
- Zhao, G. The development of intellectualized petroleum geophysical Exploration: From automation to intellectualized petroleum exploration. Geophys. Prospect. Pet. 2019, 58, 791–810. [Google Scholar]
- Zhang, D.; Chen, Y.; Meng, J. Logging curve generation method based on cyclic neural network. Pet. Explor. Dev. 2018, 45, 598–607. [Google Scholar]
- Liu, Y.; Sun, W.; Durlofsky, L.J. A Deep-Learning-Based Geological Parameterization for History Matching Complex Models. Math. Geosci. 2019, 51, 725–766. [Google Scholar] [CrossRef]
- Klie, M.; Florez, H. Data-driven modeling of fractured shale reservoirs. In Proceedings of the ECMOR XVI—16th European Conference on the Mathematics of Oil Recovery, Barcelona, Spain, 3–6 September 2018. [Google Scholar]
- Laloy, E.; Hérault, R.; Jacques, D.; Linde, N. Training-image based geostatistical inversion using a spatial generative adversarial neural network. Water Resour. Res. 2017, 54, 381–406. [Google Scholar] [CrossRef] [Green Version]
- Canchumuni, S.A.; Emerick, A.; Pacheco, M. Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother. Comput. Geosci. 2019, 128, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Temirchev, P.; Simonov, M.; Kostoev, R.; Burnaev, E.; Oseledets, I.; Akhmetov, A.; Margarit, A.; Sitnikov, A.; Koroteev, D. Deep neural networks predicting oil movement in a development unit. J. Pet. Sci. Eng. 2020, 184, 106513. [Google Scholar] [CrossRef]
- Mo, S.; Zhu, Y.; Zabaras, N.; Shi, X.; Wu, J. Deep Convolutional Encoder-Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media. Water Resour. Res. 2019, 55, 703–728. [Google Scholar] [CrossRef] [Green Version]
- de Bézenac, E.; Pajot, A.; Gallinari, P. Deep learning for physical processes: Incorporating prior scientific knowledge. J. Stat. Mech. Theory Exp. 2019, 2019, 124009. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.; Liu, Y. Differentiable Physics-informed Graph Networks. arXiv 2019, arXiv:1902.02950. [Google Scholar]
- Grigo, C.; Koutsourelakis, P.-S. A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime. J. Comput. Phys. 2019, 397, 108842. [Google Scholar] [CrossRef] [Green Version]
- Deli, J.; He, L.; ZHANG, J.; Bin, G.; Xiaohan, P.; Quanbin, W.; Qinghai, Y. Data-driven optimization for fine water injection in a mature oil field. Pet. Explor. Dev. 2020, 47, 674–682. [Google Scholar]
- Sarma, P.; Durlofsky, L.J.; Aziz, K.; Chen, W.H. Efficient real-time reservoir management using adjoint-based. Comput. Geosci. 2006, 10, 3–36. [Google Scholar] [CrossRef]
- Yan, X.; Reynolds, A.C. Optimization algorithms based on combining FD approximations and stochastic gradients compared with methods based only on a stochastic gradient. SPE J. 2014, 19, 873–890. [Google Scholar] [CrossRef]
- Meum, P. Optimal Reservoir Control Using Nonlinear MPC and ECLIPSE. Master’s Thesis, Institutt for Teknisk Kybernetikk, Trondheim, Norway, 2007. [Google Scholar]
- Beheshti, Z.; Shamsuddin, S.M.; Hasan, S. Memetic binary particle swarm optimization for discrete optimization problems. Inf. Sci. 2015, 299, 58–84. [Google Scholar] [CrossRef]
- Gildin, E.; Ghasemi, M.; Romanovskay, A.; Efendiev, Y. Nonlinear complexity reduction for fast simulation of flow in heterogeneous porous media. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 18–20 February 2013. [Google Scholar]
- Wang, H.; Wu, W.; Chen, T.; Dong, X.; Wang, G. An improved neural network for TOC, S1 and S2 estimation based on conventional well logs. J. Pet. Sci. Eng. 2019, 176, 664–678. [Google Scholar] [CrossRef]
- Xue, Y.; Teng, T.; Dang, F.; Ma, Z.; Wang, S.; Xue, H. Productivity analysis of fractured wells in reservoir of hydrogen and carbon based on dual-porosity medium model. Int. J. Hydrogen Energy 2020, 45, 20240–20249. [Google Scholar] [CrossRef]
- Lee, K.; Lim, J.; Yoon, D.; Jung, H. Prediction of shale-gas production at duvernay formation using deep—Learning algorithm. SPE J. 2019, 24, 2423–2437. [Google Scholar] [CrossRef]
- Kocoglu, Y.; Gorell, S. In Viable solutions to overcome weaknesses of deep learning applications in production forecasting: A comprehensive review. In Proceedings of the Unconventional Resources Technology Conference, Houston, TX, USA, 20–22 June 2022; pp. 3279–3326. [Google Scholar]
- Su, H.; Zio, E.; Zhang, J.; Xu, M.; Li, X.; Zhang, Z. A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model. Energy 2019, 178, 585–597. [Google Scholar] [CrossRef] [Green Version]
- Qiu, K.; Li, H. A new analytical solution of the triple-porosity model for history matching and performance forecasting in unconventional oil reservoirs. SPE J. 2018, 23, 2060–2079. [Google Scholar] [CrossRef]
- Mohd Razak, S.; Cornelio, J.; Jahandideh, A.; Jafarpour, B.; Cho, Y.; Liu, H.-H.; Vaidya, R. Integrating deep learning and physics-based models for improved production prediction in unconventional reservoirs. In Proceedings of the SPE Middle East Oil & Gas Show and Conference, event canceled. 18 November–1 December 2021. [Google Scholar]
- Reginato, L.F.; Pedroni, L.G.; Compan, A.L.M.; Skinner, R.; Sampaio, M.A. Optimization of ionic concentrations in engineered water injection in carbonate reservoir through ANN and FGA. Oil Gas Sci. Technol.-Rev. D’ifp Energy Nouv. 2021, 76, 13. [Google Scholar] [CrossRef]
- Kalam, S.; Alnuaim, S.A.; Rammay, M.H. Application of artificial intelligence for water coning problem in hydraulically fractured tight oil reservoirs. In Proceedings of the Offshore technology conference Asia, Kuala Lumpur, Malaysia, 22–25 March 2016. [Google Scholar]
- Salimova, R.; Pourafshary, P.; Wang, L. Data-driven analyses of low salinity waterflooding in carbonates. Appl. Sci. 2021, 11, 6651. [Google Scholar] [CrossRef]
- Negahdari, Z.; Khandoozi, S.; Ghaedi, M.; Malayeri, M.R. Optimization of injection water composition during low salinity water flooding in carbonate rocks: A numerical simulation study. J. Pet. Sci. Eng. 2022, 209, 109847. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, D.; Zhang, J.; Li, Y.; Wu, L.; Qiao, M. Recent Development of Smart Field Deployment for Mature Waterflood Reservoirs. Sustainability 2023, 15, 784. https://doi.org/10.3390/su15010784
Jia D, Zhang J, Li Y, Wu L, Qiao M. Recent Development of Smart Field Deployment for Mature Waterflood Reservoirs. Sustainability. 2023; 15(1):784. https://doi.org/10.3390/su15010784
Chicago/Turabian StyleJia, Deli, Jiqun Zhang, Yanchun Li, Li Wu, and Meixia Qiao. 2023. "Recent Development of Smart Field Deployment for Mature Waterflood Reservoirs" Sustainability 15, no. 1: 784. https://doi.org/10.3390/su15010784
APA StyleJia, D., Zhang, J., Li, Y., Wu, L., & Qiao, M. (2023). Recent Development of Smart Field Deployment for Mature Waterflood Reservoirs. Sustainability, 15(1), 784. https://doi.org/10.3390/su15010784