Oat–Field Pea Intercropping for Sustainable Oat Production: Effect on Yield, Nutritive Value and Environmental Impact
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Crop Management and Experimental Design
2.3. Data Collection, Sampling and Laboratory Analysis
2.4. Environmental Impact Calculations
2.5. Statistical Analysis
3. Results
3.1. Soil Analysis
3.2. Yield
3.3. Nutritional Value of Oat Forage
3.4. Environmental Impact
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT FAO Statistical Databas. Available online: https://www.fao.org/faostat/en/#home (accessed on 21 September 2021).
- Motsara, M.R.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis; Food and Agriculture Organization of United Nations Rome: Rome, Italy, 2008; ISBN 9789251059814. [Google Scholar]
- Mengistu, S.; Nurfeta, A.; Tolera, A.; Bezabih, M.; Adie, A.; Wolde-Meskel, E.; Zenebe, M. Livestock Production Challenges and Improved Forage Production Efforts in the Damot Gale District of Wolaita Zone, Ethiopia. Adv. Agric. 2021, 2021, 5553659. [Google Scholar] [CrossRef]
- Dinkale, T.; Tesfaye, W.; Wekgari, Y. Performance Evaluation of Improved Oat Varieties/Accessions at East Guji Zone, Oromia, Ethiopia. Ecol. Evol. Biol. 2020, 5, 121–124. [Google Scholar] [CrossRef]
- Molla, E.A.; Wondimagegn, B.A.; Chekol, Y.M. Evaluation of Biomass Yield and Nutritional Quality of Oats-Vetch Mixtures at Different Harvesting Stage under Residual Moisture in Fogera District, Ethiopia. Agric. Food Secur. 2018, 7, 88. [Google Scholar] [CrossRef]
- Wada, A.; Shawle, K.; Gemiyo, D. Biomass Yield and Nutritional Quality of Different Oat Varieties (Avena Sativa) Grown Under Irrigation Condition in Sodo Zuriya District, Wolaita Zone, Ethiopia. Agri. Res. Tech. Open Access J. 2019, 20, 1–10. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Boudon, A.; Lebas, F. Oat Forage. Available online: https://www.feedipedia.org/node/500 (accessed on 12 January 2018).
- Taddese, G. Land Degradation: A Challenge to Ethiopia. Environ. Manag. 2001, 27, 815–824. [Google Scholar] [CrossRef]
- Njaimwe, A.N.; Mnkeni, P.N.S.; Chiduza, C.; Muchaonyerwa, P.; Wakindiki, I.I.C. Tillage and Crop Rotation Effects on Carbon Sequestration and Aggregate Stability in Two Contrasting Soils at the Zanyokwe Irrigation Scheme, Eastern Cape Province, South Africa. S. Afr. J. Plant Soil 2016, 33, 317–324. [Google Scholar] [CrossRef]
- Uher, D.; Svečnjak, Z.; Dujmović-Purgar, D.; Jareš, D.; Horvatić, I. Influence of intercropping maize with climbing bean on forage yield and quality. Agrofor 2019, 4, 60–67. [Google Scholar] [CrossRef]
- Soares, B.L.; Ferreira, P.A.A.; Rufini, M.; Martins, F.A.D.; Oliveira, D.P.; Reis, R.P.; de Andrade, M.J.B.; de Moreira, F.M.S. Agronomic and Economic Efficiency of Common-Bean Inoculation with Rhizobia and Mineral Nitrogen Fertilization. Rev. Bras. De Ciência Solo 2016, 40. [Google Scholar] [CrossRef]
- Kamran, M.; Yan, Z.; Jia, Q.; Chang, S.; Ahmad, I.; Ghani, M.U.; Hou, F. Irrigation and Nitrogen Fertilization Influence on Alfalfa Yield, Nutritive Value, and Resource Use Efficiency in an Arid Environment. Field Crops Res. 2022, 284, 108587. [Google Scholar] [CrossRef]
- Bélanger, G.; Michaud, R.; Jefferson, P.G.; Tremblay, G.F.; Brégard, A. Improving the Nutritive Value of Timothy through Management and Breeding. Can. J. Plant Sci. 2011, 81, 577–585. [Google Scholar] [CrossRef]
- Pardon, L.; Bessou, C.; Nelson, P.N.; Dubos, B.; Ollivier, J.; Marichal, R.; Caliman, J.P.; Gabrielle, B. Key Unknowns in Nitrogen Budget for Oil Palm Plantations. A Review. Agron. Sustain. Dev. 2016, 36, 20. [Google Scholar] [CrossRef]
- Capa, D.; Pérez-Esteban, J.; Masaguer, A. Unsustainability of Recommended Fertilization Rates for Coffee Monoculture Due to High N2O Emissions. Agron. Sustain. Dev. 2015, 35, 1551–1559. [Google Scholar] [CrossRef]
- Wesolowska, M.; Rymarczyk, J.; Góra, R.; Baranowski, P.; Slawinski, C.; Klimczyk, M.; Supryn, G.; Schimmelpfennig, L. New Slow-Release Fertilizers - Economic, Legal and Practical Aspects: A Review. Int. Agrophys. 2021, 35, 11–24. [Google Scholar] [CrossRef]
- Chen, L.; Li, F.; Li, W.; Ning, Q.; Li, J.; Zhang, J.; Ma, D.; Zhang, C. Organic Amendment Mitigates the Negative Impacts of Mineral Fertilization on Bacterial Communities in Shajiang Black Soil. Appl. Soil Ecol. 2020, 150, 103457. [Google Scholar] [CrossRef]
- Tessaro, A.A.; Pereira, M.A.; Calegari, A.; Onofre, S.B.; Ralisch, R. Soybean Yields and Biomass Production of Winter Cover Crops in the Southwest of Parana–Brazil. J. Sustain. Dev. 2019, 12. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Nascente, A.S.; Mateus, G.P.; Pariz, C.M.; Martins, P.O.; Borghi, E. Intercropping Soybean and Palisade Grass for Enhanced Land Use Efficiency and Revenue in a No till System. Eur. J. Agron. 2014, 58, 53–62. [Google Scholar] [CrossRef]
- Agegnehu, G.; Ghizaw, A.; Sinebo, W. Yield Performance and Land-Use Efficiency of Barley and Faba Bean Mixed Cropping in Ethiopian Highlands. Eur. J. Agron. 2006, 25, 202–207. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Silfverberg, L. Chemical Determination of Soil Organic Matter. A Critical Review of Existing Methods. In Proceedings of the Royal Swedish Geotechnical Institute Proceedings no. 15; IH AB: Stockholm, Sweden, 1957. [Google Scholar]
- Nelson, D.; Sommers, L. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis Part 2: Chemical and Microbiological Properties, 2nd ed.; Page, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Chapman, H.D. Cation-Exchange Capacity. In Methods of Soil Analysis Part 2: Chemical and Microbiological Properties, 2nd ed.; Page, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- AOAC. AOAC Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2006. [Google Scholar]
- van Soest, P.; Robertson, J.; Lewis, B. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sceince 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Horrocks, R.; Vallentine, J. Harvested Forages; Academic Press: London, UK, 1999. [Google Scholar]
- GreenDelta. GreenDelta-OpenLCA Software 2017; GreenDelta: Berlin, Germany, 2020. [Google Scholar]
- Kearl, L.C. Nutrient Requirements of Ruminants in Developing Countries; Utah Agricultural Experiments Station: Logan, UT, USA, 1982; ISBN 0-87421-116-6. [Google Scholar]
- Patel, H.K.; Rathod, P.H.; Padheriya, D.R. Effect of Nitrogen Levels on Forage Yield and Quality of Multi Cuts Oat Cultivars. Int. J. Plant Soil Sci. 2021, 9–13. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Allen, F.L.; Keyser, P.D.; Tyler, D.D.; Saxton, A.M.; Taylor, A.M. Switchgrass Yield and Stand Dynamics from Legume Intercropping Based on Seeding Rate and Harvest Management. J. Soil Water Conserv. 2015, 70, 374–384. [Google Scholar] [CrossRef]
- Islam, M.; Mamun, A.; Ghosh, S.; Mondal, D. Nitrogen Fertilization on Growth and Yield Response of Oat (Avena Sativa L.). Bangladesh Agron. J. 2021, 23, 35–43. [Google Scholar] [CrossRef]
- Hupe, A.; Naether, F.; Haase, T.; Bruns, C.; Heß, J.; Dyckmans, J.; Joergensen, R.G.; Wichern, F. Evidence of Considerable C and N Transfer from Peas to Cereals via Direct Root Contact but Not via Mycorrhiza. Sci. Rep. 2021, 11, 11424. [Google Scholar] [CrossRef]
- Lin, F.; Liu, X.J.; Tong, C.C.; Wu, Y. A Study of Root System Characteristics and Carbon and Nitrogen Metabolism of Alfalfa and Four Grass Forages in Monoculture or Intercropped. Acta Prataculturae Sin. 2019, 28, 45–54. [Google Scholar] [CrossRef]
- Clark, M.; Tilman, D. Comparative Analysis of Environmental Impacts of Agricultural Production Systems, Agricultural Input Efficiency, and Food Choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping—A Low Input Agricultural Strategy for Food and Environmental Security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Yang, K.; Duan, F.; Liu, P.; Wang, Z.; Wang, J. Effects of Legume Intercropping and Nitrogen Input on Net Greenhouse Gas Balances, Intensity, Carbon Footprint and Crop Productivity in Sweet Maize Cropland in South China. J. Clean. Prod. 2021, 314, 127997. [Google Scholar] [CrossRef]
- Sun, T.; Zhao, C.; Feng, X.; Yin, W.; Gou, Z.; Lal, R.; Deng, A.; Chai, Q.; Song, Z.; Zhang, W. Maize-Based Intercropping Systems Achieve Higher Productivity and Profitability with Lesser Environmental Footprint in a Water-Scarce Region of Northwest China. Food Energy Secur. 2021, 10, e260. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Yu, L.; Shu, Y.; Tan, F.; Gou, Y.; Luo, S.; Yang, W.; Li, Z.; Wang, J. Sugarcane/Soybean Intercropping with Reduced Nitrogen Input Improves Crop Productivity and Reduces Carbon Footprint in China. Sci. Total Environ. 2020, 719, 137517. [Google Scholar] [CrossRef]
- Singh, R.J.; Ahlawat, I.P.S. Energy Budgeting and Carbon Footprint of Transgenic Cotton–Wheat Production System through Peanut Intercropping and FYM Addition. Environ. Monit. Assess. 2015, 187, 1–16. [Google Scholar] [CrossRef]
- Cecílio Filho, A.B.; Nascimento, C.S.; de Pereira, B.J.; Nascimento, C.S. Nitrogen Fertilisation Impacts Greenhouse Gas Emissions, Carbon Footprint, and Agronomic Responses of Beet Intercropped with Arugula. J. Environ. Manag. 2022, 307, 114568. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Lachouani, P.; Knudsen, M.T.; Ambus, P.; Boelt, B.; Gislum, R. Productivity and Carbon Footprint of Perennial Grass-Forage Legume Intercropping Strategies with High or Low Nitrogen Fertilizer Input. Sci. Total Environ. 2016, 541, 1339–1347. [Google Scholar] [CrossRef]
- Silver, W.L.; Perez, T.; Mayer, A.; Jones, A.R. The Role of Soil in the Contribution of Food and Feed. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200181. [Google Scholar] [CrossRef]
- Bai, Y.C.; Li, B.X.; Xu, C.Y.; Raza, M.; Wang, Q.; Wang, Q.Z.; Fu, Y.N.; Hu, J.Y.; Imoulan, A.; Hussain, M.; et al. Intercropping Walnut and Tea: Effects on Soil Nutrients, Enzyme Activity, and Microbial Communities. Front. Microbiol. 2022, 13, 560. [Google Scholar] [CrossRef]
- Fu, Z.D.; Zhou, L.; Chen, P.; Du, Q.; Pang, T.; Song, C.; Wang, X.C.; Liu, W.G.; Yang, W.Y.; Yong, T. wen Effects of Maize-Soybean Relay Intercropping on Crop Nutrient Uptake and Soil Bacterial Community. J. Integr. Agric. 2019, 18, 2006–2018. [Google Scholar] [CrossRef]
- Farooq, T.H.; Kumar, U.; Mo, J.; Shakoor, A.; Wang, J.; Rashid, M.H.U.; Tufail, M.A.; Chen, X.; Yan, W. Intercropping of Peanut–Tea Enhances Soil Enzymatic Activity and Soil Nutrient Status at Different Soil Profiles in Subtropical Southern China. Plants 2021, 10, 881. [Google Scholar] [CrossRef]
- Ma, Y.H.; Fu, S.L.; Zhang, X.P.; Zhao, K.; Chen, H.Y.H. Intercropping Improves Soil Nutrient Availability, Soil Enzyme Activity and Tea Quantity and Quality. Appl. Soil Ecol. 2017, 119, 171–178. [Google Scholar] [CrossRef]
- Cuartero, J.; Pascual, J.A.; Vivo, J.M.; Özbolat, O.; Sánchez-Navarro, V.; Egea-Cortines, M.; Zornoza, R.; Mena, M.M.; Garcia, E.; Ros, M. A First-Year Melon/Cowpea Intercropping System Improves Soil Nutrients and Changes the Soil Microbial Community. Agric. Ecosyst. Environ. 2022, 328, 107856. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three Pillars of Sustainability: In Search of Conceptual Origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef] [Green Version]
O1-P1 | pH | OC | TN | p | OM | CEC |
---|---|---|---|---|---|---|
Before sowing | 5.29 | 3.49 | 0.261 | 72.9 | 4.19 | 23.3 |
After harvest | 5.43 | 3.45 | 0.25 | 73.6 | 4.2 | 23.5 |
SEM | 0.481 | 0.355 | 0.014 | 3.4 | 0.51 | 1.59 |
O2-P1 | ||||||
Before sowing | 5.75 | 3.65 | 0.245 | 67.9 | 4.65 | 25.1 |
After harvest | 5.72 | 3.68 | 0.24 | 68.3 | 4.68 | 25.4 |
SEM | 0.51 | 0.376 | 0.0148 | 3.6 | 0.54 | 1.68 |
O1-P2 | ||||||
Before sowing | 7.69 | 3.47 | 0.249 | 77 | 4.3 | 29.4 |
After harvest | 5.75 | 3.48 | 0.25 | 76.8 | 4.29 | 29.2 |
SEM | 0.49 | 0.344 | 0.012 | 3.33 | 0.538 | 1.65 |
Oat-0 | ||||||
Before sowing | 5.19 | 2.76 | 0.25 | 64 | 4.8 | 24.1 |
After harvest | 5.22 | 2.78 | 0.201 * | 64.1 | 4.79 | 24.4 |
SEM | 0.497 | 0.349 | 0.013 | 3.382 | 0.551 | 1.66 |
Oat-23 | ||||||
Before sowing | 5.24 | 3.55 | 0.274 | 66.5 | 5.34 | 25.7 |
After harvest | 5.25 | 3.56 | 0.27 | 66.7 | 5.31 | 25.8 |
SEM | 0.49 | 0.344 | 0.013 | 3.33 | 0.543 | 1.64 |
Oat-46 | ||||||
Before sowing | ||||||
After harvest | 5.35 | 3.1 | 0.26 | 63.4 | 3.61 | 27.7 |
SEM | 0.491 | 0.345 | 0.012 | 3.34 | 0.54 | 1.65 |
Oat-0 | Oat-23 | Oat-46 | O1P1 | O1P2 | O2P1 | SEM | |
---|---|---|---|---|---|---|---|
Forage yield (t/ha) | |||||||
Dry matter | 4.16 c | 5.01 bc | 6.47 a | 5.94 ab | 5.83 ab | 5.33 b | 0.358 |
Crude protein | 0.347 d | 0.45 cd | 0.618 b | 0.573 ab | 0.624 b | 0.501 ac | 0.039 |
Dry matter digestibility | 2.41 d | 2.89 cd | 3.79 b | 3.49 ab | 3.46 ab | 3.11 ac | 0.214 |
Cost of production (USD/t) | |||||||
Dry matter | 6.55 c | 5.52 b | 4.36 a | 4.59 a | 4.64 ab | 5.11 ab | 0.269 |
Crude protein | 79.2 c | 61.6 b | 45.7 a | 47.7 a | 43.6 a | 54.5 ab | 3.33 |
Dry matter digestibility | 11.3 c | 9.6 b | 7.5 a | 7.8 a | 7.8 a | 8.8 ab | 0.49 |
Nutritive value | |||||||
Leaf-stem ratio | 0.945 c | 0.969 bc | 0.988 b | 1 ab | 1.03 a | 0.995 ab | 0.01 |
Dry matter (g/kg) | 863 | 886 | 908 | 889 | 897 | 885 | 12.3 |
Ash (g/kg) | 114 | 97 | 93 | 99 | 99 | 102 | 5.58 |
Crude protein (g/kg) | 83.1 c | 89.7 bc | 95.5 b | 96.3 b | 107 a | 93.9 b | 2.31 |
Dry matter digestibility (%) | 57.9 | 57.6 | 58.5 | 58.8 | 59.3 | 58.4 | 0.846 |
Oat-0 | Oat-23 | Oat-46 | O1P1 | O1P2 | O2P1 | SEM | |
---|---|---|---|---|---|---|---|
Global warming potential (kg CO2 eq/t) | |||||||
Dry matter | 18.9 c | 15.7 b | 12.2 a | 13.2 ab | 13.4 ab | 14.7 ab | 0.767 |
Crude protein | 228 c | 175 b | 128 a | 137 a | 126 a | 157 ab | 9.54 |
Dry matter digestibility | 32.7 c | 27.2 b | 20.8 a | 22.5 ab | 22.6 ab | 25.2 ab | 1.4 |
Acidification (kg SO2 ceq/t) | |||||||
Dry matter | 0.103 d | 0.193 c | 0.232 b | 0.072 a | 0.073 a | 0.08 a | 0.008 |
Crude protein | 1.24 d | 2.15 c | 2.43 b | 0.75 a | 0.69 a | 0.86 a | 0.083 |
Dry matter digestibility | 0.178 d | 0.335 c | 0.397 b | 0.123 a | 0.123 a | 0.138 a | 0.015 |
Eutrophication (kg PO4−3 eq/t) | |||||||
Dry matter | 0.027 c | 0.022 b | 0.017 a | 0.019 ab | 0.019 ab | 0.021 ab | 0.001 |
Crude protein | 0.323 c | 0.247 b | 0.181 a | 0.194 a | 0.178 a | 0.222 ab | 0.013 |
Dry matter digestibility | 0.046 c | 0.039 b | 0.03 a | 0.032 ab | 0.032 ab | 0.036 ab | 0.002 |
Human toxicity (kg 1, 4-dichlorobenzene eq/t) | |||||||
Dry matter | 0.247 b | 0.257 b | 0.239 b | 0.173 a | 0.175 a | 0.193 a | 0.012 |
Crude protein | 2.99 c | 2.87 c | 2.5 bc | 1.8 a | 1.65 a | 2.06 ab | 0.137 |
Dry matter digestibility | 0.428 b | 0.446 b | 0.409 b | 0.295 a | 0.296 a | 0.331 a | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamiru, M.; Alkhtib, A.; Belachew, B.; Demeke, S.; Worku, Z.; Wamatu, J.; Burton, E. Oat–Field Pea Intercropping for Sustainable Oat Production: Effect on Yield, Nutritive Value and Environmental Impact. Sustainability 2023, 15, 3514. https://doi.org/10.3390/su15043514
Tamiru M, Alkhtib A, Belachew B, Demeke S, Worku Z, Wamatu J, Burton E. Oat–Field Pea Intercropping for Sustainable Oat Production: Effect on Yield, Nutritive Value and Environmental Impact. Sustainability. 2023; 15(4):3514. https://doi.org/10.3390/su15043514
Chicago/Turabian StyleTamiru, Metekia, Ashraf Alkhtib, Basha Belachew, Solomon Demeke, Zemene Worku, Jane Wamatu, and Emily Burton. 2023. "Oat–Field Pea Intercropping for Sustainable Oat Production: Effect on Yield, Nutritive Value and Environmental Impact" Sustainability 15, no. 4: 3514. https://doi.org/10.3390/su15043514
APA StyleTamiru, M., Alkhtib, A., Belachew, B., Demeke, S., Worku, Z., Wamatu, J., & Burton, E. (2023). Oat–Field Pea Intercropping for Sustainable Oat Production: Effect on Yield, Nutritive Value and Environmental Impact. Sustainability, 15(4), 3514. https://doi.org/10.3390/su15043514