Minimally Invasive Retrofitting of RC Joints with Externally Applied SMA Plate—Adaptive Design Optimisation through Probabilistic Damage Simulation
Abstract
:1. Introduction
1.1. Motivation, Fundamental Principles, and Background Knowledge
1.2. Novelty and Significance of this Study
1.3. Overview of the Paper Content
2. Brief Outline of SMA
3. Description of Research Methodology
3.1. Model Set-Up
3.1.1. Model Overview
3.1.2. Model Validation, Element and Material Selection
3.2. Load Combinations’ Selection and Designation Initial Geometry of the SMA Plate
3.3. Optimisation of the Plate Thickness through a Probabilistic Damage Prediction
3.4. Bolting the Optimised SMA Plate to the Concrete via Fastening Technique
4. Results and Discussion
4.1. Reinforced System with SMA Plate under Cyclic Load
4.2. Reinforced System with SMA Plate under Reverse-Cyclic Load
4.3. Numerical Examples for System Reinforced with Optimised Plate
5. Design Recommendation
6. Summary and Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naddaf, M. Turkey-Syria earthquake: What scientists know. Nature 2023, 614, 398–399. [Google Scholar] [CrossRef]
- Deutsche Welle. Turkey-Syria Quakes: ‘Worst Natural Disaster’ in a Century. 2023. Available online: https://www.dw.com/en/turkey-syria-earthquakes-worst-natural-disaster-in-a-century/a-64696911 (accessed on 14 February 2023).
- Verisk Analytics Inc. Verisk Estimates Economic Losses from February 6 Earthquakes in Turkey Likely to Exceed USD 20 Billion. 2023. Available online: https://www.verisk.com/newsroom/verisk-estimates-economic-losses-from-february-6-earthquakes-in-turkey--likely-to-exceed-usd-20-billion/ (accessed on 14 February 2023).
- Hojdys, Ł.; Krajewski, P.; Kwiecień, A.; Rousakis, T.; Vanian, V.; Tekieli, M.; Viskovic, A.; Ilki, A.; Gams, M.; Rakicevic, Z.; et al. Quick Repair of Damaged Infill Walls with Externally Bonded FRPU Composites: Shake Table Tests. J. Compos. Constr. 2023, 27, 04022084. [Google Scholar] [CrossRef]
- Triantafyllou, G.G.; Rousakis, T.C.; Karabinis, A.I. Axially loaded reinforced concrete columns with a square section partially confined by light GFRP straps. J. Compos. Constr. 2015, 19, 04014035. [Google Scholar] [CrossRef]
- Kunz, J. Missing Links: Solutions to Add Reinforcement in Existing Concrete. In Proceedings of the 2nd International Workshop on Advanced Materials and Innovative Systems in Structural Engineering: Novel Researches, Istanbul, Turkey, 20 September 2019; pp. 25–40. [Google Scholar]
- Chellapandian, M.; Prakash, S.S.; Sharma, A. Axial compression–bending interaction behavior of severely damaged RC columns rapid repaired and strengthened using hybrid FRP composites. Constr. Build. Mater. 2019, 195, 390–404. [Google Scholar] [CrossRef]
- Sasmal, S.; Nath, D. Evaluation of performance of non-invasive upgrade strategy for beam–column sub-assemblages of poorly designed structures under seismic type loading. Earthq. Eng. Struct. Dyn. 2016, 45, 1817–1835. [Google Scholar] [CrossRef]
- Kanchanadevi, A.; Ramanjaneyulu, K. Non-invasive hybrid retrofit for seismic damage mitigation of gravity load designed exterior beam–column sub-assemblage. J. Earthq. Eng. 2021, 25, 1590–1615. [Google Scholar] [CrossRef]
- fib Task Group 8.1. fib Bulletin 103—Guide for Strengthening of Concrete Structures; fib—The International Federation for Structural Concrete: Lausanne, Switzerland, 2022. [Google Scholar]
- Van Breugel, K. Is there a market for self-healing cement-based materials. In Proceedings of the 1st International Conference on Self-Healing Materials, Noordwijk, The Netherlands, 18–20 April 2007. [Google Scholar]
- Abdulrahman, A.; Ismail, M.; Hussain, M.S. Corrosion inhibitors for steel reinforcement in concrete: A review. Sci. Res. Essays 2011, 6, 4152–4162. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, S.; Srisanthi, V.; Ramachandran, S. Effects of Corrosion on Reinforced Concrete Beams with Silica Fume and Polypropylene Fibre. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2013, 7, 151–156. [Google Scholar]
- Fardis, M.N. Shear strength model for RC joints, consistent with the shear design rules for prismatic members in the second-generation Eurocodes. Bull. Earthq. Eng. 2021, 19, 889–917. [Google Scholar] [CrossRef]
- Nasrollahzadeh, K.; Hariri-Ardebili, M.A.; Kiani, H.; Mahdavi, G. An Integrated Sensitivity and Uncertainty Quantification of Fragility Functions in RC Frames. Sustainability 2022, 14, 13082. [Google Scholar] [CrossRef]
- Fascetti, A.; Kunnath, S.K.; Nisticò, N. Robustness evaluation of RC frame buildings to progressive collapse. Eng. Struct. 2015, 86, 242–249. [Google Scholar] [CrossRef]
- Praxedes, C.; Yuan, X.X. Robustness-oriented optimal design for reinforced concrete frames considering the large uncertainty of progressive collapse threats. Struct. Saf. 2022, 94, 102139. [Google Scholar] [CrossRef]
- Spyridis, P.; Strauss, A. Robustness assessment of redundant structural systems based on design provisions and probabilistic damage analyses. Buildings 2020, 10, 213. [Google Scholar] [CrossRef]
- Strauss, A.; Pürgstaller, A.; Pampanin, S.; Spyridis, P.; Bergmeister, K. Robustheit von Ingenieurstrukturen. In BetonKalender 2022: Nachhaltigkeit, Digitalisierung, Instandhaltung; Wilhelm Ernst & Sohn: Berlin, Germany, 2022; pp. 375–420. [Google Scholar]
- Li, V.C.; Herbert, E. Robust self-healing concrete for sustainable infrastructure. J. Adv. Concr. Technol. 2012, 10, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Bostenaru Dan, M. Decision making based on benefit-costs analysis: Costs of preventive retrofit versus costs of repair after earthquake hazards. Sustainability 2018, 10, 1537. [Google Scholar] [CrossRef] [Green Version]
- Tsonos, A.D.; Kalogeropoulos, G. Analytical model for the design of HSFC and UHSFC Jackets with various steel fiber volume fraction ratios for the retrofitting of RC beam-column joints. Sustainability 2021, 13, 11209. [Google Scholar] [CrossRef]
- Tsonos, A.D.G. Performance enhancement of R/C building columns and beam–column joints through shotcrete jacketing. Eng. Struct. 2010, 32, 726–740. [Google Scholar]
- Araby, M.Z.; Rizal, S.; Afifuddin, M.; Hasan, M. Deformation Capacity of RC Beam-Column Joints Strengthened with Ferrocement. Sustainability 2022, 14, 4398. [Google Scholar] [CrossRef]
- Beschi, C.; Meda, A.; Riva, P. Column and joint retrofitting with high performance fiber reinforced concrete jacketing. J. Earthq. Eng. 2011, 15, 989–1014. [Google Scholar] [CrossRef]
- Santarsiero, G.; Masi, A. Seismic performance of RC beam–column joints retrofitted with steel dissipation jackets. Eng. Struct. 2015, 85, 95–106. [Google Scholar]
- Shafaei, J.; Hosseini, A.; Marefat, M.S. Seismic retrofit of external RC beam–column joints by joint enlargement using prestressed steel angles. Eng. Struct. 2014, 81, 265–288. [Google Scholar] [CrossRef]
- Golias, E.; Zapris, A.G.; Kytinou, V.K.; Kalogeropoulos, G.I.; Chalioris, C.E.; Karayannis, C.G. Effectiveness of the novel rehabilitation method of seismically damaged RC joints using C-FRP ropes and comparison with widely applied method using C-FRP sheets—Experimental investigation. Sustainability 2021, 13, 6454. [Google Scholar] [CrossRef]
- Ghobarah, A.; Said, A. Seismic rehabilitation of beam-column joints using FRP laminates. J. Earthq. Eng. 2001, 5, 113–129. [Google Scholar] [CrossRef]
- Karabinis, A.I.; Rousakis, T.C. Seismic rehabilitation of reinforced concrete beam-column connections by FRP material. In Proceedings of the International Conference on Computational & Experimental Engineering & Sciences ICCES, Modeira, Portugal, 26–29 July 2004; Volume 4, pp. 26–29. [Google Scholar]
- Akguzel, U.; Pampanin, S. Assessment and design procedure for the seismic retrofit of reinforced concrete beam-column joints using FRP composite materials. J. Compos. Constr. 2012, 16, 21–34. [Google Scholar] [CrossRef]
- Pohoryles, D.A.; Melo, J.; Rossetto, T.; Varum, H.; Bisby, L. Seismic retrofit schemes with FRP for deficient RC beam-column joints: State-of-the-art review. J. Compos. Constr. 2019, 23, 03119001. [Google Scholar] [CrossRef] [Green Version]
- DesRoches, R.; McCormick, J.; Delemont, M. Cyclic properties of superelastic shape memory alloy wires and bars. J. Struct. Eng. 2004, 130, 38–46. [Google Scholar] [CrossRef]
- Zhou, X.; Ke, K.; Yam, M.C.; Zhao, Q.; Huang, Y.; Di, J. Shape memory alloy plates: Cyclic tension-release performance, seismic applications in beam-to-column connections and a structural seismic demand perspective. Thin-Walled Struct. 2021, 167, 108158. [Google Scholar] [CrossRef]
- Janke, L.; Czaderski, C.; Motavalli, M.; Ruth, J. Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas. Mater. Struct. 2005, 38, 578–592. [Google Scholar]
- Cladera, A.; Weber, B.; Leinenbach, C.; Czaderski, C.; Shahverdi, M.; Motavalli, M. Iron-based shape memory alloys for civil engineering structures: An overview. Constr. Build. Mater. 2014, 63, 281–293. [Google Scholar] [CrossRef]
- Shahverdi, M.; Michels, J.; Czaderski, C.; Motavalli, M. Iron-based shape memory alloy strips for strengthening RC members: Material behavior and characterization. Constr. Build. Mater. 2018, 173, 586–599. [Google Scholar] [CrossRef]
- Fang, C.; Qiu, C.; Zheng, Y. Shape Memory Alloys for Civil Engineering. Materials 2023, 16, 787. [Google Scholar] [CrossRef] [PubMed]
- Zareie, S.; Issa, A.S.; Seethaler, R.J.; Zabihollah, A. Recent advances in the applications of shape memory alloys in civil infrastructures: A review. Structures 2020, 27, 1535–1550. [Google Scholar] [CrossRef]
- Raza, S.; Shafei, B.; Saiidi, M.S.; Motavalli, M.; Shahverdi, M. Shape memory alloy reinforcement for strengthening and self-centering of concrete structures—State of the art. Constr. Build. Mater. 2022, 324, 126628. [Google Scholar] [CrossRef]
- Abavisani, I.; Rezaifar, O.; Kheyroddin, A. Multifunctional Properties of Shape Memory Materials in Civil Engineering Applications: A State-of-the-Art Review. J. Build. Eng. 2021, 44, 102657. [Google Scholar] [CrossRef]
- Leon, R.T.; DesRoches, R.; Ocel, J.; Hess, G. Innovative beam column connections using shape memory alloys. In Proceedings of the SPIE’s 8th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, USA, 4–8 March 2001; Volume 4330, pp. 227–238. [Google Scholar]
- Wang, W.; Chan, T.M.; Shao, H. Seismic performance of beam–column joints with SMA tendons strengthened by steel angles. J. Constr. Steel Res. 2015, 109, 61–71. [Google Scholar] [CrossRef]
- Fang, C.; Zhou, X.; Osofero, A.I.; Shu, Z.; Corradi, M. Superelastic SMA Belleville washers for seismic resisting applications: Experimental study and modelling strategy. Smart Mater. Struct. 2016, 25, 105013. [Google Scholar] [CrossRef] [Green Version]
- Farmani, M.A.; Ghassemieh, M. Steel beam-to-column connections equipped with SMA tendons and energy dissipating devices including shear tabs or web hourglass pins. J. Constr. Steel Res. 2017, 135, 30–48. [Google Scholar] [CrossRef]
- Molod, M.A.; Spyridis, P.; Barthold, F.J. Applications of shape memory alloys in structural engineering with a focus on concrete construction—A comprehensive review. Constr. Build. Mater. 2022, 337, 127565. [Google Scholar] [CrossRef]
- Varela, S. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation. Smart Mater. Struct. 2016, 25, 075012. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, S. Seismic behaviour of self-centering reinforced concrete wall enabled by superelastic shape memory alloy bars. Bull. Earthq. Eng. 2018, 16, 479–502. [Google Scholar] [CrossRef]
- Abraik, E.; Youssef, M.A.; El-Fitiany, S.F. Seismic Performance of Hybrid Corrosion-Free Self-Centering Concrete Shear Walls. Sustainability 2022, 14, 712. [Google Scholar] [CrossRef]
- Michels, J.; Shahverdi, M.; Czaderski, C.; Schranz, B.; Motavalli, M. Iron based shape memory alloy strips, part 2: Flexural strengthening of RC beams. In Proceedings of the 4th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2017), Zurich, Switzerland, 13–15 September 2017. [Google Scholar]
- Jung, D.; Zafar, A.; Andrawes, B. Sustainability of civil infrastructure using shape memory technology. Innov. Infrastruct. Solut. 2017, 2, 28. [Google Scholar] [CrossRef]
- Mas, B.; Biggs, D.; Vieito, I.; Cladera, A.; Shaw, J.; Martínez-Abella, F. Superelastic shape memory alloy cables for reinforced concrete applications. Constr. Build. Mater. 2017, 148, 307–320. [Google Scholar] [CrossRef]
- Strieder, E.; Aigner, C.; Petautschnig, G.; Horn, S.; Marcon, M.; Schwenn, M.; Zeman, O.; Castillo, P.; Wan-Wendner, R.; Bergmeister, K. Strengthening of reinforced concrete beams with externally mounted sequentially activated iron-based shape memory alloys. Materials 2019, 12, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schranz, B. Iron-based Shape Memory Alloy Reinforcement for Prestressed Strengthening of Concrete Structures. Ph.D. Dissertation, ETH Zurich, Zurich, Switzerland, 2021. [Google Scholar]
- Suhail, R.; Amato, G.; Chen, J.-F.; McCrum, D. Potential Applications of Shape Memory Alloys in Seismic Retrofitting of An Exterior Reinforced Concrete Beam-Column Joint. In Proceedings of the SECED 2015 Conference: Earthquake Risk and Engineering towards a Resilient World, Cambridge, UK, 9–10 July 2015. [Google Scholar]
- Yurdakul, Ö.; Tunaboyu, O.; Avşar, Ö. Retrofit of non-seismically designed beam-column joints by post-tensioned superelastic shape memory alloy bars. Bull. Earthq. Eng. 2018, 16, 5279–5307. [Google Scholar] [CrossRef]
- Elbahy, Y.; Youssef, M.; Meshaly, M. Seismic performance of reinforced concrete frames retrofitted using external superelastic shape memory alloy bars. Bull. Earthq. Eng. 2019, 17, 781–802. [Google Scholar] [CrossRef]
- Elbahy, Y.I.; Youssef, M.A.; Meshaly, M. Numerical investigation of reinforced-concrete beam-column joints retrofitted using external superelastic shape memory alloy bars. AIMS Mater. Sci. 2021, 8, 716–738. [Google Scholar] [CrossRef]
- Youssef, M.; Meshaly, M.; Elansary, A. Ductile corrosion-free self-centering concrete elements. Eng. Struct. 2019, 184, 52–60. [Google Scholar] [CrossRef]
- Youssef, M.; Alam, M.; Nehdi, M. Experimental investigation on the seismic behaviour of beam-column joints reinforced with superelastic shape memory alloys. J. Earthq. Eng. 2008, 12, 1205–1222. [Google Scholar] [CrossRef]
- Alam, M.; Youssef, M.; Nehdi, M. Analytical prediction of the seismic behaviour of superelastic shape memory alloy reinforced concrete elements. Eng. Struct. 2008, 30, 3399–3411. [Google Scholar] [CrossRef]
- Hojatirad, A.; Naderpour, H. Seismic assessment of RC structures having shape memory alloys rebar and strengthened using CFRP sheets in terms of fragility curves. Bull. Earthq. Eng. 2021, 19, 5087–5112. [Google Scholar] [CrossRef]
- Nahar, M.; Islam, K.; Billah, A.M. Seismic collapse safety assessment of concrete beam-column joints reinforced with different types of shape memory alloy rebars. J. Build. Eng. 2020, 29, 101106. [Google Scholar] [CrossRef]
- Abraik, E. Seismic performance of shape memory alloy reinforced concrete moment frames under sequential seismic hazard. Structures 2020, 26, 311–326. [Google Scholar] [CrossRef]
- Zafar, A.; Andrawes, B. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars. Smart Mater. Struct. 2012, 21, 025013. [Google Scholar] [CrossRef]
- Molod, M.A.M. Strengthening Reinforced Concrete Column-Beam Joints with Modular Shape Memory Alloy Plate Optimized through Probabilistic Damage Prediction. Ph.D. Dissertation, TU Dortmund, Dortmund, Germany, 2021. Available online: https://eldorado.tu-dortmund.de/handle/2003/40159 (accessed on 14 February 2023).
- Chang, L.C.; Read, T.A. Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase. JOM 1951, 3, 47–52. [Google Scholar] [CrossRef]
- Miyazaki, S.; Duerig, T.; Melton, K. Engineering Aspects of Shape Memory Alloys; Butterworth-Heinemann: London, UK, 1990. [Google Scholar]
- Nasradeen, D. Self-Repairing Performance of Concrete Beams Reinforced with SMA 734 Wires. Master’s Thesis, Newcastle University, Newcastle, UK, 2015. [Google Scholar]
- Deng, Z.; Li, Q.; Sun, H. Behaviour of concrete beam with embedded shape memory alloy wires. Eng. Struct. 2006, 28, 1691–1697. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Documentation Ansys® ANSYS Mechanical APDL, 2019.1, Help System, Ansys Documentation; ANSYS, Inc.: Canonsburg, PA, USA, 2019. [Google Scholar]
- EN 1992.1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- Shukri, A.A.; Jumaat, M.Z. The tension-stiffening contribution of NSM CFRP to the behaviour of strengthened RC beams. Materials 2015, 8, 4131–4146. [Google Scholar] [CrossRef] [Green Version]
- CSA A23.3-04; Design of Concrete Structures. Canadian Standards Association: Mississauga, ON, Canada, 2004.
- Bažant, Z.P.; Gambarova, P.G. Crack shear in concrete: Crack band microflane model. J. Struct. Eng. 1984, 110, 2015–2035. [Google Scholar] [CrossRef] [Green Version]
- Bažant, Z.P.; Oh, B.H. Microplane model for progressive fracture of concrete and rock. J. Eng. Mech. 1985, 111, 559–582. [Google Scholar] [CrossRef] [Green Version]
- Zreid, I.; Kaliske, M. Regularisation of microplane damage models using an implicit gradient enhancement. Int. J. Solids Struct. 2014, 51, 3480–3489. [Google Scholar] [CrossRef] [Green Version]
- Zreid, I.; Kaliske, M. An implicit gradient formulation for microplane Drucker-Prager plasticity. Int. J. Plast. 2016, 83, 252–272. [Google Scholar] [CrossRef]
- Zreid, I.; Kaliske, M. Microplane modeling of cyclic behaviour of concrete: A gradient plasticity-damage formulation. PAMM 2016, 16, 415–416. [Google Scholar] [CrossRef] [Green Version]
- Zreid, I.; Kaliske, M. A gradient enhanced plasticity–damage microplane model for concrete. Comput. Mech. 2018, 62, 1239–1257. [Google Scholar] [CrossRef]
- Menetrey, P. Numerical Analysis of Punching Failure in Reinforced Concrete Structures. Master’s Thesis, EPFL, Lausanne, Switzerland, 1994. [Google Scholar]
- Willam, K.J.; Warnke, E.P. Constitutive model for the triaxial behaviour of concrete. In Proceedings of the Seminar on Concrete Structure Subjected to Triaxial Stresses, Bergamo, Italy, 17–19 May 1974. [Google Scholar]
- Rohatgi, A. WebPlotDigitizer; Austin, TX, USA. 2017. Available online: https://apps.automeris.io/wpd/ (accessed on 12 December 2022).
- Novák, D.; Lehký, D. ANN inverse analysis based on stochastic small-sample training set simulation. Eng. Appl. Artif. Intell. 2006, 19, 731–740. [Google Scholar] [CrossRef]
- Barkhordari, M.S.; Armaghani, D.J.; Asteris, P.G. Structural damage identification using ensemble deep convolutional neural network models. Comput. Model. Eng. Sci. 2022, 134, 835–855. [Google Scholar] [CrossRef]
- Šomodíková, M.; Lehký, D.; Doležel, J.; Novák, D. Modeling of degradation processes in concrete: Probabilistic lifetime and load-bearing capacity assessment of existing reinforced concrete bridges. Eng. Struct. 2016, 119, 49–60. [Google Scholar] [CrossRef]
- Strauss, A.; Frangopol, D.M.; Bergmeister, K. Assessment of existing structures based on identification. J. Struct. Eng. 2010, 136, 86–97. [Google Scholar] [CrossRef]
- Paulay, T.; Priestley, M.J.N. Seismic Design of Reinforced Concrete and Masonry Buildings; John Wiley Sons, Inc.: Hoboken, NJ, USA, 1992. [Google Scholar]
- EN 1992–4:2018; Eurocode 2—Design of Concrete Structures—Part 4: Design of Fastenings for Use in Concrete. European Committee for Standardization: Brussels, Belgium, 2018.
- EAD 330232–01-0601; Mechanical Fasteners for Use in Concrete, Decision (EU) 2021/1789. European Organisation for Technical Assessment (EOTA): Brussels, Belgium, 2021.
- Li, L.Z.; Lo, S.H.; Su, R.K.L. Experimental study of moderately reinforced concrete beams strengthened with bolted-side steel plates. Adv. Struct. Eng. 2013, 16, 499–516. [Google Scholar] [CrossRef] [Green Version]
- Aykac, S.; Kalkan, I.; Aykac, B.; Karahan, S.; Kayar, S. Strengthening and Repair of Reinforced Concrete Beams Using External Steel Plates. J. Struct. Eng. 2013, 139, 929–939. [Google Scholar] [CrossRef]
- Liu, X.; Lu, Z.D.; Li, L.Z. The use of bolted side plates for shear strengthening of RC beams: A review. Sustainability 2018, 10, 4658. [Google Scholar] [CrossRef] [Green Version]
- Marchisella, A.; Muciaccia, G.; Sharma, A.; Eligehausen, R. Experimental investigation of 3d RC exterior joint retrofitted with fully-fastened-haunch-retrofit-solution. Eng. Struct. 2021, 239, 112206. [Google Scholar] [CrossRef]
- EAD 160086-00-0301; Kits for the Strengthening of Concrete Elements by Externally Bonded CFRP Strips. European Organisation for Technical Assessment (EOTA): Brussels, Belgium, 2023; (in press).
- DafStb. DAfStb-RiLi VBgB: Richtlinie "Verstärken von Betonbauteilen mit geklebter Bewehrung"; Deutscher Ausschuss für Stahlbeton: Berlin, Germany, 2012. [Google Scholar]
- Bergmeister, K. Kleben im Betonbau-Theoretische Grundlagen und Bemessungsvorschläge (Bonding in structural concrete—Theoretical basics and design proposals). Beton-und Stahlbetonbau 2001, 96, 625–633. [Google Scholar] [CrossRef]
- Altin, S.; Anil, Ö.; Kara, M.E. Improving shear capacity of existing RC beams using external bonding of steel plates. Eng. Struct. 2005, 27, 781–791. [Google Scholar] [CrossRef]
- Barnes, R.A.; Mays, G.C. Strengthening of reinforced concrete beams in shear by the use of externally bonded steel plates: Part 2—Design guidelines. Constr. Build. Mater. 2006, 20, 403–411. [Google Scholar] [CrossRef]
- Barnes, R.A.; Baglin, P.S.; Mays, G.C.; Subedi, N.K. External steel plate systems for the shear strengthening of reinforced concrete beams. Eng. Struct. 2001, 23, 1162–1176. [Google Scholar] [CrossRef]
Properties | NiTi Alloy (Nitinol) | Standard Steel Rebar |
---|---|---|
Recoverable elongation | 8% | 0.2% |
Young’s Modulus | 83 × 103 MPa Austenite 28–41 × 103 MPa Martensite | 2.07 × 105 MPa |
Yield Strength | 195–690 MPa Austenite 70–140 MPa Martensite | 248–517 MPa |
Ultimate Tensile Strength | Fully Annealed 895 MPa Work Hardened 1900 MPa | 448–827 MPa |
Elongation at failure | 248–517 MPa | 20% |
Corrosion Resistance | Excellent | Fair |
Cost | Expensive | Fair |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molod, M.A.; Barthold, F.-J.; Spyridis, P. Minimally Invasive Retrofitting of RC Joints with Externally Applied SMA Plate—Adaptive Design Optimisation through Probabilistic Damage Simulation. Sustainability 2023, 15, 3831. https://doi.org/10.3390/su15043831
Molod MA, Barthold F-J, Spyridis P. Minimally Invasive Retrofitting of RC Joints with Externally Applied SMA Plate—Adaptive Design Optimisation through Probabilistic Damage Simulation. Sustainability. 2023; 15(4):3831. https://doi.org/10.3390/su15043831
Chicago/Turabian StyleMolod, Mohammad Amin, Franz-Joseph Barthold, and Panagiotis Spyridis. 2023. "Minimally Invasive Retrofitting of RC Joints with Externally Applied SMA Plate—Adaptive Design Optimisation through Probabilistic Damage Simulation" Sustainability 15, no. 4: 3831. https://doi.org/10.3390/su15043831
APA StyleMolod, M. A., Barthold, F. -J., & Spyridis, P. (2023). Minimally Invasive Retrofitting of RC Joints with Externally Applied SMA Plate—Adaptive Design Optimisation through Probabilistic Damage Simulation. Sustainability, 15(4), 3831. https://doi.org/10.3390/su15043831