Life Cycle Assessment of Black and Greywater Treatment Solutions for Remote and Sensitive Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. LCA Approach, Assumptions and Functional Unit
2.2. Description of Wastewater Treatment Systems and System Boundaries
2.3. Life Cycle Inventory Details
Blackwater Treatment System | |||
---|---|---|---|
Components | Unit | Amount | Material |
Pumps | Pieces | 6 | Electronic device |
Biofilter * | kg | 21 | Expanded clay |
Blackwater collecting tanks | kg | 27 | Sewer pipe glass-fibre reinforced |
Liquid fraction collecting tank (1 m3) | kg | 45 | Sewer pipe glass-fibre reinforced |
Cascade dryer | kg | 15.6 | Steel |
Evaporation tank | kg | 58.3 | Steel |
Solar vacuum collector | m2 | 15.6 | Sollar collector |
Valves | kg | 6.72 | Fitting brass |
Plastic containers | kg | 20 | HDPE |
Sewer pipes | kg | 10 | PVC |
Heating pipe | kg | 2.5 | Copper |
Insulation | kg | 3.8 | EPS |
Plexiglass lid | kg | 0.07 | PMMA |
Greywater treatment system (constructed wetland) | |||
Pumps | Pieces | 2 | Electronic device |
Valves | kg | 1.94 | Fitting bras |
Natural aggregate (0/2) | kg | 7.200 | Limestone, crushed |
Natural aggregate (16/32) | kg | 36.000 | Limestone, crushed |
Aerated pipes | m | 6.8 | Rain drain pipe |
Geotextile | m2 | 100 | PET |
Plastic foil | m2 | 40 | Polyethylene film |
Plastic containers | kg | 5 | PE-HD |
Drainage pipes | m | 18 | PVC |
Distribution pipes | m | 35 | PVC |
Piesometers | m | 3 | PVC |
Sequential Batch Reactor | |||
---|---|---|---|
Components | Unit | Amount | Material |
Compressors | Pieces | 8 | Electronic device |
Pumps | Pieces | 2 | Electronic device |
Valves | kg | 8.73 | Fitting bras |
Sequential Batch Reactor | kg | 500 | HDPE |
Wastewater settling tanks | kg | 1120 | HDPE |
Sewer pipes | kg | 8 | PVC |
Constructed wetland | |||
Pumps | Pieces | 2 | Electronic device |
Valves | kg | 1.94 | Fitting bras |
Natural aggregate (0/2) | kg | 7.200 | Limestone, crushed |
Natural aggregate (16/32) | kg | 36.000 | Limestone, crushed |
Aerated pipes | m | 6.8 | Rain drain pipe |
Geotextile | m2 | 100 | PET |
Plastic foil | m2 | 40 | Polyethylene film |
Plastic containers | kg | 5 | PE-HD |
Drainage pipes | m | 18 | PVC |
Distribution pipes | m | 35 | PVC |
Piesometers | m | 3 | PVC |
Components | Unit | Amount | Material |
---|---|---|---|
Gravel | kg | 1000 | Limestone, crushed |
Geotextile | m2 | 3 | PET |
Timber | kg | 800 | Solid construction timber |
Sewer pipes | kg | 3 | PVC |
Solar vacuum collector | m2 | 0.7 | Sollar collector |
Plastic container | kg | 15 | HDPE |
3. Results and Discussion
3.1. Comparison between Three Systems
3.2. Benefits and Loads beyond the System Boundary
3.3. Scenario with Solar (Photovoltaic) Panels for In-Site Production of Electricity
3.4. Potential to Reduce the Eutrophication Potential of S1 and S2
3.5. Comparison with Other Studies and Perspectives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oarga-Mulec, A.; Jenssen, P.D.; Krivograd-Klemenčič, A.; Uršič, M.; Griessler Bulc, T. Zero-discharge solution for blackwater treatment at remote tourist facilities. J. Clean. Prod. 2017, 166, 798–805. [Google Scholar] [CrossRef]
- Schories, G. IWAPIL—Innovative wastewater treatment applications for isolated locations. Desalination 2008, 224, 183–185. [Google Scholar] [CrossRef]
- Stefanakis, A.I. Constructed wetlands for sustainable wastewater treatment in hot and arid climates: Opportunities, challenges and case studies in the Middle East. Water 2020, 12, 1665. [Google Scholar] [CrossRef]
- Oteng-Peprah, M.; Acheampong, M.A.; deVries, N.K. Greywater characteristics, treatment systems, reuse strategies and user perception—A review. Water Air Soil Pollut. 2018, 229, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelova, M. Assessment of a Prototype of Composting Toilet. Field Scale Study Assessing the Design, Performance and Potential of the Prototype. Master’s Thesis, Norwegian University of Life Science, Ås, Norway, August 2015. [Google Scholar]
- Simha, P.; Karlsson, C.; Viskari, E.L.; Malila, R.; Vinnerås, B. Field testing a pilot-scale system for alkaline dehydration of source-separated human urine: A case study in Finland. Front. Environ. Sci. 2020, 8, 168. [Google Scholar] [CrossRef]
- Alagha, O.; Allazem, A.; Bukhari, A.A.; Anil, I.; Mu’azu, N.D. Suitability of SBR for wastewater treatment and reuse: Pilot-scale reactor operated in different anoxic conditions. Int. J. Environ. Res. Public Health 2020, 17, 1617. [Google Scholar] [CrossRef] [Green Version]
- Moges, M.E.; Todt, D.; Janka, E.; Heistad, A.; Bakke, R. Sludge blanket anaerobic baffled reactor for source-separated blackwater treatment. Water Sci. Technol. 2018, 78, 1249–1259. [Google Scholar] [CrossRef] [Green Version]
- Moges, M.E.; Todt, D.; Eregno, F.E.; Heistad, A. Performance study of biofilter system for on-site greywater treatment at cottages and small households. Ecol. Eng. 2017, 105, 118–124. [Google Scholar] [CrossRef]
- Jenssen, P.D.; Mæhlum, T.; Krogstad, T.; Vråle, L. High performance constructed wetlands for cold climates. J. Environ. Sci. Health A 2005, 40, 1343–1353. [Google Scholar] [CrossRef]
- Ergas, S.J.; Amador, J.; Boyer, T.; Friedler, E. Onsite and decentralized wastewater management systems. J. Sustain. Water Built Environ. 2021, 7, 02021001. [Google Scholar] [CrossRef]
- Jiang, L.; Huang, X.; Wang, F.; Liu, Y.; An, P. Method for evaluating ecological vulnerability under climate change based on remote sensing: A case study. Ecol. Indic. 2018, 85, 479–486. [Google Scholar] [CrossRef]
- Melelli, L. Geodiversity: A new quantitative index for natural protected areas enhancement. Geoj. Tour. Geosites 2014, 13, 27–37. [Google Scholar]
- Kovačič, G.; Petrič, M.; Ravbar, N. Evaluation and quantification of the effects of climate and vegetation cover change on karst water sources: Case studies of two springs in South-Western Slovenia. Water 2020, 12, 3087. [Google Scholar] [CrossRef]
- Baum, R.; Luh, J.; Bartram, J. Sanitation: A global estimate of sewerage connections without treatment and the resulting impact on MDG progress. Environ. Sci. Technol. 2013, 47, 1994–2000. [Google Scholar] [CrossRef] [PubMed]
- Stark, J.S.; Corbett, P.A.; Dunshea, G.; Johnstone, G.; King, C.; Mondon, J.A.; Power, M.L.; Samuel, A.; Snape, I.; Riddle, M. The environmental impact of sewage and wastewater outfalls in Antarctica: An example from Davis station, East Antarctica. Water Res. 2016, 105, 602–614. [Google Scholar] [CrossRef]
- Decree on the Emission. Decree on the emission of substances and heat when discharging waste water into waters and the public sewage system. Uradni List. Repub. Slov. 2012, 64, 6392–6428. [Google Scholar]
- Decree on the Discharge. Decree on the discharge and treatment of urban wastewater. Uradni List. Repub. Slov. 2015, 98, 12234–12256. [Google Scholar]
- Corominas, L.; Byrne, D.M.; Guest, J.S.; Hospido, A.; Roux, P.; Shaw, A.; Short, M.D. The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review. Water Res. 2020, 184, 116058. [Google Scholar] [CrossRef]
- Corominas, L.; Foley, J.; Guest, J.S.; Hospido, A.; Larsen, H.F.; Morera, S.; Shaw, A. Life cycle assessment applied to wastewater treatment: State of the art. Water Res. 2013, 47, 5480–5492. [Google Scholar] [CrossRef]
- Morandi, C.; Steinmetz, H. How does greywater separation impact the operation of conventional wastewater treatment plants? Water Sci. Technol. 2019, 79, 1605–1615. [Google Scholar] [CrossRef]
- Estévez, S.; González-García, S.; Feijoo, G.; Moreira, M.T. How decentralized treatment can contribute to the symbiosis between environmental protection and resource recovery. Sci. Total Environ. 2022, 812, 151485. [Google Scholar] [CrossRef] [PubMed]
- Estévez, S.; Feijoo, G.; Moreira, M.T. Environmental synergies in decentralized wastewater treatment at a hotel resort. J. Environ. Manag. 2022, 317, 115392. [Google Scholar] [CrossRef] [PubMed]
- Resende, J.D.; Nolasco, M.A.; Pacca, S.A. Life cycle assessment and costing of wastewater treatment systems coupled to constructed wetlands. Resour. Conserv. Recycl. 2019, 148, 170–177. [Google Scholar] [CrossRef]
- Xue, X.; Hawkins, T.R.; Schoen, M.E.; Garland, J.; Ashbolt, N.J. Comparing the life cycle energy consumption, global warming and eutrophication potentials of several water and waste service options. Water 2016, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Cashman, S.; Ma, X.; Mosley, J.; Garland, J.; Crone, B.; Xue, X. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery. Bioresour. Technol. 2018, 254, 56–66. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Ashbolt, N.; Davies, E.; Liu, Y. Life cycle assessment of decentralized greywater treatment systems with reuse at different scales in cold regions. Environ. Int. 2020, 134, 105215. [Google Scholar] [CrossRef]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards; I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; p. 692. [Google Scholar]
- Buonocore, E.; Mellino, S.; Angelis, G.; Liu, G.; Ulgiati, S. Life cycle assessment indicators of urban wastewater and sewage sludge treatment. Ecol. Indic. 2016, 94, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Cenčič, T. Ugotavljanje Učinkovitosti Čiščenja in Ponovne Uporabe Črne in Sive Vode v Sanitarnem Objektu v Krajinskem parku Sečoveljske Soline (Determining Efficiency of Cleaning and Reuse of Black and Gray Wastewater in Wastewater Treatment Facility in Sečovlje Salina Nature Park). Bachelor’s Thesis, University of Ljubljana, Ljubljana, Slovenia, 3 September 2012. [Google Scholar]
- Statistical Office of Republic of Slovenia 2015. Available online: https://www.stat.si/StatWeb/en/news/index/6110 (accessed on 9 June 2022).
- Muñoz, I. Country-specific life cycle inventories for human excretion of food products. Int. J. Life Cycle Assess. 2021, 26, 1794–1804. [Google Scholar] [CrossRef]
- Brix, H.; Arias, C.A. Danish guidelines for small-scale constructed wetland systems for onsite treatment of domestic sewage. Water Sci. Technol. 2005, 51, 1–9. [Google Scholar] [CrossRef]
- Gerbec, P. Wastewater Treatments in Protected Natural Heritage Areas in Slovenia: Current Status and Perspectives. Master’s Thesis, University of Nova Gorica, Slovenia, Balkans, 10 December 2019. [Google Scholar]
- Duane, B.; Pilling, J.; Saget, S.; Ashley, P.; Pinhas, A.R.; Lyne, A. Hand hygiene with hand sanitizer versus handwashing: What are the planetary health consequences? Environ. Sci. Pollut. Res. 2022, 29, 48736–48747. [Google Scholar] [CrossRef]
- Van Lieshout, K.G.; Bayley, C.; Akinlabi, S.O.; von Rabenau, L.; Dornfeld, D. Leveraging life cycle assessment to evaluate environmental impacts of green cleaning products. Procedia CIRP 2015, 29, 372–377. [Google Scholar] [CrossRef]
- Sphera. Electricity Grid Mix; AC, Technology Mix; Consumption Mix, to Consumer; <1 kV (en), 2018. Available online: http://gabi-documentation-2022.gabi-software.com/xml-data/processes/155a3c36-6185-4a54-bea8-87bcad6727f8.xml (accessed on 3 December 2022).
- Garfí, A.; Flores, L.; Ferrer, I. Life Cycle Assessment of wastewater treatment systems for small communities: Activated sludge, constructed wetlands and high rate algal ponds. J. Clean. Prod. 2017, 161, 211–219. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, C.; Li, F.; Han, B.; Li, X. Economic and environmental analysis of five Chinese rural toilet technologies based on the economic input-output life cycle assessment. J. Clean. Prod. 2017, 163, S379–S391. [Google Scholar] [CrossRef]
Impact Category | S1 | S2 | S3 |
---|---|---|---|
Abiotic Depletion of elements (ADP-e) | 1.0 | 0.54 | 0.03 |
Abiotic Depletion of fossil (ADP-f) | 1.0 | 1.74 | 0.34 |
Acidification Potential (AP) | 1.0 | 1.08 | 0.09 |
Eutrophication Potential (EP) | 1.0 | 10.12 | 0.02 |
Freshwater Aquatic Ecotoxicity Pot. (FAETP) | 1.0 | 1.49 | 0.004 |
Global Warming Potential (GWP 100 years) | 1.0 | 1.83 | 0.16 |
Human Toxicity Potential (HTP) | 1.0 | 0.62 | 0.02 |
Marine Aquatic Ecotoxicity Pot. (MAETP) | 1.0 | 0.90 | 0.05 |
Impact Category | Unit | S1 (A–C) | S1 (A–D) | S2 (A–C) | S2 (A–D) | S3 (A–C) | S3 (A–D) |
---|---|---|---|---|---|---|---|
ADP_e | kg Sb eq. | 1.93 × 10−1 | 1.75 × 10−1 | 1.04 × 10−1 | 1.00 × 10−1 | 5.25 × 10−3 | −4.91 × 10−2 |
ADP_f | MJ | 2.64 × 105 | 2.51 × 105 | 4.59 × 105 | 4.59 × 105 | 9.06 × 104 | −6.55 × 103 |
AP | kg SO2 eq. | 6.32 × 101 | 6.17 × 101 | 6.85 × 101 | 6.83 × 101 | 5.95 | 4.74 × 10−1 |
EP | kg PO4 eq. | 4.69 × 101 | 4.71 × 101 | 4.75 × 102 | 4.75 × 102 | 9.24 × 10−1 | 3.11 |
FAETP | kg DCB eq. | 5.85 × 103 | 5.85 × 103 | 8.72 × 103 | 8.72 × 103 | 2.54 × 101 | 7.93 × 101 |
GWP | kg CO2 eq. | 2.25 × 104 | 2.05 × 104 | 4.11 × 104 | 4.11 × 104 | 3.71 × 103 | −1.22 × 104 |
HTP | kg DCB eq. | 1.02 × 104 | 9.83 × 103 | 6.34 × 103 | 6.30 × 103 | 2.03 × 102 | 1.32 × 102 |
MAETP | kg DCB eq. | 4.95 × 106 | 4.79 × 106 | 4.46 × 106 | 4.45 × 106 | 2.69 × 105 | 1.43 × 105 |
Impact Category | S1 Change (%) | S2 Change (%) | S3 Change (%) |
---|---|---|---|
Abiotic Depletion of elements | +33 | +83 | +39 |
Abiotic Depletion of fossil | −75 | −59 | −7 |
Acidification Potential | −55 | −69 | −19 |
Eutrophication Potential | −9 | −1 | −14 |
Freshwater Aquatic Ecotoxicity Potential | −1 | −1 | −5 |
Global Warming Potential | −81 | −60 | −16 |
Human Toxicity Potential | −5 | −10 | −7 |
Marine Aquatic Ecotoxicity Potential | −32 | −49 | −19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oarga-Mulec, A.; Turk, J.; Gerbec, P.; Jenssen, P.D.; Malovrh Rebec, K.; Valant, M. Life Cycle Assessment of Black and Greywater Treatment Solutions for Remote and Sensitive Areas. Sustainability 2023, 15, 3832. https://doi.org/10.3390/su15043832
Oarga-Mulec A, Turk J, Gerbec P, Jenssen PD, Malovrh Rebec K, Valant M. Life Cycle Assessment of Black and Greywater Treatment Solutions for Remote and Sensitive Areas. Sustainability. 2023; 15(4):3832. https://doi.org/10.3390/su15043832
Chicago/Turabian StyleOarga-Mulec, Andreea, Janez Turk, Petra Gerbec, Petter D. Jenssen, Katja Malovrh Rebec, and Matjaz Valant. 2023. "Life Cycle Assessment of Black and Greywater Treatment Solutions for Remote and Sensitive Areas" Sustainability 15, no. 4: 3832. https://doi.org/10.3390/su15043832
APA StyleOarga-Mulec, A., Turk, J., Gerbec, P., Jenssen, P. D., Malovrh Rebec, K., & Valant, M. (2023). Life Cycle Assessment of Black and Greywater Treatment Solutions for Remote and Sensitive Areas. Sustainability, 15(4), 3832. https://doi.org/10.3390/su15043832