PFT: A Novel Time-Frequency Decomposition of BOLD fMRI Signals for Autism Spectrum Disorder Detection
Abstract
:1. Introduction
- Progressive Fourier Transform (PFT) is utilized for simultaneous analysis of BOLD signals in both the time and frequency domains, thereby providing a better understanding of the signal’s characteristics over time;
- PFT is simple to operate computationally, providing a wide variety of mathematical techniques for analyzing the resulting transformed signals;
- PFT can eliminate image or audio noise from signals via thresholding of the Progressive Fourier coefficients.
2. Proposed Methodology Using PFT
2.1. Data Preparation
2.1.1. Rs-fMRI Data
2.1.2. Preprocessing and ROI Extraction
2.1.3. Region-of-Interest
2.2. BOLD Dynamic Feature Extraction
2.2.1. BOLD Signal Extraction
2.2.2. Scalogram Conversion
2.2.3. Data Split
2.2.4. Feature Extraction
2.3. Classification
2.3.1. Classifiers
2.3.2. Evaluation Matrices
3. Results Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Hiyali, I.; Yahya, N.; Faye, I.; Khan, Z. Autism spectrum disorder detection based on wavelet transform of BOLD fMRI signals using pre-trained convolution neural network. Int. J. Integr. Eng. 2021, 13, 49–56. [Google Scholar] [CrossRef]
- Grzadzinski, R.; Amso, D.; Landa, R.; Watson, L.; Guralnick, M.; Zwaigenbaum, L.; Deak, G.; Estes, A.; Brian, J.; Bath, K.; et al. Pre-symptomatic intervention for autism spectrum disorder (ASD): Defining a research agenda. J. Neurodev. Disord. 2021, 13, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Hull, J.; Dokovna, L.; Jacokes, Z.; Torgerson, C.; Irimia, A.; Van Horn, J.D. Resting-state functional connectivity in autism spectrum disorders: A review. Front. Psychiatry 2017, 7, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosson, B.; Ford, A.; McGregor, K.M.; Meinzer, M.; Cheshkov, S.; Li, X.; Walker-Batson, D.; Briggs, R.W. Functional imaging and related techniques: An introduction for rehabilitation researchers. J. Rehabil. Res. Dev. 2010, 47, vii. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Tu, Y.; Di, X.; Biswal, B.B.; Calhoun, V.D.; Zhang, Z. Associations between functional fonnectivity dynamics and BOLD dynamics are heterogeneous across brain networks. Front. Hum. Neurosci. 2017, 11, 593. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Calhoun, V.; Jiang, R.; Yan, W.; Sui, J. Brain imaging-based machine learning in autism spectrum disorder: Methods and applications. J. Neurosci. Methods 2021, 361, 109271. [Google Scholar] [CrossRef]
- Feng, W.; Liu, G.; Zeng, K.; Zeng, M.; Liu, Y. A review of methods for classification and recognition of ASD using fMRI data. J. Neurosci. Methods 2022, 368, 109456. [Google Scholar] [CrossRef]
- Khiani, S.; Mohamed Iqbal, M.; Dhakne, A.; Sai Thrinath, B.; Gayathri, P.; Thiagarajan, R. An effectual IOT coupled EEG analysing model for continuous patient monitoring. Meas. Sens. 2022, 24, 100597. [Google Scholar] [CrossRef]
- Shelke, N.A.; Rao, S.; Verma, A.K.; Kasana, S.S. Autism Spectrum Disorder Detection Using AI and IoT; Association for Computing Machinery: New York, NY, USA, 2022. [Google Scholar]
- Mohamed, A.H.; Mohamed, H.; Mosa, E.H.; Alqahtani, A. An AI-Enabled Internet of Things Based Autism Care System for Improving Cognitive Ability of Children with Autism Spectrum Disorders. Comput. Intell. Neurosci. 2022, 2022, 2247675. [Google Scholar]
- Yang, X.; Zhang, N.; Schrader, P. A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity. Mach. Learn. Appl. 2022, 8, 100290. [Google Scholar] [CrossRef]
- Agastinose Ronicko, J.F.; Thomas, J.; Thangavel, P.; Koneru, V.; Langs, G.; Dauwels, J. Diagnostic classification of autism using resting-state fMRI data improves with full correlation functional brain connectivity compared to partial correlation. J. Neurosci. Methods 2020, 345, 108884. [Google Scholar] [CrossRef]
- Abraham, A.; Milham, M.P.; Di Martino, A.; Craddock, R.C.; Samaras, D.; Thirion, B.; Varoquaux, G. Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example. NeuroImage 2017, 147, 736–745. [Google Scholar] [CrossRef] [Green Version]
- Heinsfeld, A.S.; Franco, A.R.; Craddock, C.R.; Buchweitz, A.; Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clin. 2018, 17, 16–23. [Google Scholar] [CrossRef]
- Sherkatghanad, Z.; Akhondzadeh, M.; Salari, S.; Zomorodi-Moghadam, M.; Abdar, M.; Acharya, R.U.; Khosrowabadi, R.; Salari, V. Automated detection of autism spectrum disorder using a convolutional neural network. Front. Neurosci. 2020, 13, 1325. [Google Scholar] [CrossRef] [Green Version]
- Aghdam, M.A.; Sharifi, A.; Pedram, M.M. Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks. J. Digit. Imaging 2019, 32, 899–918. [Google Scholar] [CrossRef]
- Deco, G.; Jirsa, V.; Friston, K.J. The dynamical structural basis of brain activity. In Principles of Brain Dynamics: Global State Interactions; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Atasoy, S.; Deco, G.; Kringelbach, M.L.; Pearson, J. Harmonic brain modes: A unifying framework for linking space and time in brain dynamics. Neuroscientist 2018, 24, 277–293. [Google Scholar] [CrossRef]
- Santana, C.P.; de Carvalho, E.A.; Rodrigues, I.D.; Bastos, G.S.; de Souza, A.D.; de Brito, L.L. rs-fMRI and machine learning for ASD diagnosis: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 6030. [Google Scholar] [CrossRef]
- Brahim, A.; Farrugia, N. Graph Fourier transform of fMRI temporal signals based on an averaged structural connectome for the classification of neuroimaging. Artif. Intell. Med. 2020, 106, 101870. [Google Scholar] [CrossRef]
- Miri, M.; Abootalebi, V.; Saeedi-Sourck, H.; Behjat, H. EEG-based Motor Imagery Decoding via Graph Signal Processing on Learned Graphs. bioRxiv 2022, 13, 1–16. [Google Scholar]
- Baygin, M.; Dogan, S.; Tuncer, T.; Datta Barua, P.; Faust, O.; Arunkumar, N.; Abdulhay, E.W.; Emma Palmer, E.; Rajendra Acharya, U. Automated ASD detection using hybrid deep lightweight features extracted from EEG signals. Comput. Biol. Med. 2021, 134, 104548. [Google Scholar] [CrossRef]
- Kang, J.; Han, X.; Song, J.; Niu, Z.; Li, X. The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data. Comput. Biol. Med. 2020, 120, 103722. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Zang, Y. DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 2010, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Minyoung, J.; Hirotaka, K.; Daisuke, S.N.; Makoto, I.; Tomoyo, M.; Keisuke, I.; Mizuki, A.; Sumiyoshi, A.; Toshio, M.; Akemi, T.; et al. Default mode network in young male adults with autism spectrum disorder: Relationship with autism spectrum traits. Mol. Autism 2014, 5, 1–11. [Google Scholar]
- Yahya, N.; Musa, H.; Ong, Z.Y.; Elamvazuthi, I. Classification of motor functions from electroencephalogram EEG signals based on an integrated method comprised of common spatial pattern and wavelet transform framework. Sensors 2019, 19, 4878. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Duan, X.; Liu, F.; Lu, F.; Ma, X.; Zhang, Y.; Uddin, L.Q.; Chen, H. Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—A multi-center study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 64, 1–9. [Google Scholar] [CrossRef]
- Bernas, A.; Aldenkamp, A.P.; Zinger, S. Wavelet coherence-based classifier: A resting-state functional MRI study on neurodynamics in adolescents with high-functioning autism. Comput. Methods Programs Biomed. 2018, 154, 143–151. [Google Scholar] [CrossRef]
Pre-Trained Model | Classifier | Accuracy % | Sensitivity % | Specificity % |
---|---|---|---|---|
DenseNet-201 | KNN | 96.7 | 95.1 | 98.4 |
SenseNet-201 | SVM | 93.0 | 96.1 | 92.8 |
Kernel | Accuracy % | Sensitivity % | Specificity % |
---|---|---|---|
Linear | 94.4 | 97.4 | 94.1 |
Polynomial | 83.4 | 978.4 | 70.5 |
Gaussian | 83.3 | 93.9 | 72.4 |
k-NN | Accuracy % | Sensitivity % | Specificity % |
---|---|---|---|
1 | 96.7 | 95.1 | 98.4 |
3 | 94.5 | 97.6 | 91.9 |
5 | 93.7 | 98.3 | 90.1 |
k-Fold | Accuracy % | Sensitivity % | Specificity % | Precision |
---|---|---|---|---|
5-fold | 96.4 ± 1.5 | 96.0 ± 1.6 | 96.6 ± 1.1 | 96.7 ± 1.5 |
10-fold | 96.7 ± 1.6 | 96.6 ± 1.4 | 96.9 ± 1.5 | 96.8 ± 2.1 |
15-fold | 96.6 ± 1.8 | 96.9 ± 2.1 | 97.1 ± 1.9 | 96.7 ± 2.3 |
20-fold | 97.4 ± 1.8 | 97.0 ± 2.4 | 97.5 ± 2.5 | 97.0 ± 2.2 |
Paper | Classifier | FC Modelling | Method | Subject | Accuracy (%) |
---|---|---|---|---|---|
[28] | SVM | Static FC | Pearson Correlation | 240 | 79.2 |
[13] | SVM | Static FC | Covariance matrix | 871 | 67 |
[14] | DNN | Static FC | Pearson Correlation | 1035 | 70 |
[29] | SVM | Dynamic FC | Wavelet coherence | 54 | 80 |
[15] | DNN | Static FC | Pearson correlation | 871 | 70.2 |
[16] | CNN | Dynamic FC | MRI | 116 | 70.2 |
[1] | CNN + KNN | Dynamic FC | Wavelet coherence | 72 | 89.8 |
Proposed Method | CNN | Dynamic FC | PFT | 82 | 68 |
Proposed Method | CNN + KNN | Dynamic FC | PFT | 82 | 96.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belhaouari, S.B.; Talbi, A.; Hassan, S.; Al-Thani, D.; Qaraqe, M. PFT: A Novel Time-Frequency Decomposition of BOLD fMRI Signals for Autism Spectrum Disorder Detection. Sustainability 2023, 15, 4094. https://doi.org/10.3390/su15054094
Belhaouari SB, Talbi A, Hassan S, Al-Thani D, Qaraqe M. PFT: A Novel Time-Frequency Decomposition of BOLD fMRI Signals for Autism Spectrum Disorder Detection. Sustainability. 2023; 15(5):4094. https://doi.org/10.3390/su15054094
Chicago/Turabian StyleBelhaouari, Samir Brahim, Abdelhamid Talbi, Saima Hassan, Dena Al-Thani, and Marwa Qaraqe. 2023. "PFT: A Novel Time-Frequency Decomposition of BOLD fMRI Signals for Autism Spectrum Disorder Detection" Sustainability 15, no. 5: 4094. https://doi.org/10.3390/su15054094
APA StyleBelhaouari, S. B., Talbi, A., Hassan, S., Al-Thani, D., & Qaraqe, M. (2023). PFT: A Novel Time-Frequency Decomposition of BOLD fMRI Signals for Autism Spectrum Disorder Detection. Sustainability, 15(5), 4094. https://doi.org/10.3390/su15054094