Analysis of Activated Materials of Disposed Medical Linear Accelerators according to Clearance Level for Self-Disposal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Component Analysis of the Parts of Decommissioned Linacs by Manufacturer
2.2. Monte Carlo Simulation of Medical Linacs
2.3. Time-Dependent Activity Level
3. Results
3.1. Component Analysis of the Parts of Decommissioned Linacs by Manufacturer
3.2. Medical Linac Modeling and Workload-Based Activation Evaluation
3.3. Time-Dependent Activity Level of Each Linac Part
4. Discussion
- Ci: activity level (Bq/g) of radionuclide i
- CL,i: clearance level (Bq/g) of radionuclide i
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwon, N.H.; Jang, Y.J.; Kim, D.W.; Shin, D.O.; Kim, K.B.; Kim, J.S.; Choi, S.H. Trend Analysis on Korean and International Management for Activated Material Waste from Medical Linear Accelerator. Prog. Med. Phys. 2020, 31, 194–204. [Google Scholar] [CrossRef]
- Kwon, N.H.; Shin, D.O.; Kim, J.S.; Yoo, J.; Park, M.S.; Kim, K.B.; Kim, D.W.; Choi, S.H. Current status of disposal and measurement analysis of radioactive components in linear accelerators in Korea. Nucl. Eng. Technol. 2022, 54, 507–513. [Google Scholar] [CrossRef]
- Korea Institute of Nuclear Safety. Improving Radiation Safety Management in the Medical Sector [Workshop]; Korea Institute of Nuclear Safety: Daejeon, Republic of Korea, 2018.
- Radioactive Waste Safety Division, Nuclear Safety and Security Commission. Nuclear Safety and Security Commission No-Tification No. 2020-6, Regulations on Radioactive Waste Classification and Clearance Standards; (Implementation and Revision in 2020.05.26); Radioactive Waste Safety Division, Nuclear Safety and Security Commission: Seoul, Republic of Korea, 2020. [Google Scholar]
- MOTIE. Radioactive Waste Control Act No. 15082; (Implementation and Revision in 2017.11.28); Ministry of Trade Industry and Energy (MOTIE): Seoul, Republic of Korea, 2017.
- Olsen, K.J. Neutron Contamination from Medical Electron Accelerators (NCRP Report No. 79). Med. Phys. 1986, 13, 968–969. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Management of Radioactive Waste from the Use of Radionuclides in Medicine; IAEA-TECDOC-1183; IAEA: Vienna, Austria, 2000. [Google Scholar]
- Naseri, A.; Mesbahi, A. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams. Rep. Pract. Oncol. Radiother. 2010, 15, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vichi, S.; Dean, D.; Ricci, S.; Zagni, F.; Berardi, P.; Mostacci, D. Activation study of a 15MeV LINAC via Monte Carlo simulations. Radiat. Phys. Chem. 2020, 172, 108758. [Google Scholar] [CrossRef]
- Jang, Y.-J.; Kwon, N.H.; Park, S.H.; Choi, Y.; Yu, H.; Kim, K.B.; Kim, D.W.; Choi, S.H. Activation evaluation of Siemens linear accelerator using Monte Carlo simulation. J. Korean Phys. Soc. 2022, 81, 1107–1114. [Google Scholar] [CrossRef]
- Konefał, A.; Bieniasiewicz, M.; Wendykier, J.; Adamczyk, S.; Wrońska, A. Additional radiation sources in a treatment and control room of medical linear accelerators. Radiat. Phys. Chem. 2021, 185, 109513. [Google Scholar] [CrossRef]
- Waller, E.; Ram, R.; Steadman, I. Preliminary Determination of Activation Products for a Varian Truebeam Linear Accelerator. Health Phys. 2017, 113, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Song, J.; Zheng, H.; Sun, G.; Hao, L.; Long, P.; Hu, L. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC. Ann. Nucl. Energy 2015, 82, 161–168. [Google Scholar] [CrossRef]
- Sato, T.; Iwamoto, Y.; Hashimoto, S.; Ogawa, T.; Furuta, T.; Abe, S.-I.; Kai, T.; Tsai, P.-E.; Matsuda, N.; Iwase, H.; et al. Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. J. Nucl. Sci. Technol. 2018, 55, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Ratliff, H.N.; Matsuda, N.; Abe, S.-I.; Miura, T.; Furuta, T.; Iwamoto, Y.; Sato, T. Modernization of the DCHAIN-PHITS activation code with new features and updated data libraries. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 484, 29–41. [Google Scholar] [CrossRef]
- Zheng, L.; Huang, S.; Wang, K. Criticality benchmarking of ENDF/B-Ⅷ.0 and JEFF-3.3 neutron data libraries with RMC code. Nucl. Eng. Technol. 2020, 52, 1917–1925. [Google Scholar] [CrossRef]
- Shibata, K.; Iwamoto, O.; Nakagawa, T.; Iwamoto, N.; Ichihara, A.; Kunieda, S.; Chiba, S.; Furutaka, K.; Otuka, N.; Ohsawa, T.; et al. JENDL-4.0: A New Library for Nuclear Science and Engineering. J. Nucl. Sci. Technol. 2012, 48, 1–30. [Google Scholar] [CrossRef]
- Leprince, A.; David, J.-C.; Ene, D.; Leray, S. Reliability and use of INCL4.6-Abla07 spallation model in the frame of European Spallation Source target design. Prog. Nucl. Sci. Technol. 2014, 4, 491–495. [Google Scholar] [CrossRef]
- Patil, B.; Chavan, S.; Pethe, S.; Krishnan, R.; Bhoraskar, V.; Dhole, S. Estimation of neutron production from accelerator head assembly of 15MV medical LINAC using FLUKA simulations. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2011, 269, 3261–3265. [Google Scholar] [CrossRef]
- Saeed, M.K.; Poppe, B.; Fischer, H. Direct air activation measurements at a 15-MV medical linear accelerator. Radiat. Prot. Dosim. 2015, 163, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Šagátová, A.; Fülöp, M.; Pavlovič, M.; Sedlačková, K.; Nečas, V. Electron-beam accelerator with conversion to X-rays: Optimal radiation type according to application. Radiat. Phys. Chem. 2020, 172, 108789. [Google Scholar] [CrossRef]
- Długosz-Lisiecka, M.; Biegała, M.; Jakubowska, T. Activation of medical accelerator components and radioactive waste classification based on low beam energy model Clinac 2300. Radiat. Phys. Chem. 2023, 205, 110730. [Google Scholar] [CrossRef]
- Roig, M.; Panettieri, V.; Ginjaume, M.; Sánchez-Reyes, A. Photonuclear isotope characterization of a Siemens KDS 18 MV linac head. Phys. Med. Biol. 2004, 49, N243–N246. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Clearance and Release of Personal Property from Accelerator Facilities; DOE-STD-6004-2016; U.S. Department of Energy: Washington, DC, USA, 2016.
- U.S. Department of Energy. Radiation Protection of the Public and the Environment; DOE O 458.1; U.S. Department of Energy: Washington, DC, USA, 2013.
- Japanese Society of Radiation Oncology. Society Standard for the Management of Radioactive Substances in Radiotherapy Equipment; Japanese Society of Radiation Oncology: Tokyo, Japan, 2014. [Google Scholar]
- Dellepiane, G.; Casolaro, P.; Mateu, I.; Scampoli, P.; Braccini, S. Alternative routes for 64Cu production using an 18 MeV medical cyclotron in view of theranostic applications. Appl. Radiat. Isot. 2023, 191, 110518. [Google Scholar] [CrossRef] [PubMed]
Major Parts | Varian | Elekta | Siemens |
---|---|---|---|
Target | Cu W Zn * | W Re Cu | Au Fe Cr Ni Cu * |
Bending magnet | Fe * Cr * Ni * | Fe * Si * Ni * Pb * Cu * | Fe * Mo * |
Primary collimator | W Fe * Cr * Ni * Mn * | W Ni Fe | W |
Absorber | ** | ** | Al Ag * Cu * Mg * |
Flattening filter 15 MV | W | Fe Cr Mn Ni Mo * | Fe Cr Mn Ni Mo * |
Flattening filter 10 MV | Cu O Zn * | ||
Ion chamber | H C O N | Al Si Fe Mn Mg | Al O Mg * Ag * Cu * |
Mirror | H C O | H C O | O Si Ca Na |
Jaw | W Ni * Cu * Nb * Mo * | W Ni Fe | W |
MLC | W Ni Fe Cu | W Ni Fe Cr * Mo * | W |
Major Parts | Varian | Elekta | Siemens | ||||||
---|---|---|---|---|---|---|---|---|---|
Nuclide (T1/2) | Activity [Bq/g] | Nuclide (T1/2) | Activity [Bq/g] | Nuclide (T1/2) | Activity [Bq/g] | ||||
15 MV | 10 MV | 15 MV | 10 MV | 15 MV | 10 MV | ||||
Target | 64Cu (12.70 h) 181W (121.18 d) 185W (75.12 d) 63Ni (101.15 y) | 7.58 × 104 | 9.71 × 102 | 181W (121.18 d) 64Cu (12.70 h) 65Zn (243.98 d) 58Co (70.86 d) | 1.47 × 107 | 1.84 × 105 | 196Au (6.17 d) 55Fe (2.75 y) 58Co (70.86 d) 64Cu * (12.70 h) | 1.88 × 107 | 2.03 × 105 |
Bending magnet | 55Fe * (2.75 y) 57Co * (271.76 d) 58Co * (70.86 d) 57Ni * (1.48 d) | 14.47 | 5.26 × 10−2 | 55Fe * (2.75 y) 54Mn * (312.04 d) 59Fe * (44.49 d) | 9.65 | 9.65 × 10−2 | 55Fe * (2.75 y) 54Mn * (312.04 d) 59Fe * (44.49 d) | 0.52 | 1.97 × 10−3 |
Primary collimator | 185W (75.12 d) 181W (121.18 d) 179Ta (1.82 y) 55Fe * (2.75 y) | 1.09 × 104 | 3.52 × 102 | 185W (75.12 d) 181W (121.18 d) | 1.88 × 103 | 14.46 | 185W (75.12 d) 181W (121.18 d) 179Ta (1.82 y) | 1.58 × 104 | 6.79 × 102 |
Absorber | ** | ** | 28Al (134.50 s) 108Ag * (142.90 s) 65Zn * (243.98 d) 58Co * (70.86 d) | 7.35 × 102 | 0.48 | ||||
Flattening filter | 181W (121.18 d) 185W (75.12 d) | 19.12 | 58Co (70.86 d) 54Mn (312.04 d) 55Fe (2.75 y) 99Mo * (2.75 d) | 2.63 × 103 | 2.65 × 10−2 | 55Fe (2.75 y) 51Cr (27.70 d) 54Mn (312.04 d) 99Mo * (2.75 d) | 6.58 × 103 | 2.90 × 102 | |
66Cu (307.20 s) 64Cu (12.70 h) | 0.28 | ||||||||
Ion chamber | 3H (12.33 y) 14C (5704.59 y) | 2.60 | 2.49 × 10−2 | 28Al (134.50 s) 56Mn (2.58 h) 65Zn (243.98 d) 63Ni (101.15 y) | 0.62 | 1.37 × 10−2 | 28Al (134.50 s) 108Ag * (142.90 s) 66Cu * (307.20 s) 65Zn * (243.98 d) | 17.74 | 0.17 |
Mirror | 3H (12.33 y) 14C (5704.59 y) | 3.00 × 10−7 | 4.32 × 10−7 | 3H (12.33 y) 14C (5704.59 y) | 3.12 × 10−4 | 4.12 × 10−5 | 24Na (15.00 h) 37Ar (35.03 d) 31Si (2.62 h) 45Ca (162.62 d) | 0.12 | 9.13 × 10−4 |
Jaw | 185W (75.12 d) 94mNb * (375.80 s) 58Co * (70.86 d) 99Mo * (2.75 d) | 3.51 | 3.82 × 10−2 | 181W (121.18 d) 58Co (70.86 d) | 58.29 | 0.4 | 185W (75.12 d) 181W (121.18 d) 179Ta (1.82 y) 183W (1.10 × 1017 y) | 4.48 × 102 | 19.43 |
MLC | 185W (75.12 d) 181W (121.18 d) 64Cu (12.70 h) 55Fe (2.75 y) | 0.62 | 3.82 × 10−3 | 185W (75.12 d) 181W (121.18 d) 93mNb (16.14 y) 99Mo * (2.75 d) | 87.44 | 1.14 | 185W (75.12 d) 181W (121.18 d) 179Ta (1.82 y) 183W (1.10 × 1017 y) | 1.59 × 102 | 6.59 |
Radionuclides | Clearance Level (Bq/g) |
---|---|
24Na, 28Al, 31Si, 37Ar, 45Ca, 54Mn, 57Ni, 65Zn, 66Cu, 108Ag, 179Ta, 183W, 196Au | 0.1 |
14C, 57Co, 58Co, 59Fe | 1 |
56Mn, 93mNb, 99Mo, 181W | 10 |
3H, 51Cr, 63Ni, 64Cu | 100 |
55Fe, 185W | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.J.; Kwon, N.H.; Park, S.H.; Choi, Y.; Kim, K.B.; Kim, D.W.; Bhang, S.H.; Choi, S.H. Analysis of Activated Materials of Disposed Medical Linear Accelerators according to Clearance Level for Self-Disposal. Sustainability 2023, 15, 4100. https://doi.org/10.3390/su15054100
Jang YJ, Kwon NH, Park SH, Choi Y, Kim KB, Kim DW, Bhang SH, Choi SH. Analysis of Activated Materials of Disposed Medical Linear Accelerators according to Clearance Level for Self-Disposal. Sustainability. 2023; 15(5):4100. https://doi.org/10.3390/su15054100
Chicago/Turabian StyleJang, Young Jae, Na Hye Kwon, Seong Hee Park, Yona Choi, Kum Bae Kim, Dong Wook Kim, Suk Ho Bhang, and Sang Hyoun Choi. 2023. "Analysis of Activated Materials of Disposed Medical Linear Accelerators according to Clearance Level for Self-Disposal" Sustainability 15, no. 5: 4100. https://doi.org/10.3390/su15054100
APA StyleJang, Y. J., Kwon, N. H., Park, S. H., Choi, Y., Kim, K. B., Kim, D. W., Bhang, S. H., & Choi, S. H. (2023). Analysis of Activated Materials of Disposed Medical Linear Accelerators according to Clearance Level for Self-Disposal. Sustainability, 15(5), 4100. https://doi.org/10.3390/su15054100