Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study
Abstract
:1. Introduction
- identify the implementation difficulties of such a hydrological model in a highly complex yet data-scarce Mediterranean basin (Section 4),
- provide insights into the hydrological processes of the PRB, (Section 5),
- provide a robust basis for further studies of climate change impacts on water resources in the PRB (Section 7).
2. Materials and Methods
3. mGROWA Model Description
3.1. Simulation of the Total Water Balance
- irrigation-relevant root zone,
- soil water content that initiates irrigation,
- soil water content at which irrigation stops,
- maximum irrigation level per day,
- period of the year with potential irrigation application,
- minimum precipitation level per day for which no irrigation is applied,
- total water budget available for irrigation in a predefined period (according to water usage rights allocated to a farmer or field plot).
3.2. Runoff Separation
4. Data Processing and Model Parameterisation
4.1. Data Collection and Sources
4.2. Spatially Distributed Terrain, Surface, Vegetation, and Soil Parameterisation
4.3. Spatial Distribution of BFI Values
4.4. Climatic Model Inputs
5. Results
6. Model Evaluation Strategy and Discussion
7. Summary and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P. On the Increased Frequency of Mediterranean Drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef] [Green Version]
- La Jeunesse, I.; Cirelli, C.; Aubin, D.; Larrue, C.; Sellami, H.; Afifi, S.; Bellin, A.; Benabdallah, S.; Bird, D.N.; Deidda, R.; et al. Is climate change a threat for water uses in the Mediterranean region? Results from a survey at local scale. Sci. Total Environ. 2016, 543, 981–996. [Google Scholar] [CrossRef]
- Nastos, P.T.; Zerefos, C.S. Climate Change and precipitation in Greece. Hell. J. Geosci. 2010, 45, 185–192. [Google Scholar]
- Pnevmatikos, J.D.; Katsoulis, B.D. The changing rainfall regime in Greece and its impact on climatological means. Meteorol. Appl. 2006, 13, 331–345. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Katsoulis, B.; Pnevmatikos, J.; Antakis, V. Spatial and Temporal Variation of Precipitation in Greece and Surrounding Regions Based on Global Precipitation Climatology Project Data. J. Clim. 2008, 21, 1349–1370. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta–Martínez, T.; Beguería, S. Mediterranean water resources in a global change scenario. Earth-Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Milly, P.C.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Climate change. Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Mimikou, M.A.; Baltas, E.A. Assessment of Climate Change Impacts in Greece: A General Overview. Am. J. Clim. Chang. 2013, 2, 46–56. [Google Scholar] [CrossRef]
- Destouni, G.; Prieto, C. Robust Assessment of Uncertain Freshwater Changes: The Case of Greece with Large Irrigation—And Climate-Driven Runoff Decrease. Water 2018, 10, 1645. [Google Scholar] [CrossRef] [Green Version]
- Refsgaard, J.C.; Madsen, H.; Andréassian, V.; Arnbjerg-Nielsen, K.; Davidson, T.A.; Drews, M.; Hamilton, D.P.; Jeppesen, E.; Kjellström, E.; Olesen, J.E.; et al. A framework for testing the ability of models to project climate change and its impacts. Clim. Chang. 2014, 122, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Medici, C.; Butturini, A.; Bernal, S.; Vázquez, E.; Sabater, F.; Vélez, J.I.; Francés, F. Modelling the non-linear hydrological behaviour of a small Mediterranean forested catchment. Hydrol. Process. 2008, 22, 3814–3828. [Google Scholar] [CrossRef]
- Herrmann, F.; Keller, L.; Kunkel, R.; Vereecken, H.; Wendland, F. Determination of spatially differentiated water balance components including groundwater recharge on the Federal State level—A case study using the mGROWA model in North Rhine-Westphalia (Germany). J. Hydrol. Reg. Stud. 2015, 4, 294–312. [Google Scholar] [CrossRef] [Green Version]
- Ertl, G.; Herrmann, F.; Elbracht, J. Determination of groundwater recharge for solid rock areas in Lower Saxony. Grundwasser 2022, 27, 43–56. [Google Scholar] [CrossRef]
- Herrmann, F.; Kunkel, R.; Ostermann, U.; Vereecken, H.; Wendland, F. Projected impact of climate change on irrigation needs and groundwater resources in the metropolitan area of Hamburg (Germany). Environ. Earth Sci. 2016, 75, 1104. [Google Scholar] [CrossRef]
- Ehlers, L.; Herrmann, F.; Blaschek, M.; Duttmann, R.; Wendland, F. Sensitivity of mGROWA-simulated groundwater recharge to changes in soil and land use parameters in a Mediterranean environment and conclusions in view of ensemble-based climate impact simulations. Sci. Total Environ. 2016, 543, 937–951. [Google Scholar] [CrossRef]
- Herrmann, F.; Baghdadi, N.; Blaschek, M.; Deidda, R.; Duttmann, R.; La Jeunesse, I.; Sellami, H.; Vereecken, H.; Wendland, F. Simulation of future groundwater recharge using a climate model ensemble and SAR-image based soil parameter distributions—A case study in an intensively-used Mediterranean catchment. Sci. Total Environ. 2016, 543, 889–905. [Google Scholar] [CrossRef] [PubMed]
- Rukundo, E.; Doğan, A. Dominant Influencing Factors of Groundwater Recharge Spatial Patterns in Ergene River Catchment, Turkey. Water 2019, 11, 653. [Google Scholar] [CrossRef] [Green Version]
- Vasiliades, L.; Loukas, A.; Liberis, N. A Water Balance Derived Drought Index for Pinios River Basin, Greece. Water Resour. Manag. 2011, 25, 1087–1101. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Makropoulos, C.; Gkiokas, A.; Kossida, M.; Evangelou, L.; Lourmas, G.; Michas, S.; Tsadilas, C.; Papageorgiou, S.; Perleros, V.; et al. Assessing the cost-effectiveness of irrigation water management practices in water stressed agricultural catchments: The case of Pinios. Agric. Water Manag. 2014, 139, 31–42. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Makropoulos, C.; Kossida, M.; Mimikou, M. Optimal Implementation of Irrigation Practices: Cost-Effective Desertification Action Plan for the Pinios Basin. J. Water Resour. Plan. Manag. 2014, 140, 05014005. [Google Scholar] [CrossRef]
- Loukas, A.; Mylopoulos, N.; Vasiliades, L. A Modeling System for the Evaluation of Water Resources Management Strategies in Thessaly, Greece. Water Resour. Manag. 2007, 21, 1673–1702. [Google Scholar] [CrossRef]
- Loukas, A. Surface water quantity and quality assessment in Pinios River, Thessaly, Greece. Desalination 2010, 250, 266–273. [Google Scholar] [CrossRef]
- Stefanidis, K.; Panagopoulos, Y.; Psomas, A.; Mimikou, M. Assessment of the natural flow regime in a Mediterranean river impacted from irrigated agriculture. Sci. Total Environ. 2016, 573, 1492–1502. [Google Scholar] [CrossRef]
- Stefanidis, K.; Panagopoulos, Y.; Mimikou, M. Response of a multi-stressed Mediterranean river to future climate and socio-economic scenarios. Sci. Total Environ. 2018, 627, 756–769. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, A.; Arampatzis, G.; Kuhr, P.; Kunkel, R.; Tziritis, E.; Wendland, F. Area-differentiated modeling of water balance in Pinios Basin, central Greece. Glob. NEST J. 2015, 17, 221–235. [Google Scholar] [CrossRef]
- Panagopoulos, A.; Arampatzis, G.; Tziritis, E.; Pisinaras, V.; Herrmann, F.; Kunkel, R.; Wendland, F. Assessment of climate change impact in the hydrological regime of River Pinios Basin, central Greece. Desalination Water Treat. 2016, 57, 2256–2267. [Google Scholar] [CrossRef]
- Evangelou, E.; Tsadilas, C.; Tserlikakis, N.; Tsitouras, A.; Kyritsis, A. Water Footprint of Industrial Tomato Cultivations in the Pinios River Basin: Soil Properties Interactions. Water 2016, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Baltas, E.A. A new approach for the determination of hydrologic prefectures in Greece for the water framework directive. NEW MEDIT 2008, 3, 41–47. [Google Scholar]
- European Commission. Report on the Implementation of the Water Framework Directive River Basin Management Plans—Member State: Greece. Commission Staff Working Document SWD(2015) 54; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Migiros, G.; Bathrellos, G.; Skilodimou, H.; Karamousalis, T. Pinios (Peneus) River (Central Greece): Hydrological—Geomorphological elements and changes during the quaternary. Open Geosci. 2011, 3, 215–228. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Koppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Arampatzis, G.; Panagopoulos, A.; Pisinaras, V.; Tziritis, E.; Wendland, F. Identifying potential effects of climate change on the development of water resources in Pinios River Basin, Central Greece. Appl. Water Sci. 2018, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Hellenic Special Secretariat for Water. Water Resouces Management Plan of Thessaly Water District, 1st Revision; Hellenic Ministry of Environment and Energy: Athens, Greece, 2017; p. 260. [Google Scholar]
- Gemitzi, A.; Lakshmi, V. Evaluating Renewable Groundwater Stress with GRACE Data in Greece. Ground Water 2018, 56, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Kotsopoulos, S.; Alexiou, I.; Lokkas, P.; Kalfountzos, D.; Gravanis, G.; Magalios, S. Reliability of the reservoirs at the region of the former lake Karla in Thessaly in meeting crop water requirements. In Proceedings of the EWRA Seventh International Conference, Limassol, Cyprus, 25–27 June 2009; pp. 619–625. [Google Scholar]
- Panagopoulos, Y.; Dimitriou, E. A Large-Scale Nature-Based Solution in Agriculture for Sustainable Water Management: The Lake Karla Case. Sustainability 2020, 12, 6761. [Google Scholar] [CrossRef]
- Tzabiras, J.; Vasiliades, L.; Sidiropoulos, P.; Loukas, A.; Mylopoulos, N. Evaluation of Water Resources Management Strategies to Overturn Climate Change Impacts on Lake Karla Watershed. Water Resour. Manag. 2016, 30, 5819–5844. [Google Scholar] [CrossRef]
- Kunkel, R.; Wendland, F. The GROWA98 model for water balance analysis in large river basins—The river Elbe case study. J. Hydrol. 2002, 259, 152–162. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Disse, M. Modellierung der Verdunstung und der Grundwasserneubildung in Ebenen Einzugsgebieten. Ph.D. Thesis, Fakultät für Bauingenieur- und Vermessungswesen der Universität Fridericiana zu Karlsruhe (TH), Karlsruhe, Germany, 1995. [Google Scholar]
- Haberlandt, U.; Klöcking, B.; Krysanova, V.; Becker, A. Regionalisation of the base flow index from dynamically simulated flow components—A case study in the Elbe River Basin. J. Hydrol. 2001, 248, 35–53. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM Data V4; International Centre for Tropical Agriculture (CIAT): Palmira, Colombia, 2008. [Google Scholar]
- Hiederer, R. Mapping Soil Properties for Europe–Spatial Representation of Soil Database Attributes; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Panagos, P. The European soil database. GEO Connex. 2006, 5, 32–33. [Google Scholar]
- Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- Bornovas, J.; Rondogianni-Tsiambaou, T. Geological Map of Greece 1:500,000; Institute of Geology and Mineral Exploration: Athens, Greece, 1983. [Google Scholar]
- Ludwig, R.; Roson, R. Climate change, water and security in the Mediterranean: Introduction to the special issue. Sci. Total Environ. 2016, 543, 847–850. [Google Scholar] [CrossRef] [PubMed]
- ATV-DVWK. Verdunstung in Bezug zu Landnutzung, Bewuchs und Boden; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V.: Hennef, Germany, 2002; Volume 504. [Google Scholar]
- Lazzara, P.; Rana, G. The use of crop coefficient approach to estimate actual evapotranspiration: A critical review for major crops under Mediterranean climate. Ital. J. Agrometeorol. 2010, 15, 25–39. [Google Scholar]
- Allen, R.G.; Pruitt, W.O.; Raes, D.; Smith, M.; Pereira, L.S. Estimating Evaporation from Bare Soil and the Crop Coefficient for the Initial Period Using Common Soils Information. J. Irrig. Drain. Eng. 2005, 131, 14–23. [Google Scholar] [CrossRef]
- Müller, U.; Waldeck, A. Auswertungsmethoden im Bodenschutz; Landesamt für Bergbau, Energie und Geologie Niedersachsen: Henner, Germany, 2011. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons, Ltd. Chichester: New York, NY, USA; Weinheim, Germany; Brisbane, Australia; Singapore; Toronto, ON, Canada, 2001. [Google Scholar]
- Wackernagel, H. Multivariate Geostatistics; Springer-Verlag: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Dingman, S.L. Physical Hydrology, 2nd ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Weiss, A.D. Topographic position and landforms analysis. In Proceedings of the ESRI User Conference 2001, San Diego, CA, USA, 9–13 July 2001; pp. 227–245. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Worthington, S.R.H.; Davies, G.J.; Alexander, E.C. Enhancement of bedrock permeability by weathering. Earth-Sci. Rev. 2016, 160, 188–202. [Google Scholar] [CrossRef]
- Tetzlaff, B.; Andjelov, M.; Kuhr, P.; Uhan, J.; Wendland, F. Model-based assessment of groundwater recharge in Slovenia. Environ. Earth Sci. 2015, 74, 6177–6192. [Google Scholar] [CrossRef]
- Bloomfield, J.P.; Allen, D.J.; Griffiths, K.J. Examining geological controls on baseflow index (BFI) using regression analysis: An illustration from the Thames Basin, UK. J. Hydrol. 2009, 373, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Caputo, R.; Bravard, J.-P.; Helly, B. The Pliocene-Quaternary tecto-sedimentary evolution of the Larissa Plain (Eastern Thessaly, Greece). Geodin. Acta 1994, 7, 219–231. [Google Scholar] [CrossRef]
- Caputo, R.; Pavlides, S. Late Cainozoic geodynamic evolution of Thessaly and surroundings (central-northern Greece). Tectonophysics 1993, 223, 339–362. [Google Scholar] [CrossRef]
- Kontogianni, V.; Pytharouli, S.; Stiros, S. Ground subsidence, Quaternary faults and vulnerability of utilities and transportation networks in Thessaly, Greece. Environ. Geol. 2006, 52, 1085–1095. [Google Scholar] [CrossRef]
- Apostolidis, E.; Koukis, G. Engineering-geological conditions of the formations in the Western Thessaly basin, Greece. Open Geosci. 2013, 5, 407–422. [Google Scholar] [CrossRef] [Green Version]
- Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O. Spatial distribution of groundwater recharge and base flow: Assessment of controlling factors. J. Hydrol. Reg. Stud. 2015, 4, 349–368. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Nachtnebel, H.P. A method for the regional estimation of runoff separation parameters for hydrological modelling. J. Hydrol. 2009, 364, 163–174. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Rolland, C. Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions. J. Clim. 2003, 16, 1032–1046. [Google Scholar] [CrossRef]
- Marquínez, J.; Lastra, J.; García, P. Estimation models for precipitation in mountainous regions: The use of GIS and multivariate analysis. J. Hydrol. 2003, 270, 1–11. [Google Scholar] [CrossRef]
- Martínez-Cob, A. Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. J. Hydrol. 1996, 174, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Wagner, P.D.; Fiener, P.; Wilken, F.; Kumar, S.; Schneider, K. Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. J. Hydrol. 2012, 464–465, 388–400. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Revuelto, J.; Morán-Tejeda, E.; López-Moreno, J.I.; Espejo, F. Sensitivity of reference evapotranspiration to changes in meteorological parameters in Spain (1961–2011). Water Resour. Res. 2014, 50, 8458–8480. [Google Scholar] [CrossRef] [Green Version]
- McVicar, T.R.; Van Niel, T.G.; Li, L.; Hutchinson, M.F.; Mu, X.; Liu, Z. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J. Hydrol. 2007, 338, 196–220. [Google Scholar] [CrossRef]
- Aguilar, C.; Polo, M.J. Generating reference evapotranspiration surfaces from the Hargreaves equation at watershed scale. Hydrol. Earth Syst. Sci. 2011, 15, 2495–2508. [Google Scholar] [CrossRef] [Green Version]
- Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 ACM National Conference, New York, NY, USA, 27–29 August 1968. [Google Scholar] [CrossRef]
- Rolim, J.; Catalão, J.; Teixeira, J. The Influence of Different Methods of Interpolating Spatial Meteorological Data on Calculated Irrigation Requirements. Appl. Eng. Agric. 2011, 27, 979–989. [Google Scholar] [CrossRef]
- Mamassis, N.; Efstratiadis, A.; Apostolidou, I.-G. Topography-adjusted solar radiation indices and their importance in hydrology. Hydrol. Sci. J. 2012, 57, 756–775. [Google Scholar] [CrossRef]
- Gofa, F.; Mamara, A.; Anadranistakis, M.; Flocas, H. Developing Gridded Climate Data Sets of Precipitation for Greece Based on Homogenized Time Series. Climate 2019, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Aschonitis, V.; Miliaresis, G.; Demertzi, K.; Papamichail, D. Terrain Segmentation of Greece Using the Spatial and Seasonal Variation of Reference Crop Evapotranspiration. Adv. Meteorol. 2016, 2016, 3092671. [Google Scholar] [CrossRef] [Green Version]
- Xoplaki, E.; Luterbacher, J.; Burkard, R.; Patrikas, I.; Maheras, P. Connection between the large-scale 500 hPa geopotential height fields and precipitation over Greece during wintertime. Clim. Res. 2000, 14, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Strandhagen, E.; Marcus, W.A.; Meacham, J.E. Views of the Rivers: Representing Streamflow of the Greater Yellowstone Ecosystem. Cartogr. Perspect. 2006, 55, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Wei, H.; Fu, S. A fast and simple algorithm for calculating flow accumulation matrices from raster digital elevation. Front. Earth Sci. 2019, 13, 317–326. [Google Scholar] [CrossRef]
- Pisinaras, V.; Paraskevas, C.; Panagopoulos, A. Investigating the Effects of Agricultural Water Management in a Mediterranean Coastal Aquifer under Current and Projected Climate Conditions. Water 2021, 13, 108. [Google Scholar] [CrossRef]
- Therianos, A.D. The geographical distribution of river water supply in Greece. Bull. Geol. Soc. Greece 1974, 11, 28–58. [Google Scholar]
- Foutrakis, P.; Poulos, S.; Maroukian, H.; Livaditis, G. A study of the deltaic coast morphometry of river Pinios in relation to its hydro- & sediment dynamics. Bull. Geol. Soc. Greece 2007, 40, 1522–1529. [Google Scholar] [CrossRef]
- HYDROMET. Final Report of Sofaditis (Smokovo) Irrigation Project; Hellenic Ministry of Environment and Public Works: Athens, Greece, 1983. [Google Scholar]
- Zarris, D.; Anastassopoulou, P.; Alexopoulou, K. Updating of River Discharge Information, Upgrading and Updating of Hydrological Information of Thessalia; Department of Water Resources, Hydraulic and Maritime Engineering–National Technical University of Athens: Athens, Greece, 1997; p. 170. [Google Scholar]
- Koutsoyiannis, D.; Efstratiadis, A.; Mamassis, N. Appraisal of the Surface Water Potential and Its Exploitation in the Acheloos River Basin and in Thessaly; Hellenic Ministry of Environment, Planning and Public Works: Athens, Greece, 2001. [Google Scholar]
- Arnold, J.G.; Allen, P.M. Automated Methods for Estimating Baseflow and Ground Water Recharge from Streamflow Records. J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Tsakmakis, I.; Kokkos, N.; Pisinaras, V.; Papaevangelou, V.; Hatzigiannakis, E.; Arampatzis, G.; Gikas, G.D.; Linker, R.; Zoras, S.; Evagelopoulos, V.; et al. Operational Precise Irrigation for Cotton Cultivation through the Coupling of Meteorological and Crop Growth Models. Water Resour. Manag. 2017, 31, 563–580. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Tsadilas, C.; Samaras, V.; Schepers, J.S.; Eskridge, K. Nitrogen uptake and N-use efficiency of Mediterranean cotton under varied deficit irrigation and N fertilization. Eur. J. Agron. 2016, 73, 144–151. [Google Scholar] [CrossRef]
- Tsakmakis, I.D.; Gikas, G.D.; Sylaios, G.K. Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize. Agric. Water Manag. 2021, 255, 106998. [Google Scholar] [CrossRef]
- Blaney, H.F.; Criddle, W.D. Determining Water Requirements in Irrigated Area from Climatological Irrigation Data; Technical Paper No. 96; US Department of Agriculture, Soil Conservation Service: Washington, DC, USA, 1950. [Google Scholar]
- Tegos, A.; Efstratiadis, A.; Koutsoyiannis, D. A parametric model for potential evapotranspiration estimation based on a simplified formulation of the Penman-Monteith equation. In Evapotranspiration—An Overview; Alexandris, S., Ed.; InTech: London, UK, 2013; pp. 143–165. [Google Scholar]
- Herrmann, F.; Jahnke, C.; Jenn, F.; Kunkel, R.; Voigt, H.-J.; Voigt, J.; Wendland, F. Groundwater recharge rates for regional groundwater modelling: A case study using GROWA in the Lower Rhine lignite mining area, Germany. Hydrogeol. J. 2009, 17, 2049–2060. [Google Scholar] [CrossRef]
- Karyotis, T.; Panagopoulos, A.; Pateras, D.; Panoras, A.; Danalatos, N.; Angelakis, C.; Kosmas, C. The Greek Action Plan for the mitigation of nitrates in water resources of the vulnerable district of Thessaly. J. Mediterr. Ecol. 2002, 3, 77–83. [Google Scholar]
- Pisinaras, V.; Panagopoulos, A.; Herrmann, F.; Bogena, H.R.; Doulgeris, C.; Ilias, A.; Tziritis, E.; Wendland, F. Hydrologic and Geochemical Research at Pinios Hydrologic Observatory: Initial Results. Vadose Zone J. 2018, 17, 1–16. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Bazzi, H.; Baghdadi, N.; Amin, G.; Fayad, I.; Zribi, M.; Demarez, V.; Belhouchette, H. An Operational Framework for Mapping Irrigated Areas at Plot Scale Using Sentinel-1 and Sentinel-2 Data. Remote Sens. 2021, 13, 2584. [Google Scholar] [CrossRef]
- Pelletier, A.; Andréassian, V. Hydrograph separation: An impartial parametrisation for an imperfect method. Hydrol. Earth Syst. Sci. 2020, 24, 1171–1187. [Google Scholar] [CrossRef] [Green Version]
- Haylock, M.R.; Hofstra, N.; Klein Tank, A.M.G.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950--2006. J. Geophys. Res. 2008, 113, D20119. [Google Scholar] [CrossRef] [Green Version]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Bollmeyer, C.; Keller, J.D.; Ohlwein, C.; Wahl, S.; Crewell, S.; Friederichs, P.; Hense, A.; Keune, J.; Kneifel, S.; Pscheidt, I.; et al. Towards a high-resolution regional reanalysis for the European CORDEX domain. Q. J. R. Meteorol. Soc. 2015, 141, 1–15. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef] [Green Version]
- Koutroulis, A.G.; Papadimitriou, L.V.; Grillakis, M.G.; Tsanis, I.K.; Wyser, K.; Betts, R.A. Freshwater vulnerability under high end climate change. A pan-European assessment. Sci. Total Environ. 2018, 613, 271–286. [Google Scholar] [CrossRef]
- Herrmann, F.; Keuler, K.; Wolters, T.; Bergmann, S.; Eisele, M.; Wendland, F. Groundwater recharge in North Rhine-Westphalia projected using the model chain RCP-GCM-RCM-mGROWA. Grundwasser 2021, 26, 17–31. [Google Scholar] [CrossRef]
Input Requirements | Dataset, Source, and Description |
---|---|
Topography | The digital elevation data from the 90 m SRTM (Version 4) dataset [44] was used. |
Surface sealing | Spatial data on the degree of surface sealing (percentage imperviousness PI) from buildings, paved roads, etc., was acquired from the Copernicus Land Monitoring Service (https://land.copernicus.eu/, accessed on 20 January 2023). We used the high resolution layer Imperviousness Density (20 m pixel size) representing the year 2015. |
Land cover | Spatial data on common vegetation and land use types originate from the CORINE Land Cover (CLC) inventory and was acquired from the Copernicus Land Monitoring Service (https://land.copernicus.eu/, accessed on 20 January 2023). We used the map from 1990 (time consistency 1986–1998) at 100 m resolution. |
Crop type and distribution | The spatial distribution of crops in the PRB on the farm level in the year 2013 was collected from the Hellenic Payment and Control Agency for Guidance and Guarantee Commu-nity Aid. |
Soil characteristics | Information about soil properties were taken from the additional spatial layers [45] derived from the European Soil Database (ESDB) [46] and provided by the European Soil Data Centre (ESDAC) [47]. |
Geology | Information with regard to the geologic setup was based on the geologic map of Greece (1:500,000) [48]. |
Climate parameters | Daily precipitation records from 42 meteorological stations were collected covering the period modelled (1971–2000). At eight of these meteorological stations, daily minimum and maximum air temperature data were also available. |
April | May | June | July | August | September | October | |
---|---|---|---|---|---|---|---|
Vine | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Olive | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
CCP 1 | - | 4 | 5 | 6 | 6 | - | - |
Corn | 1 | 3 | 5 | 10 | 10 | - | - |
Alfalfa | 5 | 5 | 5 | 5 | 5 | 5 | - |
Cotton | - | 1 | 3 | 6 | 9 | 9 | - |
April | May | June | July | August | September | October | |
---|---|---|---|---|---|---|---|
Vine | 30/90 | 40/90 | 40/90 | 40/90 | 40/90 | 40/90 | 40/90 |
Olive | - | 30/80 | 30/80 | 30/80 | 30/80 | 30/80 | - |
CCP 1 | - | 30/80 | 30/80 | 30/80 | 30/80 | 30/80 | - |
Corn | 40/99 | 50/99 | 50/99 | 50/99 | 50/99 | - | - |
Alfalfa | 40/99 | 40/99 | 40/99 | 40/99 | 40/99 | 40/99 | - |
Cotton | - | 20/85 | 40/85 | 50/85 | 25/80 | 25/80 | - |
Geologic Unit | BFI Value |
---|---|
Ammonitico Rosso: Limestone and Siliceous Schist—Jurassic, Toarcian | 0.15 |
Amphibolite and Gneiss | 0.15 |
Diabase | 0.2 |
Flysch | 0.3 |
Flysch—Jurassic and Cretaceous | 0.3 |
Flysch—Upper Cretaceous | 0.3 |
Flysch—different phases | 0.3 |
Flysch transformed into Phyllite | 0.2 |
Gneiss, Schist, Amphibolite—Paleozoic, Triassic | 0.15 |
Granite, Granodiorite, Monzonite—Mesozoic | 0.15 |
Limestone (pelagic)—Upper Cretaceous | 0.35 |
Limestone—Cretaceous, Eocene | 0.35 |
Limestone—Lower to Middle Jurassic | 0.35 |
Limestone—Upper Cretaceous | 0.35 |
Limestone and Dolomite—Triassic, Lower Jurassic | 0.65 |
Limestone (crystalline) and Marble—Upper Cretaceous | 0.35 |
Limestone, Greywacke, Schist, Prasinite, Volcanic rocks—Permo-Triassic | 0.22 |
Marble, Dolomite—Mesozoic, Paleocene | 0.55 |
Marble, Limestone (crystalline) | 0.55 |
Molasse: Conglomerate, Sandstone—Oligocene | 0.3 |
Molasse: Conglomerate, Marl, red clayey sandy material—Neogene, Aquitanian | 0.3 |
Molasse: Conglomerate, Marl, Sandstone—Upper Eocene | 0.3 |
Molasse: Conglomerate, Sandstone—Neogene, Aquitanian, Tortonian | 0.3 |
Molasse: Clay, Conglomerate, Sandstone, Marl—Oligocene | 0.35 |
Ophiolite | 0.15 |
Schist-keratolitic diaplasis: Hornstone, Sandstone, Mudstone, Limestone lenses—Jurassic | 0.15 |
Schist-keratolitic diaplasis: Hornstone, Sandstone, Mudstone, trapped ophiolitic bodies—Jurassic | 0.12 |
Schist, Marble | 0.15 |
Scree—Pleistocene | 0.5 |
Tuffite—Pliocene | 0.2 |
Mean | Median | Interquartile Range | 15th Percentile | 85th Percentile | |
---|---|---|---|---|---|
Vine | 331 | 333 | 40 | 302 | 365 |
Olive | 44 | 43 | 13 | 33 | 54 |
CCP 1 | 328 | 332 | 51 | 285 | 371 |
Corn | 377 | 376 | 38 | 352 | 406 |
Alfalfa | 407 | 411 | 59 | 367 | 457 |
Cotton | 326 | 325 | 38 | 301 | 353 |
Gauge | Long. | Lat. | Catchment Area in km2 | Available Years | Mean Observed Discharge in m3/s | Reliability Assumption |
---|---|---|---|---|---|---|
Ali Efenti | 22.07909 | 39.56958 | 2699 | 1960–1994 | 39.2 | High |
Amigdalia | 22.25717 | 39.65873 | 6348 | 1974–1985 | 62.1 | Low |
Ampelia | 22.52839 | 39.30903 | 626 | 1961–1985 | 2.8 | Low |
Gavros | 21.60603 | 39.82118 | 230 | 1974–1985 | 1.5 | Low |
Kedros | 22.03299 | 39.19899 | 493 | 1976–1981 | 6.4 | Unknown |
Larissa-Alkazar | 22.41176 | 39.64145 | 7031 | 1961–1993 | 67.5 | Low to Medium |
Larissa-Giannouli | 22.40774 | 39.65258 | ||||
Piniada | 22.16876 | 39.58671 | 6025 | 1983–1993 | 42.6 | High |
Sarakina | 21.63311 | 39.66903 | 1042 | 1961–1984 | 13.9 | Low |
Skopia | 22.47855 | 39.15106 | 369 | 1972–1993 | 1.7 | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisinaras, V.; Herrmann, F.; Panagopoulos, A.; Tziritis, E.; McNamara, I.; Wendland, F. Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study. Sustainability 2023, 15, 4343. https://doi.org/10.3390/su15054343
Pisinaras V, Herrmann F, Panagopoulos A, Tziritis E, McNamara I, Wendland F. Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study. Sustainability. 2023; 15(5):4343. https://doi.org/10.3390/su15054343
Chicago/Turabian StylePisinaras, Vassilios, Frank Herrmann, Andreas Panagopoulos, Evangelos Tziritis, Ian McNamara, and Frank Wendland. 2023. "Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study" Sustainability 15, no. 5: 4343. https://doi.org/10.3390/su15054343
APA StylePisinaras, V., Herrmann, F., Panagopoulos, A., Tziritis, E., McNamara, I., & Wendland, F. (2023). Fully Distributed Water Balance Modelling in Large Agricultural Areas—The Pinios River Basin (Greece) Case Study. Sustainability, 15(5), 4343. https://doi.org/10.3390/su15054343