Seismic Overturning Fragility Analysis for Rigid Blocks Subjected to Floor Motions
Abstract
:1. Introduction
2. Seismic Response of Rigid Blocks
2.1. Numerical Modeling
2.2. Experimental Verifications
3. Overturning Acceleration Spectrum
4. Overturning Fragility Analysis
4.1. Damage Measure and Limit States
4.2. Intensity Measures
4.3. Hybrid Strip and Hybrid Ratio
4.4. Probability of Overturning
4.5. Effect of Analysis Strip Width
5. Conclusions
- An effective IM for overturning fragility analysis should include as many of the excitation characteristics and as much of the block geometry information as possible.
- A hybrid ratio, a parameter that can estimate the size of the hybrid IM strip within which both safe rocking and overturning may occur, is presented to quantitively compare the performance of various IMs in predicting overturning. A novel IM9 (dimensionless floor displacement) had the best performance with the smallest HR.
- The novel IM9 first used in an overturning fragility analysis performs best by significantly reducing the coefficient of variation compared with some well-known IMs. Thus, IM9 is recommended as an IM for overturning fragility analysis.
- Different widths of analysis strips were used to generate the overturning fragility curves. The results show that the strip width only slightly affects the overturning fragility curves, thus revealing the good robustness of the analysis process.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Symbol | Definition |
2b | Width |
2h | Height |
Size parameter | |
Slenderness parameter | |
Moment of inertia | |
and | Rotation angle and rotational angular acceleration |
Horizontal excitation | |
and | Vertical and horizontal transient distances |
g | Gravity acceleration |
M | Restoring moment |
and | Angular velocities before and after impacts |
Restitution coefficient | |
Rigid-body restitution coefficient | |
Damping force | |
Tangent stiffness | |
Additional moment of inertia | |
δα | Small range around initial position |
Discrete viscous damping coefficient | |
θmax | Peak rocking rotation |
Tp | Period of pulse excitation |
ωP | Circular frequency of pulse excitation |
P | Frequency parameter of block |
PFA | Peak floor acceleration |
PFV | Peak floor velocity |
IM | Intensity measure |
DM | Damage measure |
LS | Limit state |
Conditional probability | |
Overturning probability | |
Probability of DM exceeding LS within safe rocking | |
WHS | Width of the hybrid strip |
RS and RO | IM range corresponding to safe rocking and overturning |
HR | Hybrid ratio |
WSAS | Standard analysis strip width |
Pi | Overturning probability |
Pfit | Fitted overturning probability |
β | Dispersion |
μ | Median value of fragility function |
CV | Coefficient of variation |
References
- Taghavi, S.; Miranda, M.M. Response Assessment of Nonstructural Building Elements; Pacific Earthquake Engineering Research Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Shenton, H.W., III. Criteria for initiation of slide, rock, and slide-rock rigid-body modes. J. Eng. Mech. 1996, 122, 690–693. [Google Scholar] [CrossRef]
- Newmark, N.M. Effects of Earthquakes on Dams and Embankments. Géotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef] [Green Version]
- Garcia, D.L.; Soong, T.T. Sliding fragility of block-type nonstructural components. Part 1: Freestanding components. Earthq. Eng. Struct. Dyn. 2003, 32, 111–129. [Google Scholar] [CrossRef]
- Chaudhuri, S.R.; Hutchinson, T.C. Characterizing frictional behavior for use in predicting the seismic response of unattached equipment. Soil Dyn. Earthq. Eng. 2005, 25, 591–604. [Google Scholar] [CrossRef]
- Konstantinidis, D.; Makris, N. Experimental and analytical studies on the response of freestanding laboratory equipment to earthquake shaking. Earthq. Eng. Struct. Dyn. 2008, 38, 827–848. [Google Scholar] [CrossRef]
- Gazetas, G.; Garini, E.; Berrill, J.B.; Apostolou, M. Sliding and overturning potential of Christchurch 2011 earthquake records. Earthq. Eng. Struct. Dyn. 2012, 41, 1921–1944. [Google Scholar] [CrossRef]
- Nagao, T.; Kagano, H.; Hamaguchi, K. Full-scale shake table test on furnitures subjected to long-period earthquake motions. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Konstantinidis, D.; Nikfar, F. Seismic response of sliding equipment and contents in base-isolated buildings subjected to broadband ground motions. Earthq. Eng. Struct. Dyn. 2014, 44, 865–887. [Google Scholar] [CrossRef]
- Nikfar, F.; Konstantinidis, D. Peak Sliding Demands on Unanchored Equipment and Contents in Base-Isolated Buildings under Pulse Excitation. J. Struct. Eng. 2017, 143, 04017086. [Google Scholar] [CrossRef]
- Housner, G.W. The behavior of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 1963, 53, 403–417. [Google Scholar] [CrossRef]
- Filiatrault, A.; Kuan, S.; Tremblay, R. Shake table testing of bookcase–partition wall systems. Can. J. Civ. Eng. 2004, 31, 664–676. [Google Scholar] [CrossRef]
- Peña, F.; Prieto, F.; Lourenço, P.B.; Costa, A.C.; Lemos, J.V. On the dynamics of rocking motion of single rigid-block structures. Earthq. Eng. Struct. Dyn. 2007, 36, 2383–2399. [Google Scholar] [CrossRef] [Green Version]
- Konstantinidis, D.; Makris, N. Experimental and analytical studies on the response of 1/4-scale models of freestanding laboratory equipment subjected to strong earthquake shake. Bull. Earthq. Eng. 2010, 8, 1457–1477. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, J.A.; Blöchlinger, P.; Wellauer, M.; Vassiliou, M.F.; Stojadinovic, B. Experimental investigation of the seismic response of a column rocking and rolling on a concave base. In Proceedings of the ECCOMAS Congress, VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece, 5–10 June 2016; pp. 5023–5062. [Google Scholar]
- Huang, B.; Pan, Q.; Lu, W.; Shen, F. Free-Rocking Tests of a Freestanding Object with Variation of Center of Gravity. Earthq. Eng. Struct. Dyn. 2021, 50, 3015–3040. [Google Scholar] [CrossRef]
- Vassiliou, M.F.; Broccardo, M.; Cengiz, C.; Dietz, M.; Dihoru, L.; Gunay, S.; Mosalam, K.M.; Mylonakis, G.; Sextos, A.; Stojadinovic, B. Shake table testing of a rocking podium: Results of a blind prediction contest. Earthq. Eng. Struct. Dyn. 2020, 50, 1043–1062. [Google Scholar] [CrossRef]
- Di Sarno, L.; Magliulo, G.; D’Angela, D.; Cosenza, E. Experimental assessment of the seismic performance of hospital cabinets using shake table testing. Earthq. Eng. Struct. Dyn. 2019, 48, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Vassiliou, M.F.; Cengiz, C.; Dietz, M.; Dihoru, L.; Broccardo, M.; Mylonakis, G.; Sextos, A.; Stojadinovic, B. Data set from shake table tests of free-standing rocking bodies. Earthq. Spectra 2021, 37, 2971–2987. [Google Scholar] [CrossRef]
- Shang, Q.; Li, J.; Du, C.; Wang, T. Seismic Fragility Analysis of Freestanding Hospital Cabinets Based on Shaking Table Tests. J. Earthq. Eng. 2022, 1–20. [Google Scholar] [CrossRef]
- Chae, Y.B.; Kim, J.K. Implementation of configuration dependent stiffness proportional damping for the dynamics of rigid multi-block systems. Earthq. Eng. Eng. Vib. 2003, 2, 87–97. [Google Scholar] [CrossRef]
- Di Egidio, A.; Zulli, D.; Contento, A. Comparison between the seismic response of 2D and 3D models of rigid blocks. Earthq. Eng. Eng. Vib. 2014, 13, 151–162. [Google Scholar] [CrossRef]
- Vetr, M.G.; Nouri, A.R.; Kalantari, A. Seismic evaluation of rocking structures through performance assessment and fragility analysis. Earthq. Eng. Eng. Vib. 2016, 15, 115–127. [Google Scholar] [CrossRef]
- Fragiadakis, M.; Kolokytha, M.; Diamantopoulos, S. Seismic risk assessment of rocking building contents of multistorey buildings. Procedia Eng. 2017, 199, 3534–3539. [Google Scholar] [CrossRef]
- Gesualdo, A.; Iannuzzo, A.; Minutolo, V.; Monaco, M. Rocking of freestanding objects: Theoretical and experimental comparisons. J. Theor. Appl. Mech. 2018, 56, 977–991. [Google Scholar] [CrossRef]
- Kasinos, S.; Lombardo, M.; Makris, N.; Palmeri, A. Dynamic response analysis of nonlinear secondary oscillators to idealised seismic pulses. Earthq. Eng. Struct. Dyn. 2020, 49, 1473–1495. [Google Scholar] [CrossRef]
- Manzo, N.R.; Vassiliou, M.F. Simplified analysis of bilinear elastic systems exhibiting negative stiffness behavior. Earthq. Eng. Struct. Dyn. 2020, 50, 580–600. [Google Scholar] [CrossRef]
- D’Angela, D.; Magliulo, G.; Cosenza, E. Towards a reliable seismic assessment of rocking components. Eng. Struct. 2020, 230, 111673. [Google Scholar] [CrossRef]
- Aghagholizadeh, M. A finite element model for seismic response analysis of vertically-damped rocking-columns. Eng. Struct. 2020, 219, 110894. [Google Scholar] [CrossRef]
- Vanin, F.; Penna, A.; Beyer, K. A three-dimensional macroelement for modelling the in-plane and out-of-plane response of masonry walls. Earthq. Eng. Struct. Dyn. 2020, 49, 1365–1387. [Google Scholar] [CrossRef]
- Galvez, F.; Sorrentino, L.; Dizhur, D.; Ingham, J.M. Seismic rocking simulation of unreinforced masonry parapets and façades using the discrete element method. Earthq. Eng. Struct. Dyn. 2022, 51, 1840–1856. [Google Scholar] [CrossRef]
- Scattarreggia, N.; Malomo, D.; DeJong, M.J. A new Distinct Element meso-model for simulating the rocking-dominated seismic response of RC columns. Earthq. Eng. Struct. Dyn. 2023, 52, 828–838. [Google Scholar] [CrossRef]
- Vlachakis, G.; Giouvanidis, A.I.; Mehrotra, A.; Lourenço, P.B. Numerical Block-Based Simulation of Rocking Structures Using a Novel Universal Viscous Damping Model. J. Eng. Mech. 2021, 147, 04021089. [Google Scholar] [CrossRef]
- Ishiyama, Y. Motions of rigid bodies and criteria for overturning by earthquake excitations. Earthq. Eng. Struct. Dyn. 1982, 10, 635–650. [Google Scholar] [CrossRef]
- Kaneko, M.; Hayashi, Y. Overturning criteria and horizontal displacements of rigid bodies to earthquake excitations. J. Struct. Eng. Archit. Inst. Jpn. 1997, 43, 451–458. [Google Scholar]
- Kaneko, M.; Hayashi, Y. A proposal for simple equations to express a relation between overturning ratios of rigid bodies and input excitations. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 1–6 August 2004; p. 14. [Google Scholar]
- Kuo, K.C.; Suzuki, Y.; Katsuragi, S.; Yao, G.C. Shake table tests on clutter levels of typical medicine shelves and contents subjected to earthquakes. Earthq. Eng. Struct. Dyn. 2011, 40, 1367–1386. [Google Scholar] [CrossRef]
- Zhang, J.; Makris, N. Rocking response of freestanding blocks under cycloidal pulses. J. Eng. Mech. 2001, 127, 473–483. [Google Scholar]
- Thiers-Moggia, R.; Málaga-Chuquitaype, C. Dynamic response of post-tensioned rocking structures with inerters. Int. J. Mech. Sci. 2020, 187, 105927. [Google Scholar] [CrossRef]
- Fragiadakis, M.; Psycharis, I.; Cao, Y.; Mavroeidis, G.P. Parametric investigation of the dynamic response of rigid blocks subjected to synthetic near-source ground motion records. In Proceedings of the ECCOMAS Congress, Crete Island, Greece, 5–10 June 2016; pp. 5–10. [Google Scholar]
- Aslam, M.; Godden, W.G.; Scalise, D.T. Earthquake rocking response of rigid bodies. ASCE J. Struct. Div. 1980, 106, 377–392. [Google Scholar] [CrossRef]
- Yim, C.-S.; Chopra, A.K.; Penzien, J. Rocking response of rigid blocks to earthquakes. Earthq. Eng. Struct. Dyn. 1980, 8, 565–587. [Google Scholar] [CrossRef]
- Ibarra, L. Seismic Performance of Dry Casks Storage for Long-Term Exposure; NEUP 12-3756 Final Report; Nuclear Energy University Programs/University of Utah: Salt Lake City, UT, USA, 2016. [Google Scholar]
- Bachmann, J.A.; Strand, M.; Vassiliou, M.F.; Broccardo, M.; Stojadinović, B. Is rocking motion predictable? Earthq. Eng. Struct. Dyn. 2018, 47, 535–552. [Google Scholar] [CrossRef]
- Giannini, R.; Masiani, R. Risposta in frequenza del blocco rigido: Stabilita delle soluzioni. In Proceedings of the 10th Italian Association of Theoretical and Applied Mechanics, Rome, Italy, 15–19 September 2019. [Google Scholar]
- Acikgoz, S.; Ma, Q.; Palermo, A.; DeJong, M.J. Experimental Identification of the Dynamic Characteristics of a Flexible Rocking Structure. J. Earthq. Eng. 2016, 20, 1199–1221. [Google Scholar] [CrossRef] [Green Version]
- Cosenza, E.; Di Sarno, L.; Maddaloni, G.; Magliulo, G.; Petrone, C.; Prota, A. Shake table tests for the seismic fragility evaluation of hospital rooms. Earthq. Eng. Struct. Dyn. 2015, 44, 23–40. [Google Scholar] [CrossRef]
- Feng, M.Q.; Shinozuka, M.; Kim, H.K.; Kim, S.H. Statistical analysis of fragility curves. J. Eng. Mech. 2000, 126, 1224–1231. [Google Scholar]
- Roh, H.; Cimellaro, G.P. Seismic Fragility Evaluation of RC Frame Structures Retrofitted with Controlled Concrete Rocking Column and Damping Technique. J. Earthq. Eng. 2011, 15, 1069–1082. [Google Scholar] [CrossRef]
- Deng, L.; Kutter, B.L.; Kunnath, S.K. Probabilistic Seismic Performance of Rocking-Foundation and Hinging-Column Bridges. Earthq. Spectra 2012, 28, 1423–1446. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lorenzoni, F.; Salvalaggio, M.; Valluzzi, M.R. Seismic vulnerability assessment of free-standing massive masonry columns by the 3D Discrete Element Method. Eng. Struct. 2021, 246, 113004. [Google Scholar] [CrossRef]
- Wagner, M.E.; Wittich, C.E.; Saifullah, M.K. Proficient Vector-Valued Intensity Measures for Overturning of Multi-Modal Three-Dimensional Freestanding Structures. In Proceedings of the 12th National Conference on Earthquake Engineering, Salt Lake City, UT, USA, 27 June–1 July 2022. [Google Scholar]
- Giouvanidis, A.I.; Dimitrakopoulos, E.G. Rocking amplification and strong-motion duration. Earthq. Eng. Struct. Dyn. 2018, 47, 2094–2116. [Google Scholar] [CrossRef]
- Liu, P.; Xue, W.; Pang, H.; Zhang, Y.M.; Chen, H.T.; Yang, W.G. Seismic overturning fragility analysis for freestanding building contents subjected to horizontal bidirectional floor motions. Soil Dyn. Earthq. Eng. 2022, 161, 107414. [Google Scholar] [CrossRef]
- Lachanas, C.G.; Vamvatsikos, D. Rocking incremental dynamic analysis. Earthq. Eng. Struct. Dyn. 2022, 51, 688–703. [Google Scholar] [CrossRef]
- Dimitrakopoulos, E.G.; Paraskeva, T.S. Dimensionless fragility curves for rocking response to near-fault excitations. Earthq. Eng. Struct. Dyn. 2015, 44, 2015–2033. [Google Scholar] [CrossRef]
- Petrone, C.; Di Sarno, L.; Magliulo, G.; Cosenza, E. Numerical modelling and fragility assessment of typical freestanding building contents. Bull. Earthq. Eng. 2017, 15, 1609–1633. [Google Scholar] [CrossRef] [Green Version]
- Sieber, M.; Vassiliou, M.F.; Anastasopoulos, I. Intensity measures, fragility analysis and dimensionality reduction of rocking under far-field ground motions. Earthq. Eng. Struct. Dyn. 2022, 51, 3639–3657. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Liu, X. An Intensity Measure for the Rocking Fragility Analysis of Rigid Blocks Subjected to Floor Motions. Sustainability 2023, 15, 2418. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Qu, Z. A discretely damped SDOF model for the rocking response of freestanding blocks. Earthq. Eng. Eng. Vib. 2022, 21, 729–740. [Google Scholar] [CrossRef]
- Diamantopoulos, S.; Fragiadakis, M. Seismic response assessment of rocking systems using single degree-of-freedom oscillators. Earthq. Eng. Struct. Dyn. 2019, 48, 689–708. [Google Scholar] [CrossRef]
- Weir, G.; McGavin, P. The coefficient of restitution for the idealized impact of a spherical, nano-scale particle on a rigid plane. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2008, 464, 1295–1307. [Google Scholar] [CrossRef]
- McKenna, F. OpenSees: A Framework for Earthquake Engineering Simulation. Comput. Sci. Eng. 2011, 13, 58–66. [Google Scholar] [CrossRef]
- Nasi, K.T.J. Stability of Rocking Structures; Purdue University: Hammond, IN, USA, 2011. [Google Scholar]
- Klaboe, K.; Pujol, S.; Laughery, L. Stability of Rocking Structures; Purdue University Research Repository: Hammond, IN, USA, 2017. [Google Scholar] [CrossRef]
- Klaboe, K.; Pujol, S.; Laughery, L. Seismic Response of Rocking Blocks. Earthq. Spectra 2018, 34, 1051–1063. Available online: https://datacenterhub.org/resources/14255 (accessed on 20 December 2022). [CrossRef]
- D’Angela, D.; Magliulo, G.; Cosenza, E. Seismic damage assessment of unanchored nonstructural components taking into account the building response. Struct. Saf. 2021, 93, 102126. [Google Scholar] [CrossRef]
- Taghavi, S.; Miranda, E. Approximate Floor Acceleration Demands in Multistory Buildings. II: Applications. J. Struct. Eng. 2005, 131, 212–220. [Google Scholar] [CrossRef]
- Huang, Y.; Beck, J.L.; Li, H. Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment. Comput. Methods Appl. Mech. Eng. 2017, 318, 382–411. [Google Scholar] [CrossRef] [Green Version]
- Linde, S.A.; Konstantinidis, D.; Tait, M.J. Rocking response of unanchored building contents considering horizontal and vertical excitation. J. Struct. Eng. 2020, 146, 04020175. [Google Scholar] [CrossRef]
- Dimitrakopoulos, E.G.; DeJong, M.J. Overturning of Retrofitted Rocking Structures under Pulse-Type Excitations. J. Eng. Mech. 2012, 138, 963–972. [Google Scholar] [CrossRef]
- Gehl, P.; Seyedi, D.M.; Douglas, J. Vector-valued fragility functions for seismic risk evaluation. Bull. Earthq. Eng. 2012, 11, 365–384. [Google Scholar] [CrossRef] [Green Version]
Intensity Measure | Expression | Physical Meaning | Ref |
---|---|---|---|
IM1 | Dimensionless excitation frequency | [38] | |
IM2 | Dimensionless PFA | [38] | |
IM3 | Dimensionless PFV | [56] | |
IM4 | Dimensionless combinations of PFA and floor motion frequency | [56] | |
IM5 | [56] | ||
IM6 | [56] | ||
IM7 | [56] | ||
IM8 | Dimensionless PFV considering the restitution coefficient | [58] | |
IM9 | * | Dimensionless floor displacement | [59] |
IM | WHS | RS | RO | WHS/RS | WHS/RO | HR | WSAS |
---|---|---|---|---|---|---|---|
IM1 | 4.00 | 8.00 | 5.50 | 0.50 | 0.73 | 0.88 | 0.80 |
IM2 | 9.50 | 9.50 | 9.50 | 1.00 | 1.00 | 1.41 | 1.90 |
IM3 | 1.00 | 1.40 | 10.00 | 0.71 | 0.10 | 0.72 | 0.20 |
IM4 | 1.09 | 1.40 | 70.52 | 0.78 | 0.02 | 0.78 | 0.20 |
IM5 | 10.43 | 10.46 | 65.42 | 1.00 | 0.16 | 1.01 | 2.00 |
IM6 | 0.62 | 1.01 | 2.68 | 0.61 | 0.23 | 0.65 | 0.12 |
IM7 | 1.12 | 1.49 | 3.34 | 0.75 | 0.34 | 0.83 | 0.20 |
IM8 | 0.98 | 1.14 | 8.08 | 0.86 | 0.12 | 0.87 | 0.19 |
IM9 | 8.77 | 17.07 | 543.92 | 0.51 | 0.02 | 0.51 | 1.70 |
IM | WAS = WSAS/2 | WAS = WSAS | WAS = 2WSAS | ||||||
---|---|---|---|---|---|---|---|---|---|
μ | β | CV (%) | μ | β | CV (%) | μ | β | CV (%) | |
IM1 | 4.60 | 0.32 | 6.96 | 4.77 | 0.32 | 6.71 | 4.68 | 0.28 | 5.98 |
IM2 | 7.65 | 1.48 | 19.35 | 7.97 | 1.72 | 21.59 | 8.19 | 2.22 | 27.12 |
IM3 | 1.39 | 0.12 | 8.63 | 1.36 | 0.14 | 10.32 | 1.40 | 0.13 | 9.27 |
IM4 | 1.28 | 0.11 | 8.58 | 1.27 | 0.14 | 11.05 | 1.32 | 0.13 | 9.82 |
IM5 | 8.01 | 0.40 | 5.00 | 7.43 | 0.48 | 6.46 | 7.76 | 0.51 | 6.57 |
IM6 | 1.25 | 0.07 | 5.59 | 1.27 | 0.07 | 5.52 | 1.27 | 0.09 | 7.10 |
IM7 | 1.74 | 0.10 | 5.73 | 1.73 | 0.12 | 6.92 | 1.72 | 0.12 | 6.97 |
IM8 | 1.11 | 0.11 | 9.94 | 1.09 | 0.14 | 12.88 | 1.06 | 0.26 | 24.57 |
IM9 | 12.80 | 0.17 | 1.33 | 13.15 | 0.15 | 1.14 | 13.28 | 0.15 | 1.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Huang, Y.; Liu, X. Seismic Overturning Fragility Analysis for Rigid Blocks Subjected to Floor Motions. Sustainability 2023, 15, 4945. https://doi.org/10.3390/su15064945
Liu H, Huang Y, Liu X. Seismic Overturning Fragility Analysis for Rigid Blocks Subjected to Floor Motions. Sustainability. 2023; 15(6):4945. https://doi.org/10.3390/su15064945
Chicago/Turabian StyleLiu, Hanquan, Yong Huang, and Xiaohui Liu. 2023. "Seismic Overturning Fragility Analysis for Rigid Blocks Subjected to Floor Motions" Sustainability 15, no. 6: 4945. https://doi.org/10.3390/su15064945
APA StyleLiu, H., Huang, Y., & Liu, X. (2023). Seismic Overturning Fragility Analysis for Rigid Blocks Subjected to Floor Motions. Sustainability, 15(6), 4945. https://doi.org/10.3390/su15064945