Spatial and Temporal Study of Supernatant Process Water Pond in Tailings Storage Facilities: Use of Remote Sensing Techniques for Preventing Mine Tailings Dam Failures
Abstract
:1. Introduction
1.1. Responsible and Safe Mine Tailings Management—A Worldwide Priority
1.2. Aim of the Article
- To describe a study of practical cases of mine tailings management to prevent TSF failures. This research considers different cases of tailings deposits, where the spatial and temporal behavior of the supernatant process water pond and wet tailings zone of the deposited mine tailings is analyzed, using remote sensing techniques based on multispectral satellite imagery.
- In addition, as a second objective to understand the current state of the art, a brief description of the theory (engineering studies) and practice (construction and operation activities) for the control and management of the supernatant process water pond in tailings deposits are presented.
2. State of the Art of Supernatant Process Water Pond Management in Tailings Storage Facilities
3. Materials and Methods
3.1. Characteristics of Tailings Storage Facilities Considered as Study Cases
3.1.1. Quebrada Honda Tailings Storage Facility—Peru
3.1.2. Quebrada Enlozada Tailings Storage Facility—Peru
3.1.3. Laguna Seca Tailings Storage Facility—Chile
3.1.4. Caren Tailings Storage Facility—Chile
3.1.5. Jagersfontain Tailings Storage Facility—South Africa
3.1.6. Williamson Tailings Storage Facility—Tanzania
3.2. Remote Sensing Techniques Applied for Monitoring Tailings Storage Facilities—Analysis and Management of Satellite Imagery
3.3. Spatial Analysis—Use of Satellite Imagery to Study the Location and Surface Size of Wet Tailings and Supernatant Process Water Ponds in Tailings Storage Facilities
3.4. Temporal Analysis—Use Satellite Imagery to Understand the Dynamic Behavior of Wet Tailings and Supernatant Water Ponds of Tailings Storage Facilities
- To evaluate the trend and its significance, the Mann–Kendall test was used at a minimum significance level of 95%, as well as the coefficient of determination (R2) and slope analysis.
- For seasonality, the combined seasonality test was carried out, consisting of the Kruskal–Wallis seasonality test, the Friedman seasonality presence test, and the evaluative seasonality test, used in the open-source software specialized in series: JDemetra + 2.2.4 (available at: https://jdemetradocumentation.github.io/JDemetra-documentation/; accessed on 14 December 2022), providing textual seasonality results (present, probably not present, and not present), at the level of 95% confidence (more detail at https://jdemetradocumentation.github.io/JDemetra-documentation/pages/theory/Tests_combined.html; accessed on 14 December 2022).
- To evaluate the variability, the correlation was made between the annual variation coefficient (CV, expressed as a percentage) and the annual average of the area of each material evaluated.
4. Results
4.1. Detection of Presence of Supernatant Process Water Pond and Wet Tailings in TSFs
4.2. Spatial Analysis of Wet Tailings and Supernatant Process Water Pond in Tailings Storage Facilities
- Conservative management of tailings;
- Intermediate management of tailings;
- Nonconservative management of tailings.
4.3. Temporal Analysis of Wet Tailings and Supernatant Process Water Pond in Tailings Storage Facilities
4.3.1. Seasonality Analysis of Wet Tailings and Process Water Ponds in Tailings Storage Facilities
4.3.2. Variability Analysis of Wet Tailings and Supernatant Process Water Pond in Tailings Storage Facilities
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TSF | Tailings storage facility |
NDWI | Normalized Difference Water Index |
mNDWI | Modified Normalized Difference Water Index |
EVI | Enhanced Vegetation Index |
NDVI | Normalized Difference Vegetation Index |
Swir1 | Shortwave infrared 1 |
NIR | Near infrared |
GEE | Google Earth Engine |
GIS | Geographical Information System |
IoT | Internet of Things |
CV | Coefficient of variation |
R2 | Coefficient of determination |
BATs | Best available technologies |
CTD | Conventional tailings disposal |
TTD | Thickened tailings disposal |
PTD | Paste tailings disposal |
FTD | Filtered tailings disposal |
Cw | Slurry tailings solids content by weight |
mtpd | Metric tons per day |
masl | Meters above sea level |
Ha | Hectare |
References
- Cacciuttolo, C.; Cano, D. Environmental Impact Assessment of Mine Tailings Spill Considering Metallurgical Processes of Gold and Copper Mining: Case Studies in the Andean Countries of Chile and Peru. Water 2022, 14, 3057. [Google Scholar] [CrossRef]
- Islam, K.; Murakami, S. Global-scale impact analysis of mine tailings dam failures: 1915–2020. Glob. Environ. Chang. 2021, 70, 102361. [Google Scholar] [CrossRef]
- Kemp, D.; Owen, J.R.; Lèbre, É. Tailings facility failures in the global mining industry: Will a ‘transparency turn’ drive change? Bus Strategy Environ. 2021, 30, 122–134. [Google Scholar] [CrossRef]
- Owen, J.R.; Kemp, D.; Lèbre Svobodova, K.; Pérez Murillo, G. Catastrophic tailings dam failures and disaster risk disclosure. Int. J. Disaster Risk Reduct. 2020, 42, 101361. [Google Scholar] [CrossRef]
- Piciullo, L.; Storrøsten, E.B.; Liu, Z.; Nadim, F.; Lacasse, S. A new look at the statistics of tailings dam failures. Eng. Geol. 2022, 303, 106657. [Google Scholar] [CrossRef]
- Armstrong, M.; Petter, R.; Petter, C. Why have so many tailings dams failed in recent years? Resour. Policy 2019, 63, 101412. [Google Scholar] [CrossRef]
- Armstrong, M.; Langrené, N.; Petter, R.; Chen, W.; Petter, C. Accounting for tailings dam failures in the valuation of mining projects. Resour. Policy 2019, 63, 101461. [Google Scholar] [CrossRef]
- Hatje, V.; Pedreira, R.M.A.; de Rezende, C.E.; Schettini, C.A.F.; De Souza, G.C.; Marin, D.C.; Hackspacher, P.C. The environmental impacts of one of the largest tailing dam failures worldwide. Sci. Rep. 2017, 7, 10706. [Google Scholar] [CrossRef] [Green Version]
- Nungesser, S.L.; Pauliuk, S. Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains. Resources 2022, 11, 95. [Google Scholar] [CrossRef]
- Rana, N.M.; Ghahramani, N.; Evans, S.G.; Small, A.; Skermer, N.; McDougall, S.; Take, W.A. Global magnitude-frequency statistics of the failures and impacts of large water-retention dams and mine tailings impoundments. Earth-Science Rev. 2022, 232, 104144. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Pastor, A.; Valderrama, P.; Atencio, E. Process Water Management and Seepage Control in Tailings Storage Facilities: Engineered Environmental Solutions Applied in Chile and Peru. Water 2023, 15, 196. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.-M.; Zhu, Q.; Horgan, F.G.; Zhang, Q. Risk assessment for tailings dams in Brumadinho of Brazil using InSAR time series approach. Sci. Total. Environ. 2020, 717, 137125. [Google Scholar] [CrossRef] [PubMed]
- Dedring, T.; Graw, V.; Thygesen, K.; Rienow, A. Validation of an Empirical Model with Risk Assessment Functionalities to Simulate and Evaluate the Tailings Dam Failure in Brumadinho. Sustainability 2022, 14, 6681. [Google Scholar] [CrossRef]
- Cacciuttolo Vargas, C.; Marinovic Pulido, A. Sustainable Management of Thickened Tailings in Chile and Peru: A Review of Practical Experience and Socio-Environmental Acceptance. Sustainability 2022, 14, 10901. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Atencio, E. Past, Present, and Future of Copper Mine Tailings Governance in Chile (1905–2022): A Review in One of the Leading Mining Countries in the World. Int. J. Environ. Res. Public Health 2022, 19, 13060. [Google Scholar] [CrossRef] [PubMed]
- Cacciuttolo Vargas, C.; Pérez Campomanes, G. Practical Experience of Filtered Tailings Technology in Chile and Peru: An Environmentally Friendly Solution. Minerals 2022, 12, 889. [Google Scholar] [CrossRef]
- East, D.; Fernandez, R. Managing Water to Minimize Risk in Tailings Storage Facility Design, Construction, and Operation. Mine Water Environ. 2021, 40, 36–41. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Valenzuela, F. Efficient Use of Water in Tailings Management: New Technologies and Environmental Strategies for the Future of Mining. Water 2022, 14, 1741. [Google Scholar] [CrossRef]
- Kossoff, D.; Dubbin, W.; Alfredsson, M.; Edwards, S.; Macklin, M.; Hudson-Edwards, K. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, R.N.; Moreira, V.R.; Cruz, J.R.; Saliba, A.P.; Amaral, M.C. History of tailings dam failure: Impacts on access to safe water and influence on the legislative framework. Sci. Total. Environ. 2022, 852, 158536. [Google Scholar] [CrossRef]
- Cacciuttolo, C.; Atencio, E. An Alternative Technology to Obtain Dewatered Mine Tailings: Safe and Control Environmental Management of Filtered and Thickened Copper Mine Tailings in Chile. Minerals 2022, 12, 1334. [Google Scholar] [CrossRef]
- Tuomela, A.; Ronkanen, A.-K.; Rossi, P.M.; Rauhala, A.; Haapasalo, H.; Kujala, K. Using Geomembrane Liners to Reduce Seepage through the Base of Tailings Ponds—A Review and a Framework for Design Guidelines. Geosciences 2021, 11, 93. [Google Scholar] [CrossRef]
- Lim, B.; Alorro, R.D. Technospheric Mining of Mine Wastes: A Review of Applications and Challenges. Sustain. Chem. 2021, 2, 686–706. [Google Scholar] [CrossRef]
- Schoenberger, E. Environmentally sustainable mining: The case of tailings storage facilities. Resour. Policy 2016, 49, 119–128. [Google Scholar] [CrossRef]
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.M.; Moran, C.J. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- Innis, S.; Kunz, N.C. The role of institutional mining investors in driving responsible tailings management. Extr. Ind. Soc. 2020, 7, 1377–1384. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; de Oliveira, M.D.; Oliveira, M.S.; Libânio, M.; Junior, R.F.D.V.; Silva, M.M.A.P.D.M.; Pissarra, T.C.T.; de Melo, M.C.; Valera, C.A.; Fernandes, L.F.S. Water security threats and challenges following the rupture of large tailings dams. Sci. Total. Environ. 2022, 834, 155285. [Google Scholar] [CrossRef]
- Hancock, G. A method for assessing the long-term integrity of tailings dams. Sci. Total. Environ. 2021, 779, 146083. [Google Scholar] [CrossRef]
- Burritt, R.L.; Christ, K.L. Full cost accounting: A missing consideration in global tailings dam management. J. Clean. Prod. 2021, 321, 129016. [Google Scholar] [CrossRef]
- Dong, L.; Deng, S.; Wang, F. Some developments and new insights for environmental sustainability and disaster control of tailings dam. J. Clean. Prod. 2020, 269, 122270. [Google Scholar] [CrossRef]
- Adiansyah, J.S.; Rosano, M.; Vink, S.; Keir, G. A framework for a sustainable approach to mine tailings management: Disposal strategies. J. Clean. Prod. 2015, 108, 1050–1062. [Google Scholar] [CrossRef] [Green Version]
- Adiansyah, J.S.; Rosano, M.; Vink, S.; Keir, G.; Stokes, J.R. Synergising water and energy requirements to improve sustainability performance in mine tailings management. J. Clean. Prod. 2016, 133, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Araya, N.; Ramírez, Y.; Cisternas, L.A.; Kraslawski, A. Use of real options to enhance water-energy nexus in mine tailings management. Appl. Energy 2021, 303, 117626. [Google Scholar] [CrossRef]
- Araujo, F.S.M.; Taborda-Llano, I.; Nunes, E.B.; Santos, R.M. Recycling and Reuse of Mine Tailings: A Review of Advancements and Their Implications. Geosciences 2022, 12, 319. [Google Scholar] [CrossRef]
- Beylot, A.; Bodénan, F.; Guezennec, A.-G.; Muller, S. LCA as a support to more sustainable tailings management: Critical review, lessons learnt and potential way forward. Resour. Conserv. Recycl. 2022, 183, 106347. [Google Scholar] [CrossRef]
- Franks, D.; Boger, D.V.; Côte, C.M.; Mulligan, D.R. Sustainable development principles for the disposal of mining and mineral processing wastes. Resour. Policy 2011, 36, 114–122. [Google Scholar] [CrossRef]
- Kinnunen, P.; Karhu, M.; Yli-Rantala, E.; Kivikytö-Reponen, P.; Mäkinen, J. A review of circular economy strategies for mine tailings. Clean. Eng. Technol. 2022, 8, 100499. [Google Scholar] [CrossRef]
- Araya, N.; Quiñonez, O.M.; Cisternas, L.A.; Kraslawski, A. Sustainable Development Goals in Mine Tailings Management: Targets and Indicators. Mater. Proc. 2021, 5, 82. [Google Scholar] [CrossRef]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Poswa, T.T.; Davies, T.C. The Nature and Articulation of Ethical Codes on Tailings Management in South Africa. Geosciences 2017, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Zhao, J.; Qin, Y.; Yang, J.; Cui, Y.; Song, H.; Ma, L.; Jin, N.; Meng, Q. Changes in Water Surface Area during 1989–2017 in the Huai River Basin using Landsat Data and Google Earth Engine. Remote Sens. 2019, 11, 1824. [Google Scholar] [CrossRef] [Green Version]
- O'Donovan, C.; Adam, E.; Torres-Cruz, L. Remote sensing of the decant pond of tailings dams: Insights from a South African case study. J. South. Afr. Inst. Min. Met. 2022, 122, 167–172. [Google Scholar] [CrossRef]
- Yan, D.; Li, G.; Li, X.; Zhang, H.; Lei, H.; Lu, K.; Cheng, M.; Zhu, F. An Improved Faster R-CNN Method to Detect Tailings Ponds from High-Resolution Remote Sensing Images. Remote Sens. 2021, 13, 2052. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, Z.; Yang, X. Mine tailing extraction indexes and model using remote-sensing images in southeast Hubei Province. Environ. Earth Sci. 2019, 78, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ammirati, L.; Chirico, R.; Di Martire, D.; Mondillo, N. Application of Multispectral Remote Sensing for Mapping Flood-Affected Zones in the Brumadinho Mining District (Minas Gerais, Brasil). Remote Sens. 2022, 14, 1501. [Google Scholar] [CrossRef]
- Cheng, D.; Cui, Y.; Li, Z.; Iqbal, J. Watch Out for the Tailings Pond, a Sharp Edge Hanging over Our Heads: Lessons Learned and Perceptions from the Brumadinho Tailings Dam Failure Disaster. Remote Sens. 2021, 13, 1775. [Google Scholar] [CrossRef]
- Porsani, J.L.; de Jesus, F.A.N.; Stangari, M.C. GPR survey on an iron mining area after the collapse of the tailings Dam I at the Córrego do Feijão mine in Brumadinho-MG. Remote Sens. 2019, 11, 860. [Google Scholar] [CrossRef] [Green Version]
- Mura, J.C.; Gama, F.F.; Paradella, W.R.; Negrão, P.; Carneiro, S.; De Oliveira, C.G.; Brandão, W.S. Monitoring the vulnerability of the dam and dikes in Germano iron mining area after the collapse of the tailings dam of fundão (Mariana-MG, Brazil) using DInSAR techniques with terraSAR-X data. Remote Sens. 2018, 10, 1507. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Chen, Z.; Zhang, B.; Li, B.; Lu, K.; Lu, L.; Guo, H. Detection of Tailings Dams Using High-Resolution Satellite Imagery and a Single Shot Multibox Detector in the Jing–Jin–Ji Region, China. Remote Sens. 2020, 12, 2626. [Google Scholar] [CrossRef]
- Chalkley, R.; Crane, R.A.; Eyre, M.; Hicks, K.; Jackson, K.-M.; Hudson-Edwards, K.A. A Multi-Scale Feasibility Study into Acid Mine Drainage (AMD) Monitoring Using Same-Day Observations. Remote Sens. 2023, 15, 76. [Google Scholar] [CrossRef]
- Olguín, S.; Araya, V.; Suazo, G.; Villavicencio, G. Application of InSAR deformation monitoring tools to study tail-ings dam failures. Obras Y Proyectos. 2022, 31, 85–94. [Google Scholar] [CrossRef]
- Ma, B.; Chen, Y.; Zhang, S.; Li, X. Remote Sensing Extraction Method of Tailings Ponds in Ultra-Low-Grade Iron Mining Area Based on Spectral Characteristics and Texture Entropy. Entropy 2018, 20, 345. [Google Scholar] [CrossRef] [Green Version]
- Dold, B. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings. Minerals 2014, 4, 621–641. [Google Scholar] [CrossRef] [Green Version]
- Ojeda-Pereira, I.; Campos-Medina, F. International trends in mining tailings publications: A descriptive bibliometric study. Resour. Policy 2021, 74, 102272. [Google Scholar] [CrossRef]
- Lumbroso, D.; McElroy, C.; Goff, C.; Collell, M.R.; Petkovsek, G.; Wetton, M. The potential to reduce the risks posed by tailings dams using satellite-based information. Int. J. Disaster Risk Reduct. 2019, 38, 101209. [Google Scholar] [CrossRef]
- Mei, S.; Zhong, Q.; Chen, S.; Shan, Y. Investigation of the overtopping-induced breach of tailings dams. Comput. Geotech. 2022, 149, 104864. [Google Scholar] [CrossRef]
- Ledesma, O.; Sfriso, A.; Manzanal, D. Procedure for assessing the liquefaction vulnerability of tailings dams. Comput. Geotech. 2022, 144, 104632. [Google Scholar] [CrossRef]
- Mafra, C.; Bouzahzah, H.; Stamenov, L.; Gaydardzhiev, S. An integrated management strategy for acid mine drainage control of sulfidic tailings. Miner. Eng. 2022, 185, 107709. [Google Scholar] [CrossRef]
- Dold, B. Submarine tailings disposal (STD)—A review. Minerals 2014, 4, 642–666. [Google Scholar] [CrossRef] [Green Version]
- Balaniuk, R.; Isupova, O.; Reece, S. Mining and Tailings Dam Detection in Satellite Imagery Using Deep Learning. Sensors 2020, 20, 6936. [Google Scholar] [CrossRef]
- Gama, F.F.; Mura, J.; Paradella, W.R.; De Oliveira, C.G. Deformations Prior to the Brumadinho Dam Collapse Revealed by Sentinel-1 InSAR Data Using SBAS and PSI Techniques. Remote Sens. 2020, 12, 3664. [Google Scholar] [CrossRef]
- Gama, F.F.; Cantone, A.; Mura, J.C. Monitoring Horizontal and Vertical Components of SAMARCO Mine Dikes Deformations by DInSAR-SBAS Using TerraSAR-X and Sentinel-1 Data. Mining 2022, 2, 725–745. [Google Scholar] [CrossRef]
- Rotta, L.H.; Alcântara, E.; Park, E.; Negri, R.G.; Lin, Y.N.; Bernardo, N.; Mendes, T.S.; Souza Filho, C.R. The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102119. [Google Scholar]
- Pissarra, T.C.T.; Costa, R.C.A.; Junior, R.F.D.V.; Silva, M.M.A.P.D.M.; da Costa, A.M.; Fernandes, L.F.S.; de Melo, M.C.; Valera, C.A.; Pacheco, F.A.L. Role of Mine Tailings in the Spatio-Temporal Distribution of Phosphorus in River Water: The Case of B1 Dam Break in Brumadinho. Water 2022, 14, 1572. [Google Scholar] [CrossRef]
- Yang, J.; Hu, J.; Wu, Y.; Zhang, B. Numerical Simulation of Seepage and Stability of Tailing Dams: A Case Study in Ledong, China. Sustainability 2022, 14, 12393. [Google Scholar] [CrossRef]
Mine Tailings Management Mode | Tailings Storage Facility Name | Maximum Surface Ha | Tendency (R2) | Tendency Line Model | Tendency (Significance of Mann–Kendall) | Combined Seasonality Test |
---|---|---|---|---|---|---|
Conservative Management | Quebrada Enlozada | |||||
Wet Tailings | 338.67 | 0.2715 | y = 1.0018x + 185.77 | 0.000 ** | Not present | |
Supernatant Water | 195.17 | 0.0273 | y = −0.2148x + 101.58 | 0.165 | Not present | |
Quebrada Honda | ||||||
Wet Tailings | 893.88 | 0.0612 | y = 1.8985x + 495.95 | 0.008 ** | Not present | |
Supernatant Water | 248.16 | 0.0028 | y = 0.1207x + 120.17 | 0.781 | Not present | |
Intermediate Management | Laguna Seca | |||||
Wet Tailings | 4257.745 | 0.4842 | y = 31.355x + 1562.7 | 0.000 ** | Present | |
Supernatant Water | 285.16 | 0.0000 | y = 0.0098x + 156.49 | 0.865 | Present | |
Caren | ||||||
Wet Tailings | 2494.585 | 0.0402 | y = 4.9121x + 310.31 | 0.194 | Probably not present | |
Supernatant Water | 995.886 | 0.0288 | y = −0.6837x + 550.07 | 0.229 | Present | |
Non Conservative Management | Jagersfontein | |||||
Wet Tailings | 63.345 | 0.0093 | y = −0.1356x + 51.751 | 0.008 ** | Present | |
Supernatant Water | 19.753 | 0.0027 | y = −0.0261x + 10.155 | 0.003 ** | Not present | |
Williamson | ||||||
Wet Tailings | 91.56 | 0.0962 | y = 0.294x + 16.073 | 0.968 | Not present | |
Supernatant Water | 45.14 | 0.0170 | y = −0.0186x + 1.5148 | 0.761 | Not present |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciuttolo, C.; Cano, D. Spatial and Temporal Study of Supernatant Process Water Pond in Tailings Storage Facilities: Use of Remote Sensing Techniques for Preventing Mine Tailings Dam Failures. Sustainability 2023, 15, 4984. https://doi.org/10.3390/su15064984
Cacciuttolo C, Cano D. Spatial and Temporal Study of Supernatant Process Water Pond in Tailings Storage Facilities: Use of Remote Sensing Techniques for Preventing Mine Tailings Dam Failures. Sustainability. 2023; 15(6):4984. https://doi.org/10.3390/su15064984
Chicago/Turabian StyleCacciuttolo, Carlos, and Deyvis Cano. 2023. "Spatial and Temporal Study of Supernatant Process Water Pond in Tailings Storage Facilities: Use of Remote Sensing Techniques for Preventing Mine Tailings Dam Failures" Sustainability 15, no. 6: 4984. https://doi.org/10.3390/su15064984
APA StyleCacciuttolo, C., & Cano, D. (2023). Spatial and Temporal Study of Supernatant Process Water Pond in Tailings Storage Facilities: Use of Remote Sensing Techniques for Preventing Mine Tailings Dam Failures. Sustainability, 15(6), 4984. https://doi.org/10.3390/su15064984