Use of Arbuscular Mycorrhizal Fungi for Boosting Antioxidant Enzyme Metabolism and Mitigating Saline Stress in Sweet Basil (Ocimum basilicum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Saline and Mycorrhiza Applications
2.3. Physical Analyses and Chlorophyll Contents
2.4. Enzyme Analyses
2.4.1. Malondialdehyde (MDA) Analysis
2.4.2. Hydrogen Peroxide (H2O2) Analysis
2.4.3. Preparation of Plant Extracts for the Analysis of Antioxidant Enzymes
2.4.4. Catalase (CAT) Analysis
2.4.5. Ascorbate Peroxidase (APX) Analysis
2.4.6. Superoxide Dismutase (SOD) Analysis
2.5. Statistical Analysis
3. Results
3.1. Plant Height, Fresh Herbal, Dry Herbal, Fresh Leaf, and Dry Leaf Yields
3.2. Enzymatic Responses to AMF Inoculation
3.3. Relationships between Yield Parameters and Enzymes Affected by Saline Stress
3.4. Interrelations of Yield Traits, AMF Treatment, and Salinity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noceto, P.A.; Bettenfeld, P.; Boussageon, R.; Hériché, M.; Sportes, A.; van Tuinen, D.; Courty, P.E.; Wipf, D. Arbuscular mycorrhizal fungi, a key symbiosis in the development of quality traits in crop production, alone or combined with plant growth-promoting bacteria. Mycorrhiza 2021, 31, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Evelin, H.; Devi, T.S.; Gupta, S.; Kapoor, R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. Front. Plant Sci. 2019, 10, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina-Santiago, C.; Matilla, M.A. Chemical fertilization: A short-term solution for plant productivity? Microb. Biotechnol. 2020, 13, 1311. [Google Scholar] [CrossRef] [Green Version]
- Zaman, M.; Shahid, S.A.; Heng, L. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 1st ed.; Springer Nature: Cham, Switzerland, 2018; pp. 1–164. [Google Scholar]
- Yilmaz, H.; Kulaz, H. The effects of plant growth promoting rhizobacteria on antioxidant activity in chickpea (Cicer arietinum L.) under salt stress. Legume Res.-Int. J. 2019, 42, 72–76. [Google Scholar] [CrossRef]
- Yılmaz, A. Vermicompost enhances saline tolerance in peanut (Arachis hypogaea L.). Black Sea J. Agric. 2023, 6, 1–7. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Boopathi, T.; Manivannan, P. Comprehensive assessment of ameliorative effects of AMF in alleviating abiotic stress in tomato plants. J. Fungi 2021, 7, 303. [Google Scholar] [CrossRef]
- Yilmaz, A. Mixed consortium of microbial inoculants improves yield and essential oil profile of coriander. J. Biosci. Bioeng. 2022, 5, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Bhantana, P.; Rana, M.S.; Sun, X.C.; Moussa, M.G.; Saleem, M.H.; Syaifudin, M.; Shah, A.; Poudel, A.; Pun, A.B.; Bhat, M.A.; et al. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021, 84, 19–37. [Google Scholar] [CrossRef]
- Ai, Y.J.; Li, F.P.; Yang, J.Q.; Lu, S.; Gu, H.H. Research progress and potential functions of AMF and GRSP in the ecological remediation of metal tailings. Sustainability 2022, 14, 9611. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, A.; Karik, Ü. AMF and PGPR enhance yield and secondary metabolite profile of basil (Ocimum basilicum L.). Ind. Crops Prod. 2022, 176, 114327. [Google Scholar] [CrossRef]
- Marro, N.; Cofre, N.; Grilli, G.; Alvarez, C.; Labuckas, D.; Maestri, D.; Urcelay, C. Soybean yield, protein content and oil quality in response to interaction of arbuscular mycorrhizal fungi and native microbial populations from mono-and rotation-cropped soils. Appl. Soil Ecol. 2020, 152, 103575. [Google Scholar] [CrossRef]
- Ebrahim, M.K.; Saleem, A.R. Alleviating salt stress in tomato inoculated with mycorrhizae: Photosynthetic performance and enzymatic antioxidants. J. Taibah Univ. Sci. 2017, 11, 850–860. [Google Scholar] [CrossRef] [Green Version]
- Ait-El-Mokhtar, M.; Baslam, M.; Ben-Laouane, R.; Anli, M.; Boutasknit, A.; Mitsui, T.; Wahbi, S.; Meddich, A. Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L.) by the application of arbuscular mycorrhizal fungi and/or compost. Front. Sustain. Food Syst. 2020, 4, 131. [Google Scholar] [CrossRef]
- Tisarum, R.; Theerawitaya, C.; Samphumphuang, T.; Polispitak, K.; Thongpoem, P.; Singh, H.P.; Cha-Um, S. Alleviation of salt stress in upland rice (Oryza sativa L. ssp. indica cv. Leum Pua) using arbuscular mycorrhizal fungi inoculation. Front. Plant Sci. 2020, 11, 348. [Google Scholar] [CrossRef] [Green Version]
- Ndiate, N.I.; Zaman, Q.U.; Francis, I.N.; Dada, O.A.; Rehman, A.; Asif, M.; Goffner, D.; Kane, A.; Haider, F.U. Soil Amendment with Arbuscular Mycorrhizal Fungi and Biochar Improves Salinity Tolerance, Growth, and Lipid Metabolism of Common Wheat (Triticum aestivum L.). Sustainability 2022, 14, 3210. [Google Scholar] [CrossRef]
- Jabborova, D.; Ma, H.; Bellingrath-Kimura, S.D.; Wirth, S. Impacts of biochar on basil (Ocimum basilicum) growth, root morphological traits, plant biochemical and physiological properties and soil enzymatic activities. Sci. Hortic. 2021, 290, 110518. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. Int. J. Food Prop. 2020, 23, 1961–1970. [Google Scholar] [CrossRef]
- Tolay, I. The impact of different Zinc (Zn) levels on growth and nutrient uptake of Basil (Ocimum basilicum L.) grown under salinity stress. PLoS ONE 2021, 16, e0246493. [Google Scholar] [CrossRef]
- Santini, G.; Rodolfi, L.; Biondi, N.; Sampietro, G.; Tredici, M.R. Effects of cyanobacterial-based biostimulants on plant growth and development: A case study on basil (Ocimum basilicum L.). J. Appl. Phycol. 2022, 34, 2063–2073. [Google Scholar] [CrossRef]
- Heidari, M. Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. Afr. J. Biotechnol. 2012, 11, 379–384. [Google Scholar]
- Sairam, R.K.; Saxena, D.C. Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance. J. Agron. Crop Sci. 2000, 184, 55–61. [Google Scholar] [CrossRef]
- Velikova, P.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 15, 59–66. [Google Scholar] [CrossRef]
- Jebara, S.; Jebara, M.; Liman, F.; Aouani, E. Changes in ascorbate peroxidase, catalase, guaicol peroxidase and superoxide dismutase activities in common bean nodules under salt stres. J. Plant Physiol. 2005, 162, 929–936. [Google Scholar] [CrossRef]
- Sairam, R.K.; Srivastava, G.C.; Agarwal, S.; Meena, R.C. Differences in antioxidant activity in response to salinity stres intolerant and susceptible wheat genotypes. Biol. Planta 2005, 49, 85–91. [Google Scholar] [CrossRef]
- Rahnama, H.; Ebrahimzadeh, H. The effect of NaCl on antioxidant enzyme activities in potato seedlings. Biol. Planta 2005, 49, 93–97. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package ‘corrplot’. Statistician 2017, 56, e24. [Google Scholar]
- Wickham, H. Programming with ggplot2. In ggplot2: Elegant Graphics for Data Analysis; Springer International Publishing: Cham, Switzerland, 2016; pp. 241–253. [Google Scholar]
- Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Amanifar, S.; Toghranegar, Z. The efficiency of arbuscular mycorrhiza for improving tolerance of Valeriana officinalis L. and enhancing valerenic acid accumulation under salinity stress. Ind. Crops Prod. 2020, 147, 112234. [Google Scholar] [CrossRef]
- Ait-El-Mokhtar, M.; Laouane, R.B.; Anli, M.; Boutasknit, A.; Wahbi, S.; Meddich, A. Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci. Hortic. 2019, 253, 429–438. [Google Scholar] [CrossRef]
- Li, Z.; Wu, N.; Meng, S.; Wu, F.; Liu, T. Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS ONE 2020, 15, e0231497. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Yue, J.; Wang, J.; Jia, Z.; Li, C.; Zeng, J.; Liu, X.; Zhang, J. Arbuscular Mycorrhizal Fungi Alleviate Salt Stress Damage by Coordinating Nitrogen Utilization in Leaves of Different Species. Forests 2022, 13, 1568. [Google Scholar] [CrossRef]
- Saia, S.; Corrado, G.; Vitaglione, P.; Colla, G.; Bonini, P.; Giordano, M.; Di Stasio, E.; Raimondi, G.; Sacchi, R.; Rouphael, Y. An endophytic fungi-based biostimulant modulates volatile and non-volatile secondary metabolites and yield of greenhouse basil (Ocimum basilicum L.) through variable mechanisms dependent on salinity stress level. Pathogens 2021, 10, 797. [Google Scholar] [CrossRef] [PubMed]
- Murkute, A.A.; Sharma, S.; Singh, S.K. Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic. Sci. 2006, 33, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Sheng, M.; Tang, M.; Chen, H.; Yang, B.; Zhang, F.; Huang, Y. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 2008, 18, 287–296. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Tullio, M.; Rivera, C.M.; Rea, E. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol. Fertil. Soils 2008, 44, 501–509. [Google Scholar] [CrossRef]
- Hajiboland, R.; Aliasgharzadeh, N.; Laiegh, S.F.; Poschenrieder, C. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 2010, 331, 313–327. [Google Scholar] [CrossRef]
- Elhindi, K.M.; El-Din, A.S.; Elgorban, A.M. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J. Biol. Sci. 2017, 24, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Elhindi, K.; Sharaf El Din, A.; Abdel-Salam, E.; Elgorban, A. Amelioration of salinity stress in different basil (Ocimum basilicum L.) varieties by vesicular-arbuscular mycorrhizal fungi. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2016, 66, 583–592. [Google Scholar]
- Abeer, H.; Salwa, A.A.; Alqarawi, A.A.; AbdAllah, E.F.; Egamberdieva, D. Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pak. J. Bot. 2016, 48, 37–45. [Google Scholar]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Latef, A.A. Changes of antioxidative enzymes in salinity tolerance among different wheat cultivars. Cereal Res. Commun. 2010, 38, 43–55. [Google Scholar] [CrossRef]
- Jakovljević, D.Z.; Topuzović, M.D.; Stanković, M.S.; Bojović, B.M. Changes in antioxidant enzyme activity in response to salinity-induced oxidative stress during early growth of sweet basil. Hortic. Environ. Biotechnol. 2017, 58, 240–246. [Google Scholar] [CrossRef]
- Dastogeer, K.M.; Zahan, M.I.; Tahjib-Ul-Arif, M.; Akter, M.A.; Okazaki, S. Plant salinity tolerance conferred by arbuscular mycorrhizal fungi and associated mechanisms: A meta-analysis. Front. Plant Sci. 2020, 11, 588550. [Google Scholar] [CrossRef] [PubMed]
- Güler, E. Polyphenols, organic acids, and their relationships in red grapes of Vitis vinifera and Isabella (Vitis labrusca) under arid conditions. Eur. Food Res. Technol. 2023, 249, 913–921. [Google Scholar] [CrossRef]
- Guccione, P.; Lopresti, M.; Milanesio, M.; Caliandro, R. Multivariate Analysis Applications in X-ray diffraction. Crystals 2020, 11, 12. [Google Scholar] [CrossRef]
- Asada, K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006, 141, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Ullah, F.; Zhou, D.X.; Yi, M.; Zhao, Y. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Morales, M.; Munné-Bosch, S. Malondialdehyde: Facts and artifacts. Plant Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaleel, C.A.; Riadh, K.; Gopi, R.; Manivannan, P.; Ines, J.; Al-Juburi, H.J.; Chang-Xing, Z.; Hong-Bo, S.; Panneerselvam, R. Antioxidant defense responses: Physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant. 2009, 31, 427–436. [Google Scholar] [CrossRef]
- Chen, Y.; Hoehenwarter, W. Changes in the phosphoproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis. Plant Physiol. 2015, 169, 3021–3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhao, H.; Zou, C.; Li, Y.; Chen, Y.; Wang, Z.; Jiang, Y.; Liu, A.; Zhao, P.; Wang, M.; et al. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front. Microbiol. 2017, 8, 2516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, R.; Lin, H.; Mendoza, I.; Zhang, Y.; Cao, W.; Yang, Y.; Shang, M.; Chen, S.; Pardo, J.M.; Guo, Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 2007, 19, 1415–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassil, E.; Coku, A.; Blumwald, E. Cellular ion homeostasis: Emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J. Exp. Bot. 2012, 63, 5727–5740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Saline Dose | DHW (g plant−1) | DLW (g plant−1) | FHW (g plant−1) | FLW (g plant−1) | NoL (plant−1) (adet plant−1) | PH (cm) | |
---|---|---|---|---|---|---|---|
0 mM | 1.63 ± 0.25 a | 0.89 ± 0.12 a | 10.78 ± 0.99 a | 6.34 ± 0.94 a | 13.33 ± 1.63 a | 37.85 ± 2.67 a | |
150 mM | 1.28 ± 0.14 b | 0.71 ± 0.10 b | 8.67 ± 0.42 b | 5.38 ± 0.45 b | 11.67 ± 1.51 ab | 31.70 ± 3.37 b | |
300 mM | 1.08 ± 0.14 b | 0.63 ± 0.05 b | 7.57 ± 0.87 c | 4.92 ± 0.36 b | 11.00 ± 1.10 b | 27.65 ± 3.06 c | |
Treatment | |||||||
AMF | 1.43 ± 0.32 a | 0.76 ± 0.17 a | 9.52 ± 1.54 a | 5.69 ± 0.97 a | 12.89 ± 1.45 a | 34.52 ± 4.75 a | |
Control | 1.23 ± 0.23 a | 0.72 ± 0.12 a | 8.49 ± 1.49 a | 5.40 ± 0.76 a | 11.11 ± 1.45 b | 30.28 ± 4.93 a | |
Saline Dose × Treatment | |||||||
AMF | 0 mM | 1.77 ± 0.30 a | 0.95 ± 0.10 a | 11.41 ± 0.93 a | 6.72 ± 0.96 a | 14.00 ± 2.00 a | 39.50 ± 2.91 a |
150 mM | 1.37 ± 0.16 bc | 0.71 ± 0.16 bc | 9.00 ± 0.09 c | 5.27 ± 0.55 bc | 12.67 ± 1.15 ab | 34.40 ± 2.35 b | |
300 mM | 1.16 ± 0.04 cd | 0.64 ± 0.01 c | 8.16 ± 0.31 c | 5.07 ± 0.31 bc | 12.00 ± 0.00 abc | 29.67 ± 1.92 c | |
Control | 0 mM | 1.49 ± 0.07 ab | 0.83 ± 0.13 ab | 10.14 ± 0.63 b | 5.96 ± 0.93 ab | 12.67 ± 1.15 ab | 36.20 ± 1.11 ab |
150 mM | 1.20 ± 0.05 cd | 0.70 ± 0.04 bc | 8.34 ± 0.34 c | 5.49 ± 0.41 bc | 10.67 ± 1.15 bc | 29.00 ± 1.00 cd | |
300 mM | 1.00 ± 0.16 d | 0.62 ± 0.08 c | 6.97 ± 0.85 d | 4.76 ± 0.41 c | 10.00 ± 0.00 c | 25.63 ± 2.74 d | |
ANOVA | |||||||
FAMF | 7.48 * | 1.01 ns | 13.15 ** | 0.84 ns | 10.67 ** | 17.74 ** | |
FSalinity | 0.25 ns | 0.58 ns | 0.44 ns | 0.87 ns | 0.17 ns | 0.37 ns | |
FAMF×Salinity | 18.54 *** | 11.41 ** | 43.25 *** | 7.49 ** | 6.5 * | 34.62 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yilmaz, A.; Yildirim, E.; Yilmaz, H.; Soydemir, H.E.; Güler, E.; Ciftci, V.; Yaman, M. Use of Arbuscular Mycorrhizal Fungi for Boosting Antioxidant Enzyme Metabolism and Mitigating Saline Stress in Sweet Basil (Ocimum basilicum L.). Sustainability 2023, 15, 5982. https://doi.org/10.3390/su15075982
Yilmaz A, Yildirim E, Yilmaz H, Soydemir HE, Güler E, Ciftci V, Yaman M. Use of Arbuscular Mycorrhizal Fungi for Boosting Antioxidant Enzyme Metabolism and Mitigating Saline Stress in Sweet Basil (Ocimum basilicum L.). Sustainability. 2023; 15(7):5982. https://doi.org/10.3390/su15075982
Chicago/Turabian StyleYilmaz, Abdurrahim, Ertan Yildirim, Hilal Yilmaz, Hakkı Ekrem Soydemir, Emrah Güler, Vahdettin Ciftci, and Mehmet Yaman. 2023. "Use of Arbuscular Mycorrhizal Fungi for Boosting Antioxidant Enzyme Metabolism and Mitigating Saline Stress in Sweet Basil (Ocimum basilicum L.)" Sustainability 15, no. 7: 5982. https://doi.org/10.3390/su15075982
APA StyleYilmaz, A., Yildirim, E., Yilmaz, H., Soydemir, H. E., Güler, E., Ciftci, V., & Yaman, M. (2023). Use of Arbuscular Mycorrhizal Fungi for Boosting Antioxidant Enzyme Metabolism and Mitigating Saline Stress in Sweet Basil (Ocimum basilicum L.). Sustainability, 15(7), 5982. https://doi.org/10.3390/su15075982