Estimating and Decomposing the TFP Growth of Service-Oriented Manufacturing in China: A Translogarithmic Stochastic Frontier Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Overview of Service-Oriented Manufacturing
2.2. Total Factor Productivity Measurement
3. Materials and Methods
3.1. Model Setting
- (i)
- ; this means that the frontier production function should be in the form of the Cobb–Douglas (C-D) production function.
- (ii)
- ; that is, there is no technological progress.
- (iii)
- ; this indicates that technological progress is Hicks-neutral.
- (iv)
- ; that is, there is no technical inefficiency term.
- (v)
- ; this indicates that technical inefficiency does not change with time.
- (vi)
- ; this means that obeys the distribution.
- (vii)
- the terms with insignificant coefficients in the primary selection model are 0.
3.2. Decomposition of Total Factor Productivity Growth
3.3. Variable Selection and Data Sources
4. Model Hypothesis Test and Analysis
5. Empirical Results and Discussion
5.1. Changes in the TFP Growth of China’s Service-Oriented Manufacturing Industry
5.2. Decomposition of TFP Growth in the Service-Oriented Manufacturing Industry
5.3. Further Analysis of TFP Growth and Its Decomposition in Service-Oriented Manufacturing Sub-Sectors
6. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giret, A.; Garcia, E.; Botti, V. An engineering framework for service-oriented intelligent manufacturing systems. Comput. Ind. 2016, 81, 116–127. [Google Scholar] [CrossRef]
- Jaspert, D.; Ebel, M.; Eckhardt, A.; Poeppelbuss, J. Smart retrofitting in manufacturing: A systematic review. J. Clean. Prod. 2021, 312, 127555. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, H. Upgrading models, evolutionary mechanisms and vertical cases of service-oriented manufacturing in svc leading enterprises: Product-development and service-innovation for industry 4.0. Humanit. Soc. Sci. Commun. 2022, 9, 387. [Google Scholar] [CrossRef]
- Jiang, P.; Leng, J. The configuration of social manufacturing: A social intelligence way toward service-oriented manufacturing. Int. J. Manuf. Res. 2016, 11, 10002075. [Google Scholar] [CrossRef]
- Zhen, L. An analytical study on service-oriented manufacturing strategies. Int. J. Prod. Econ. 2012, 139, 220–228. [Google Scholar] [CrossRef]
- Zhao, L.; Gu, P.; Song, R.; Chen, X.; Xavior, A.; Cai, J.; You, L. Management practice of supply chain quality management in service-oriented manufacturing industry. MATEC Web Conf. 2017, 100, 05035. [Google Scholar]
- Li, L.; Mao, C. Big data supported pss evaluation decision in service-oriented manufacturing. IEEE Access 2020, 8, 154663–154670. [Google Scholar] [CrossRef]
- Morariu, C.; Morariu, O.; Borangiu, T.; Sallez, Y. Formalized information representation for intelligent products in service-oriented manufacturing. IFAC Proc. Vol. 2013, 46, 318–323. [Google Scholar] [CrossRef]
- Liu, C.; Su, Z.; Xu, X.; Lu, Y. Service-oriented industrial internet of things gateway for cloud manufacturing. Robot. Comput. Integr. Manuf. 2022, 73, 102217. [Google Scholar] [CrossRef]
- See, K.F.; Coelli, T. Estimating and decomposing productivity growth of the electricity generation industry in malaysia: A stochastic frontier analysis. Energy Policy 2013, 62, 207–214. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of china’s agricultural sector: A three-stage sbm-dea model with non-point source pollution and co2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Zaman, M.S.; Valiyattoor, V.; Bhandari, A.K. Dynamics of total factor productivity growth: An empirical analysis of indian commercial banks. J. Econ. Asymmetries 2022, 26, e00268. [Google Scholar] [CrossRef]
- Ten Raa, T.; Shestalova, V. The solow residual, domar aggregation, and inefficiency: A synthesis of tfp measures. J. Product. Anal. 2010, 36, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Arazmuradov, A.; Martini, G.; Scotti, D. Determinants of total factor productivity in former soviet union economies: A stochastic frontier approach. Econ. Syst. 2014, 38, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Diaz, M.A.; Sanchez, R. Firm size and productivity in spain: A stochastic frontier analysis. Small Bus. Econ. 2008, 30, 315–323. [Google Scholar] [CrossRef]
- Simar, L. Detecting outliers in frontier models: A simple approach. J. Product. Anal. 2003, 20, 391–424. [Google Scholar] [CrossRef]
- Abudureheman, M.; Jiang, Q.; Dong, X.; Dong, C. Spatial effects of dynamic comprehensive energy efficiency on co2 reduction in china. Energy Policy 2022, 166, 113024. [Google Scholar] [CrossRef]
- Greene, W. A stochastic frontier model with correction for sample selection. J. Product. Anal. 2010, 34, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Han, B.; Pan, X.; Shahbaz, M.; Zafar, M.W. Effects of diversified openness channels on the total-factor energy efficiency in china’s manufacturing sub-sectors: Evidence from trade and fdi spillovers. Energy Econ. 2020, 90, 104836. [Google Scholar] [CrossRef]
- Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Kumbhakar, S.C.; Denny, M.; Fuss, M. Estimation and decomposition of productivity change when production is not efficient: A paneldata approach. Econom. Rev. 2000, 19, 312–320. [Google Scholar] [CrossRef]
- Vandermerwe, S.; Rada, J. Servitization of business: Adding value by adding services. Eur. Manag. J. 1988, 6, 314–324. [Google Scholar] [CrossRef]
- Bathla, S. Inter-sectoral growth linkages in india: Implications for policy and liberalized reforms. Inst. Econ. Growth 2003, 77, 78–84. [Google Scholar]
- Baines, T.S.; Lightfoot, H.; Benedettini, O.; Whitney, D.; Kay, J.M. The adoption of servitization strategies by uk-based manufacturers. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 2010, 224, 815–829. [Google Scholar] [CrossRef] [Green Version]
- Leiponen, A. The benefits of r&d and breadth in innovation strategies: A comparison of finnish service and manufacturing firms. Ind. Corp. Chang. 2012, 21, 1255–1281. [Google Scholar]
- Lightfoot, H.W.; Baines, T.; Smart, P. Examining the information and communication technologies enabling servitized manufacture. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 2011, 225, 1964–1968. [Google Scholar] [CrossRef]
- Li, L.; Huang, H.; Zou, X.; Gao, M.; Liu, Z. Service-oriented energy supply method in manufacturing system for efficiency. Manuf. Lett. 2020, 24, 23–28. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q. New it driven service-oriented smart manufacturing: Framework and characteristics. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 81–91. [Google Scholar] [CrossRef]
- Chen, Z. The service-oriented manufacturing mode based on 3d printing: A case of personalized toy. Procedia Eng. 2017, 174, 1315–1322. [Google Scholar] [CrossRef]
- Wu, B.; Fan, S.; Yu, A.J.; Xi, L. Configuration and operation architecture for dynamic cellular manufacturing product–service system. J. Clean. Prod. 2016, 131, 716–727. [Google Scholar] [CrossRef]
- Cheng, Y.; Tao, F.; Zhao, D.; Zhang, L. Modeling of manufacturing service supply–demand matching hypernetwork in service-oriented manufacturing systems. Robot. Comput.-Integr. Manuf. 2017, 45, 59–72. [Google Scholar] [CrossRef]
- He, N.; Jiang, Z.-Z.; Wang, J.; Sun, M.; Xie, G. Maintenance optimisation and coordination with fairness concerns for the service-oriented manufacturing supply chain. Enterp. Inf. Syst. 2020, 15, 694–724. [Google Scholar] [CrossRef]
- Yan, Z.; Ouyang, X.; Du, K. Economy-wide estimates of energy rebound effect: Evidence from china’s provinces. Energy Econ. 2019, 83, 389–401. [Google Scholar] [CrossRef]
- Du, K.; Shao, S.; Yan, Z. Urban residential energy demand and rebound effect in china: A stochastic energy demand frontier approach. Energy J. 2021, 42, 4. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Zhu, J. Data envelopment analysis: History, models, and interpretations. In Handbook on Data Envelopment Analysis; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–39. [Google Scholar]
- Kao, C. Network data envelopment analysis: A review. Eur. J. Oper. Res. 2014, 239, 1–16. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, Y.; Zhou, H. External technology dependence and manufacturing tfp: Evidence from china. Res. Int. Bus. Financ. 2023, 64, 101885. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell CA, K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Rawat, P.S.; Sharma, S. Tfp growth, technical efficiency and catch-up dynamics: Evidence from indian manufacturing. Econ. Model. 2021, 103, 105622. [Google Scholar]
- Baležentis, T.; Sun, K. Measurement of technical inefficiency and total factor productivity growth: A semiparametric stochastic input distance frontier approach and the case of lithuanian dairy farms. Eur. J. Oper. Res. 2020, 285, 1174–1188. [Google Scholar] [CrossRef]
- Jia, F.; Ma, X.; Xu, X.; Xie, L. The differential role of manufacturing and non-manufacturing tfp growth in economic growth. Struct. Chang. Econ. Dyn. 2020, 52, 174–183. [Google Scholar] [CrossRef]
- Peng, F.; Peng, L.; Wang, Z. How do vat reforms in the service sectors impact tfp in the manufacturing sector: Firm-level evidence from china. Econ. Model. 2021, 99, 105483. [Google Scholar] [CrossRef]
- Chen, S.X. Vat rate dispersion and tfp loss in china’s manufacturing sector. Econ. Lett. 2017, 155, 49–54. [Google Scholar] [CrossRef]
- Yang, X.; Gustafsson, B.; Sicular, T. Inequality of opportunity in household income, china 2002–2018. China Econ. Rev. 2021, 69, 101684. [Google Scholar] [CrossRef]
- Abudureheman, M.; Jiang, Q.; Dong, X.; Dong, C. Co2 emissions in china: Does the energy rebound matter? Energies 2022, 15, 4279. [Google Scholar] [CrossRef]
- Battese, G.E.; Coelli, T.J. Frontier production functions, technical efficiency and panel data: With application to paddy farmers in india. J. Product. Anal. 1992, 3, 153–169. [Google Scholar] [CrossRef]
- Jondrow, J.; Lovell CA, K.; Materov, I.S.; Schmidt, P. On the estimation of technical inefficiency in the stochastic frontier production function model. J. Econom. 1982, 19, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Han, G. A decomposition of total factor productivity growth in korean manufacturing industries: A stochastic frontier approach. J. Product. Anal. 2001, 16, 269–281. [Google Scholar] [CrossRef]
- Wu, S.; Quan, Y.; Song, L. Statistical test on convergence of tfp in service-oriented manufacturing. Stat. Decis. Mak. 2017, 19, 120–124. [Google Scholar]
- Jiang, Z.-Z.; Feng, G.; Yi, Z.; Guo, X. Service-oriented manufacturing: A literature review and future research directions. Front. Eng. Manag. 2021, 9, 71–88. [Google Scholar] [CrossRef]
- Song, Y.; Wang, C.; Wang, Z. Climate risk, institutional quality, and total factor productivity. Technol. Forecast. Soc. Chang. 2023, 189, 122365. [Google Scholar] [CrossRef]
Null Hypothesis H0 | LR Statistic | Critical Value (CV) | Inspection Conclusion |
---|---|---|---|
1. | 107.94 | 16.81 | refuse |
2. | 67.01 | 13.28 | refuse |
3. | 11.75 | 9.21 | refuse |
4. | 464.1 | 11.34 | refuse |
5. | 80.87 | 6.63 | refuse |
6. | 0.94 | 2.71 | accept |
7. The coefficient insignificance term in the primary model is 0. | 1.64 | 4.61 | accept |
Variable | Coefficient | Model 1 | Model 2 (βL = 0) | Model 3 (µ = 0, βL = 0) |
---|---|---|---|---|
Cons_ | 1.5498 *** (4.94) | 1.5060 *** (4.66) | 1.4046 *** (5.08) | |
0.9406 *** (6.82) | 1.0270 *** (16.59) | 1.0266 *** (16.43) | ||
0.0959 (0.70) | 0 | 0 | ||
0.1461 *** (6.49) | 0.1391 *** (6.86) | 0.1441 *** (7.55) | ||
−0.3111 *** (−5.72) | −0.3360 *** (−8.55) | −0.3399 *** (−8.80) | ||
−0.4181 *** (−7.46) | −0.4354 *** (−8.80) | −0.4378 *** (−8.87) | ||
0.3520 *** (6.51) | 0.3742 *** (8.74) | 0.3790 *** (9.05) | ||
−0.0114 *** (−8.65) | −0.0114 *** (−8.59) | −0.0116 *** (−8.92) | ||
0.0220 *** (2.46) | 0.0226 ** (2.55) | 0.0233 *** (3.62) | ||
−0.0276 *** (−3.20) | −0.0276 *** (−3.18) | −0.0289 *** (−3.47) | ||
0.0847 ** (2.60) | 0.0833 ** (2.72) | 0.1346 *** (3.72) | ||
0.9691 *** (36.09) | 0.9712 *** (49.19) | 0.9867 *** (65.83) | ||
0.2043 (1.35) | 0.2299 (1.57) | 0 | ||
0.0583 *** (9.71) | 0.0570 *** (9.44) | 0.0578 *** (9.91) | ||
Likelihood function logarithm | 171.75 | 169.79 | 169.21 | |
LR statistics | 468.49 *** | 494.93 *** | 493.80 *** |
Variable | Coef. | I1 | I2 | I3 | I4 | I5 | I6 | I7 |
---|---|---|---|---|---|---|---|---|
Cons_ | 2.2358 *** (12.27) | 2.3626 *** (10.82) | 1.1105 *** (11.01) | 1.3350 *** (7.05) | 0.8094 *** (4.88) | 1.5705 *** (9.31) | 1.0588 *** (6.93) | |
0.6085 *** (9.61) | 0.3629 *** (2.74) | 0.6077 *** (12.65) | 0.4774 *** (15.72) | 0.6073 *** (5.12) | 0 | 0.6049 *** (12.86) | ||
0.4807 *** (5.92) | 1.2137 *** (8.53) | 0.3987 *** (11.57) | 0.7337 *** (15.02) | 0.7586 *** (5.02) | 1.1351 *** (23.20) | 0.2604 *** (5.86) | ||
0.1635 *** (10.54) | 0.3173 *** (15.07) | 0.1756 *** (16.40) | 0.2178 *** (12.65) | 0.2293 *** (14.10) | 0.2843 *** (17.48) | 0.3076 *** (29.13) | ||
−0.0221 *** (−3.03) | 0.6771 *** (11.02) | 0.0882 *** (5.11) | 0 | 0.0872 ** (2.91) | 0.4186 *** (6.51) | 0.0987 *** (8.32) | ||
0.1528 *** (10.89) | 0.6660 *** (10.68) | 0 | −0.2261 *** (−7.24) | 0.2525 *** (2.96) | 0.3508 *** (3.86) | 0 | ||
0 | −0.6416 *** (−10.49) | 0 | 0.0620 *** (5.09) | −0.1283 ** (−2.18) | −0.4032 *** (−5.28) | 0 | ||
0 | 0 | −0.0018 ** (−2.05) | −0.0123 *** (−10.14) | −0.0061 *** (−3.40) | −0.0086 *** (−4.21) | −0.0082 *** (−7.22) | ||
−0.0266 *** (−5.37) | −0.0897 *** (−14.00) | −0.0235 *** (−8.53) | 0 | −0.0216 *** (−9.08) | −0.0432 *** (−3.64) | −0.0317 *** (−11.82) | ||
0.0113 ** (2.11) | 0.0841 *** (12.78) | 0 | −0.0106 *** (−4.67) | 0 | 0.0352 *** (2.49) | 0 | ||
1.8694 *** (3.57) | 0.3012 *** (3.55) | 0.1367 *** (4.01) | 0.0648 *** (6.29) | 0.6422 *** (3.56) | 0.1869 *** (3.37) | 0.04726 ** (2.80) | ||
0.9213 *** (40.40) | 0.8032 *** (12.88) | 0.6448 *** (6.59) | 0.9275 *** (48.03) | 0.890 *** (18.45) | 0.748 *** (6.98) | 0.8848 *** (21.23) | ||
0 | 0 | 0 | 0.2445 *** (2.71) | 0 | 0 | 0 | ||
−0.0371 *** (−5.87) | 0.0496 *** (6.457) | 0.0134 ** (2.33) | 0.0800 *** (7.56) | −0.0388 ** (−2.01) | 0.0514 *** (4.88) | −0.1908 ** (−2.61) | ||
Likelihood function logarithm value | −208.91 | −48.15 | 21.00 | −62.70 | −351.08 | −59.47 | −82.90 | |
LR statistics | 398.79 *** | 351.44 *** | 169.17 *** | 275.89 *** | 106.35 *** | 244.36 *** | 231.9 *** |
Province | TFP | TC | TEC | SEC | AEC | Province | TFP | TC | TEC | SEC | AEC |
---|---|---|---|---|---|---|---|---|---|---|---|
Anhui | 0.0631 | 0.0659 (1.046) | 0.0196 (0.311) | −0.0029 (−0.046) | −0.0196 (−0.310) | Jiangxi | 0.0939 | 0.0647 (0.689) | 0.0372 (0.396) | −0.0013 (−0.013) | −0.0067 (−0.072) |
Beijing | 0.0845 | 0.0613 (0.726) | 0.027 (0.320) | −0.0018 (−0.021) | −0.0021 (−0.024) | Liaoning | 0.0872 | 0.0682 (0.782) | 0.0294 (0.337) | −0.0008 (−0.010) | −0.0095 (−0.109) |
Fujian | 0.0529 | 0.0556 (1.050) | 0.0051 (0.096) | −0.0028 (−0.054) | −0.0049 (−0.092) | InnerMongolia | 0.0987 | 0.0815 (0.826) | 0.0228 (0.231) | 0.0010 (0.010) | −0.0066 (−0.067) |
Gansu | 0.1130 | 0.0696 (0.616) | 0.0625 (0.553) | −0.0006 (−0.005) | −0.0185 (−0.164) | Ningxia | 0.0961 | 0.0811 (0.844) | 0.0491 (0.510) | 0.0016 (0.016) | −0.0356 (−0.370) |
Guangdong | 0.0276 | 0.0421 (1.526) | 0.0012 (0.042) | −0.0046 (−0.168) | −0.0110 (−0.400) | Qinghai | 0.1067 | 0.0858 (0.805) | 0.0602 (0.564) | −0.0002 (−0.002) | −0.0391 (−0.366) |
Guangxi | 0.0191 | 0.0672 (3.517) | 0.0200 (1.048) | −0.0006 (−0.030) | −0.0675 (−3.534) | Shandong | 0.0670 | 0.0571 (0.852) | 0.0041 (0.061) | −0.0043 (−0.064) | 0.0101 (0.151) |
Guizhou | 0.0726 | 0.0681 (0.939) | 0.0536 (0.739) | 0.0015 (0.021) | −0.0507 (−0.699) | Shanxi | 0.1178 | 0.0641 (0.544) | 0.0618 (0.525) | 0.0001 (0.0004) | −0.0081 (−0.069) |
Hainan | 0.0743 | 0.0875 (1.178) | 0.0093 (0.125) | −0.0026 (−0.035) | −0.0199 (−0.268) | Shaanxi | 0.0996 | 0.0648 (0.651) | 0.0439 (0.441) | −0.0008 (−0.008) | −0.0084 (−0.084) |
Hebei | 0.0793 | 0.0634 (0.799) | 0.0324 (0.409) | −0.0022 (−0.027) | −0.0143 (−0.181) | Shanghai | 0.0596 | 0.0676 (1.134) | 0.0043 (0.072) | 0.0001 (0.001) | −0.0124 (−0.208) |
Henan | 0.0703 | 0.0556 (0.790) | 0.0277 (0.394) | −0.0047 (−0.067) | −0.0083 (−0.117) | Sichuan | −0.0430 | 0.0757 (−1.762) | 0.0029 (−0.068) | −0.0015 (0.035) | −0.1201 (2.795) |
Heilongjiang | 0.0942 | 0.0705 (0.748) | 0.0404 (0.429) | −0.0002 (−0.002) | −0.0165 (−0.175) | Tianjin | 0.0689 | 0.0711 (1.032) | 0.0059 (0.086) | 0.0001 (0.001) | −0.0083 (−0.120) |
Hubei | 0.0901 | 0.0652 (0.723) | 0.0254 (0.281) | −0.0015 (−0.017) | 0.0011 (0.012) | Xinjiang | 0.0916 | 0.0932 (1.018) | 0.0353 (0.385) | −0.0010 (−0.010) | −0.0360 (−0.393) |
Hunan | 0.0818 | 0.0641 (0.783) | 0.0329 (0.403) | −0.0020 (−0.025) | −0.0132 (−0.161) | Yunnan | 0.0985 | 0.0681 (0.691) | 0.0422 (0.428) | −0.0008 (−0.008) | −0.0109 (−0.111) |
Jilin | 0.0836 | 0.0765 (0.914) | 0.0080 (0.095) | −0.00001 (−0.00003) | −0.0008 (−0.009) | Zhejiang | 0.0491 | 0.0506 (1.030) | 0.0164 (0.335) | −0.0042 (−0.086) | −0.0137 (−0.279) |
Jiangsu | 0.0506 | 0.0558 (1.102) | 0.0087 (0.172) | −0.0064 (−0.126) | −0.0075 (−0.148) | Chongqing | 0.0769 | 0.0629 (0.818) | 0.0234 (0.305) | −0.0019 (−0.025) | −0.0075 (−0.097) |
Region | TFP Growth Decomposition | Output Growth Rate | Capital Growth Rate and Contribution | Labor Growth Rate and Contribution | TFP GrowthRate and Contribution | |||
---|---|---|---|---|---|---|---|---|
TC | TEC | SEC | AEC | |||||
eastern | 0.0632 (1.211) | 0.0109 (0.209) | −0.0027 (−0.051) | −0.0192 (−0.369) | 0.1582 | 0.1242 (0.785) | 0.0544 (0.344) | 0.0521 (0.330) |
central | 0.0658 (0.758) | 0.0316 (0.364) | −0.0016 (−0.018) | −0.0090 (−0.104) | 0.1856 | 0.1259 (0.678) | 0.0374 (0.201) | 0.0869 (0.468) |
western | 0.0731 (0.840) | 0.0400 (0.460) | −0.0003 (−0.004) | −0.0257 (−0.295) | 0.1818 | 0.1196 (0.658) | 0.0237 (0.130) | 0.0870 (0.479) |
national | 0.0675 (0.910) | 0.0271 (0.365) | −0.0015 (−0.020) | −0.0189 (−0.254) | 0.1658 | 0.1239 (0.747) | 0.0465 (0.280) | 0.0742 (0.447) |
Sectors | TFP Growth Decomposition | Output Growth Rate | Capital Growth Rate and Contribution | Labor Growth Rate and Contribution | TFP Growth Rate and Contribution | |||
---|---|---|---|---|---|---|---|---|
TC | TEC | SEC | AEC | |||||
I1 | 0.0797 (0.944) | −0.0042 (−0.050) | 0.0042 (0.050) | 0.0047 (0.056) | 0.1663 | 0.1403 (0.844) | 0.0921 (0.554) | 0.0845 (0.508) |
I2 | 0.0670 (0.811) | 0.0213 (0.258) | −0.0014 (−0.017) | −0.0042 (−0.051) | 0.1808 | 0.1283 (0.709) | 0.0436 (0.241) | 0.0826 (0.457) |
I3 | 0.0710 (1.021) | 0.0023 (0.034) | −0.0006 (−0.008) | −0.0032 (−0.046) | 0.1118 | 0.0824 (0.737) | 0.0093 (0.083) | 0.0696 (0.622) |
I4 | 0.0768 (0.754) | 0.0406 (0.399) | −0.0063 (−0.062) | −0.0093 (−0.091) | 0.1698 | 0.1161 (0.684) | 0.0233 (0.137) | 0.1018 (0.560) |
I5 | 0.1268 (0.980) | −0.0146 (−0.113) | 0.0016 (0.012) | 0.0156 (0.121) | 0.1526 | 0.1137 (0.745) | 0.0348 (0.228) | 0.1294 (0.848) |
I6 | 0.0863 (0.696) | 0.0249 (0.201) | 0.0126 (0.102) | 0.0001 (0.001) | 0.1733 | 0.1297 (0.748) | 0.0264 (0.153) | 0.1240 (0.716) |
I7 | 0.1933 (1.160) | −0.0081 (−0.049) | −0.0047 (−0.028) | −0.0138 (−0.083) | 0.1714 | 0.1285 (0.749) | 0.0589 (0.343) | 0.1667 (0.972) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abudureheman, M.; Jiang, Q.; Gong, J.; Yiming, A. Estimating and Decomposing the TFP Growth of Service-Oriented Manufacturing in China: A Translogarithmic Stochastic Frontier Approach. Sustainability 2023, 15, 6027. https://doi.org/10.3390/su15076027
Abudureheman M, Jiang Q, Gong J, Yiming A. Estimating and Decomposing the TFP Growth of Service-Oriented Manufacturing in China: A Translogarithmic Stochastic Frontier Approach. Sustainability. 2023; 15(7):6027. https://doi.org/10.3390/su15076027
Chicago/Turabian StyleAbudureheman, Maliyamu, Qingzhe Jiang, Jiong Gong, and Abulaiti Yiming. 2023. "Estimating and Decomposing the TFP Growth of Service-Oriented Manufacturing in China: A Translogarithmic Stochastic Frontier Approach" Sustainability 15, no. 7: 6027. https://doi.org/10.3390/su15076027
APA StyleAbudureheman, M., Jiang, Q., Gong, J., & Yiming, A. (2023). Estimating and Decomposing the TFP Growth of Service-Oriented Manufacturing in China: A Translogarithmic Stochastic Frontier Approach. Sustainability, 15(7), 6027. https://doi.org/10.3390/su15076027