Mowing Improves Chromium Phytoremediation in Leersia hexandra Swartz
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Preculture and Treatment
2.2. Design of Experiments
2.2.1. Mowing Height Experiment
2.2.2. Mowing Interval Experiment
2.2.3. Mowing Frequency Experiment
2.3. Measurement of Biomass and Cr Concentration
2.4. Measurement of Phytohormone Concentration
2.5. Statistical Analyses
3. Results
3.1. Effect of Mowing Heights on the Cr Phytoremediation
3.2. Effect of Mowing Interval on Cr Phytoremediation
3.3. Effect of Mowing Frequency on Cr Phytoremediation
3.4. Changes in Phytohormone Conntent
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pushkar, B.; Sevak, P.; Parab, S.; Nilkanth, N. Chromium pollution and its bioremediation mechanisms in bacteria: A review. J. Environ. Manag. 2021, 287, 112279. [Google Scholar] [CrossRef] [PubMed]
- Shanker, A.K. Chromium: Environmental Pollution, Health Effects and Mode of Action. In Encyclopedia of Environmental Health, 2nd ed.; Nriagu, J., Ed.; Elsevier: Oxford, UK, 2019; pp. 624–633. [Google Scholar]
- Sharma, N.; Sodhi, K.K.; Kumar, M.; Singh, D.K. Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100388. [Google Scholar] [CrossRef]
- Adhikari, S.; Marcelo-Silva, J.; Beukes, J.P.; van Zyl, P.G.; Coetsee, Y.; Boneschans, R.B.; Siebert, S.J. Contamination of useful plant leaves with chromium and other potentially toxic elements and associated health risks in a polluted mining-smelting region of South Africa. Environ. Adv. 2022, 9, 100301. [Google Scholar] [CrossRef]
- Bao, Z.J.; Feng, H.Y.; Tu, W.Y.; Li, L.J.; Li, Q. Method and mechanism of chromium removal from soil: A systematic review. Environ. Sci. Pollut. Res. 2022, 29, 35501–35517. [Google Scholar] [CrossRef]
- Liu, L.W.; Li, W.; Song, W.P.; Guo, M.X. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Bani Mfarrej, M.F.; Rizwan, M.; Hussain, A.; Shahid, M.J.; Wang, X.; Nafees, M.; Waseem, M.; Alharby, H.F. Microbe-citric acid assisted phytoremediation of chromium by castor bean (Ricinus communis L.). Chemosphere 2022, 296, 134065. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Padmavathiamma, P.K.; Li, L.Y. Phytoremediation technology: Hyper-accumulation metals in plants. Water Air Soil Pollut. 2007, 184, 105–126. [Google Scholar] [CrossRef]
- Malaviya, P.; Singh, A.; Anderson, T.A. Aquatic phytoremediation strategies for chromium removal. Rev. Environ. Sci. Bio/Technol. 2020, 19, 897–944. [Google Scholar] [CrossRef]
- Li, J.T.; Gurajala, H.K.; Wu, L.H.; van der Ent, A.; Qiu, R.L.; Baker, A.J.M.; Tang, Y.T.; Yang, X.E.; Shu, W.S. Hyperaccumulator Plants from China: A Synthesis of the Current State of Knowledge. Environ. Sci. Technol. 2018, 52, 11980–11994. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Liu, J.; Huang, H.T.; Chen, J.; Zhu, Y.N.; Wang, D.Q. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 2007, 67, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X.H.; You, S.H.; Wu, Q.X.; Chen, S.M.; Zhou, K.N. Cr(VI) removal and detoxification in constructed wetlands planted with Leersia hexandra Swartz. Ecol. Eng. 2014, 71, 36–40. [Google Scholar] [CrossRef]
- Wang, C.; Tan, H.; Li, H.; Xie, Y.; Liu, H.; Xu, F.; Xu, H. Mechanism study of Chromium influenced soil remediated by an uptake-detoxification system using hyperaccumulator, resistant microbe consortium, and nano iron complex. Environ. Pollut. 2020, 257, 113558. [Google Scholar] [CrossRef]
- Yang, W.; Dai, H.P.; Skuza, L.; Wei, S.H. The front-heavy and back-light nitrogen application mode to increase stem and leaf biomass significantly improved cadmium accumulation in Solanum nigrum L. J. Hazard. Mater. 2020, 393, 122482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, J.; Wang, D.; Zhu, Y.; Hu, C.; Sun, J. Bioaccumulation and Chemical Form of Chromium in Leersia hexandra Swartz. Bull. Environ. Contam. Toxicol. 2009, 82, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Dai, H.; Skuza, L.; Wei, S. Cadmium removal potential of hyperaccumulator Solanum nigrum L. under two planting modes in three years continuous phytoremediation. Environ. Pollut. 2022, 307, 119493. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, Q.; Koval, P.V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci. Total Environ. 2006, 369, 441–446. [Google Scholar] [CrossRef]
- Lebon, A.; Mailleret, L.; Dumont, Y.; Grognard, F. Direct and apparent compensation in plant–herbivore interactions. Ecol. Model. 2014, 290, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Gunnar, A.; James, D.M.S.; Vegard, M.; Jan, M.; Atle, M. Experimental Effects of Herbivore Density on Aboveground Plant Biomass in an Alpine Grassland Ecosystem. Arct. Antarct. Alp. Res. 2014, 46, 535–541. [Google Scholar]
- Belsky, A.J.; Carson, W.P.; Jensen, C.L.; Fox, G.A. Overcompensation by plants: Herbivore optimization or red herring? Evol. Ecol. 1993, 7, 109–121. [Google Scholar] [CrossRef]
- Wang, M.; Xu, Z.; Song, J.; Liu, X.; Jiao, X. Effects of different mowing treatments and stubble heights on the compensatory growth and quality of lettuce (Lactuca sativa L.). J. Hortic. Sci. Biotechnol. 2018, 93, 537–544. [Google Scholar] [CrossRef]
- Liu, J.; Duan, C.; Zhang, X.; Zhu, Y.; Lu, X. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J. Hazard. Mater. 2011, 188, 85–91. [Google Scholar] [CrossRef]
- Achichi, I.; Slimani, A.; Ghamri, A.N.; Semmar, M.F. Effect of mowing frequencies on morphology and biomass production of natural populations of Sulla coronaria (L.) in the mountainous region of northeast Algeria. Fourrages 2021, 248, 57–62. [Google Scholar]
- Zhao, C.; Zhong, R.; Zhou, D.; Zheng, C. Effects of mowing time and interval on dry matter yield and chemical composition of Leymus chinensis. Soils Crops 2019, 8, 212–219. [Google Scholar]
- Bunnell, B.T.; Mccarty, L.B.; Bridges, W.C. ‘TifEagle’ Bermudagrass Response to Growth Factors and Mowing Height when Grown at Various Hours of Sunlight. Crop Sci. 2005, 45, 575–581. [Google Scholar] [CrossRef]
- Cui, G.; Zhao, M.; Zhang, S.; Wang, Z.; Meng, M.; Sun, F.; Zhang, C.; Xi, Y. MicroRNA and regulation of auxin and cytokinin signalling during post-mowing regeneration of winter wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2020, 155, 769–779. [Google Scholar] [CrossRef]
- Wu, L.-Y.; Shang, G.-D.; Wang, F.-X.; Gao, J.; Wan, M.-C.; Xu, Z.-G.; Wang, J.-W. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Dev. Cell 2022, 57, 526–542.e527. [Google Scholar] [CrossRef]
- Zhou, W.; Lozano-Torres, J.L.; Blilou, I.; Zhang, X.; Zhai, Q.; Smant, G.; Li, C.; Scheres, B. A Jasmonate Signaling Network Activates Root Stem Cells and Promotes Regeneration. Cell 2019, 177, 942–956.e914. [Google Scholar] [CrossRef] [PubMed]
- Bari, R.; Jones, J.D.G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 2009, 69, 473–488. [Google Scholar] [CrossRef]
- Hayashi, K.-i.; Arai, K.; Aoi, Y.; Tanaka, Y.; Hira, H.; Guo, R.; Hu, Y.; Ge, C.; Zhao, Y.; Kasahara, H.; et al. The main oxidative inactivation pathway of the plant hormone auxin. Nat. Commun. 2021, 12, 6752. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, J.; Yu, G.; Lei, L.; Jiang, X. Moderate Mn accumulation enhances growth and alters leaf hormone contents in the hyperaccumulator Celosia argentea Linn. Environ. Exp. Bot. 2021, 191, 104603. [Google Scholar] [CrossRef]
- Nováková, M.; Šašek, V.; Dobrev, P.I.; Valentová, O.; Burketová, L. Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum–Reassessing the role of salicylic acid in the interaction with a necrotroph. Plant Physiol. Biochem. 2014, 80, 308–317. [Google Scholar] [CrossRef]
- Lessl, J.T.; Ma, L.Q. Sparingly-Soluble Phosphate Rock Induced Significant Plant Growth and Arsenic Uptake by Pteris vittata from Three Contaminated Soils. Environ. Sci. Technol. 2013, 47, 5311–5318. [Google Scholar] [CrossRef]
- Liu, J.; Yu, G.; Jiang, P.P.; Zhang, X.F.; Meng, D.J.; Chen, Z.; Baker, A.J.M.; Qiu, R.L. Interaction of Mn and Cd during their uptake inCelosia argenteadiffers between hydroponic and soil systems. Plant Soil 2020, 450, 323–336. [Google Scholar] [CrossRef]
- Yang, Z.; Minggagud, H.; Baoyin, T.; Li, F.Y. Plant production decreases whereas nutrients concentration increases in response to the decrease of mowing stubble height. J. Environ. Manag. 2020, 253, 109745. [Google Scholar] [CrossRef] [PubMed]
- Skrzydlewska, E.; Balcerzak, M.; Vanhaecke, F. Determination of chromium, cadmium and lead in food-packaging materials by axial inductively coupled plasma time-of-flight mass spectrometry. Anal. Chim. Acta 2003, 479, 191–202. [Google Scholar] [CrossRef]
- Sibel, Y.; Şükran, O.; Özge, K.; Nur, Ö.A. Determination of Major Phytohormones in Fourteen Different Seaweeds Utilizing SPE-LC-MS/MS. J. Chromatogr. Sci. 2019, 58, 98–108. [Google Scholar]
- Fang, S.; Hu, W.; Wang, S.; Chen, B.; Zhou, Z. Exogenous application of 6-BA and GA3 collaboratively improves cottonseed yield and seed quality via altering production of carbohydrates in the embryo. Arch. Agron. Soil Sci. 2021, 67, 329–341. [Google Scholar] [CrossRef]
- Singh, T.; Sharma, M.K.; Tyagi, J.P.; Singh, S. Effect of gibberellic acid (GA3) on yield, floral and morphological traits in rice (Oryza sativa). Indian J. Agric. Sci. 2011, 79, 831–834. [Google Scholar]
- Ahmed, N.; Tetlow, I.J.; Nawaz, S.; Iqbal, A.; Mubin, M.; Rehman, M.S.N.U.; Butt, A.; Lightfoot, D.A.; Maekawa, M. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. J. Sci. Food Agric. 2014, 95, 2237–2243. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.E.; LeNoble, M.E. ABA, ethylene and the control of shoot and root growth under water stress. J. Exp. Bot. 2002, 53, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, A.S.; Gonugunta, V.K.; Christmann, A.; Grill, E. ABA perception and signalling. Trends Plant Sci. 2010, 15, 395–401. [Google Scholar] [CrossRef]
- Dathe, W.; Preiss, A.; Schade, W.; Sembdner, G.; Schreiber, K. Endogenous plant hormones of the broad bean, Vicia faba L. (-)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 1981, 153, 530–535. [Google Scholar] [CrossRef]
- Janave, M.T.; Sharma, A. Inhibition of chlorophyll degradation in stay-green langra mango (Mangifera indica L.) fruits. Crop Sci. 2006, 45, 575–581. [Google Scholar]
- Rajan, S.S. 1-Naphthaleneacetic acid. Acta Crystallogr. 2010, 34, 998–1000. [Google Scholar] [CrossRef]
- Jaakola, L.; Tolvanen, A.; Laine, K.; Hohtola, A. Effect of N6-isopentenyladenine concentration on growth initiation in vitro and rooting of bilberry and lingonberry microshoots. Plant Cell Tissue Organ Cult. 2001, 66, 73–77. [Google Scholar] [CrossRef]
- Cooper, J.B. Morphogenetic Rescue of Rhizobium meliloti Nodulation Mutants by trans-Zeatin Secretion. Plant Cell 1994, 6, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Dogo, M.; Toyoda, H.; Matsuda, K.; Bingo, M.; Ouchi, S. Control of Bacterial Wilt of Tomato in Hydroponic Culture by 3-Indolepropionic Acid and Its Detoxification in Tomato Plants. Jpn. J. Phytopathol. 2009, 63, 406–408. [Google Scholar] [CrossRef] [Green Version]
- Santner, A.; Calderon-Villalobos, L.I.A.; Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 2009, 5, 301–307. [Google Scholar] [CrossRef]
- Davies, P.J. The Plant Hormones: Their Nature, Occurrence, and Functions. In Plant Hormones: Biosynthesis, Signal Transduction, Action! Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 1–15. [Google Scholar]
- Buckeridge, M.S. Chapter 3-The diversity of plant carbohydrate hydrolysis in nature and technology. In Polysaccharide-Degrading Biocatalysts; Goldbeck, R., Poletto, P., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 55–74. [Google Scholar]
- Wang, Y.J.; Wang, K.J.; Dong, S.T.; Hu, C.H.; Zhang, J.W. Effects of Stubble Height and Clipping Stage on Regrowth Performances of Zea mexicana. Sci. Agric. Sin. 2005, 38, 1555–1561. [Google Scholar]
- Najeeb, U.; Jilani, G.; Ali, S.; Sarwar, M.; Xu, L.; Zhou, W. Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J. Hazard. Mater. 2011, 186, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Saifullah; Meers, E.; Qadir, M.; Caritat, P.D.; Tack, F.; Laing, G.D.; Zia, M.H. EDTA-assisted Pb phytoextraction. Chemosphere 2009, 74, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Jiang, X.; Liu, J.; Ding, Z.; Dai, D.; Chen, S.; Yu, G. Mowing Improves Chromium Phytoremediation in Leersia hexandra Swartz. Sustainability 2023, 15, 6244. https://doi.org/10.3390/su15076244
Ma S, Jiang X, Liu J, Ding Z, Dai D, Chen S, Yu G. Mowing Improves Chromium Phytoremediation in Leersia hexandra Swartz. Sustainability. 2023; 15(7):6244. https://doi.org/10.3390/su15076244
Chicago/Turabian StyleMa, Sairu, Xusheng Jiang, Jie Liu, Zhifan Ding, Demin Dai, Shiqi Chen, and Guo Yu. 2023. "Mowing Improves Chromium Phytoremediation in Leersia hexandra Swartz" Sustainability 15, no. 7: 6244. https://doi.org/10.3390/su15076244
APA StyleMa, S., Jiang, X., Liu, J., Ding, Z., Dai, D., Chen, S., & Yu, G. (2023). Mowing Improves Chromium Phytoremediation in Leersia hexandra Swartz. Sustainability, 15(7), 6244. https://doi.org/10.3390/su15076244