Study on the Influencing Factors of Digital Transformation of Construction Enterprises from the Perspective of Dual Effects—A Hybrid Approach Based on PLS-SEM and fsQCA
Abstract
:1. Introduction
2. Research Model and Hypothesis
2.1. Research Model
2.2. Research Hypothesis
2.2.1. Technical Context
2.2.2. Organizational Context
2.2.3. Environmental Context
3. Research Methodology and Data
3.1. Research Design
3.2. Data Collection
3.3. Analysis Method
4. Data Analysis and Results
4.1. PLS-SEM Analysis
4.1.1. Measurement Model
4.1.2. Structural Model
4.2. fsQCA Analysis
4.2.1. Calibration
4.2.2. Analysis of Necessary Conditions
4.2.3. Configuration Results
5. Discussion
5.1. Discussion of the Net Effect
5.2. Discussion of the Configuration Effect
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Han, Z.; Zhang, J.; Philbin, S.P.; Liu, D.; Ke, Y. Systematic Identification of the Influencing Factors for the Digital Transformation of the Construction Industry Based on LDA-DEMATEL-ANP. Buildings 2022, 12, 1409. [Google Scholar] [CrossRef]
- Sun, J.; Gong, X.; Zhang, H.; Su, X. Strategic Path for High-Quality Development of Construction Industry Driven by Digitalization. Strateg. Study CAE 2021, 23, 56–63. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Rubio, F.; Valero, F. Impact of digital transformation on the automotive industry. Technol. Forecast. Soc. 2021, 162, 120343. [Google Scholar] [CrossRef] [PubMed]
- Savastano, M.; Amendola, C.; Bellini, F.; D Ascenzo, F. Contextual Impacts on Industrial Processes Brought by the Digital Transformation of Manufacturing: A Systematic Review. Sustainability 2019, 11, 891. [Google Scholar] [CrossRef] [Green Version]
- Forcael, E.; Ferrari, I.; Opazo-Vega, A.; Pulido-Arcas, J.A. Construction 4.0: A literature review. Sustainability 2020, 12, 9755. [Google Scholar] [CrossRef]
- Nikmehr, B.; Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Antucheviciene, J. Digitalization as a strategic means of achieving sustainable efficiencies in construction management: A critical review. Sustainability 2021, 13, 5040. [Google Scholar] [CrossRef]
- Li, Y.; Sun, H.; Li, D.; Song, J.; Ding, R. Effects of digital technology adoption on sustainability performance in construction projects: The mediating role of stakeholder collaboration. J. Manag. Eng. 2022, 38, 4022016. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Hamidavi, T.; Abrishami, S.; Hosseini, M.R. Towards intelligent structural design of buildings: A BIM-based solution. J. Build. Eng. 2020, 32, 101685. [Google Scholar] [CrossRef]
- Elghaish, F.; Abrishami, S.; Hosseini, M.R.; Abu-Samra, S. Revolutionising cost structure for integrated project delivery: A BIM-based solution. Eng. Constr. Archit. Manag. 2021, 28, 1214–1240. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Song, X.; Han, Y. IoT-based intelligent construction system for prefabricated buildings: Study of operating mechanism and implementation in China. Appl. Sci. 2020, 10, 6311. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Liu, J.; Huang, X. Understanding the Determinants of Blockchain Technology Adoption in the Construction Industry. Buildings 2022, 12, 1709. [Google Scholar] [CrossRef]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the construction industry: A review of present status, opportunities, and future trends. Adv. Eng. Inf. 2016, 30, 500–521. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Wang, L.; Au-Yong, C.P.; Ali, A.S. Assessment of the development level of regional industrialized building based on cloud model: A case study in Guangzhou, China. J. Build. Eng. 2021, 44, 102547. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Martek, I.; Banihashemi, S.; Chan, A.P.; Darko, A.; Tahmasebi, M. Distinguishing characteristics of corruption risks in Iranian construction projects: A weighted correlation network analysis. Sci. Eng. Ethics. 2020, 26, 205–231. [Google Scholar] [CrossRef]
- Prebanić, K.R.; Vukomanović, M. Realizing the need for digital transformation of stakeholder management: A systematic review in the construction industry. Sustainability 2021, 13, 12690. [Google Scholar] [CrossRef]
- You, Z. Intelligent construction: Unlocking opportunities for the digital transformation of China’s construction industry. Eng. Constr. Archit. Manag. 2022. [Google Scholar] [CrossRef]
- Vial, G. Understanding digital transformation: A review and a research agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Zeng, D.; Cai, J.; Ouyang, T. A Research on Digital Transformation: Integration Framework and Prospects. Foreign Econ. Manag. 2021, 43, 63–76. [Google Scholar]
- Nagy, O.; Papp, I.; Szabó, R.Z. Construction 4.0 organisational level challenges and solutions. Sustainability 2021, 13, 12321. [Google Scholar] [CrossRef]
- Zhang, Y.; Fong, P.S.; Yamoah Agyemang, D. What Should Be Focused on When Digital Transformation Hits Industries? Literature Review of Business Management Adaptability. Sustainability 2021, 13, 13447. [Google Scholar] [CrossRef]
- Bonanomi, M.M.; Hall, D.M.; Staub-French, S.; Tucker, A.; Talamo, C.M.L. The impact of digital transformation on formal and informal organizational structures of large architecture and engineering firms. Eng. Constr. Archit. Manag. 2020, 27, 872–892. [Google Scholar] [CrossRef]
- Zhang, J.; Long, J.; von Schaewen, A.M.E. How does digital transformation improve organizational resilience?—Findings from PLS-SEM and fsQCA. Sustainability 2021, 13, 11487. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Wan, M. Research on Peer Effect of Enterprise Digital Transformation and Influencing Factors. Chin. J. Manag. 2021, 18, 653–663. [Google Scholar]
- Wu, J.; Chen, T.; Gong, Y.; Yang, Y. Digital Transformation of Firms: Theoretical Framework and Research Prospects. Chin. J. Manag. 2021, 18, 1871–1880. [Google Scholar]
- Chen, H.; Tian, Z. Environmental uncertainty, resource orchestration and digital transformation: A fuzzy-set QCA approach. J. Bus. Res. 2022, 139, 184–193. [Google Scholar] [CrossRef]
- Qiu, Z. Technology and Organization:Multidisciplinary Research Patterns and Sociological Concerns. Sociol. Stud. 2017, 32, 167–192. [Google Scholar]
- Fernando, Y.; Rozuar, N.H.M.; Mergeresa, F. The blockchain-enabled technology and carbon performance: Insights from early adopters. Technol. Soc. 2021, 64, 101507. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y. Digital Transformation Driving Model of Manufacturing Enterprises Based on Configuration Perspective. RD Manag. 2022, 34, 106–122. [Google Scholar]
- Jović, M.; Tijan, E.; Vidmar, D.; Pucihar, A. Factors of digital transformation in the maritime transport sector. Sustainability 2022, 14, 9776. [Google Scholar] [CrossRef]
- Teng, X.; Wu, Z.; Yang, F. Research on the Relationship between Digital Transformation and Performance of SMEs. Sustainability 2022, 14, 6012. [Google Scholar] [CrossRef]
- Andriole, S.J.; Cox, T.; Khin, K.M. The Innovator’s Imperative: Rapid Technology Adoption for Digital Transformation; Auerbach Publications: Boca Raton, FL, USA, 2017. [Google Scholar]
- Matt, C.; Hess, T.; Benlian, A. Digital transformation strategies. Bus. Inf. Syst. Eng. 2015, 57, 339–343. [Google Scholar] [CrossRef]
- Wang, T.; Ali, A.S.; Au-Yong, C.P. Exploring a body of knowledge for promoting the building information model for facility management. Ain. Shams Eng. J. 2022, 13, 101717. [Google Scholar] [CrossRef]
- Sun, S.; Cegielski, C.G.; Jia, L.; Hall, D.J. Understanding the factors affecting the organizational adoption of big data. J. Comput. Inf. Syst. 2018, 58, 193–203. [Google Scholar] [CrossRef]
- Sonkor, M.S.; García De Soto, B. Operational technology on construction sites: A review from the cybersecurity perspective. J. Constr. Eng. Manag. 2021, 147, 4021172. [Google Scholar] [CrossRef]
- Oliveira, T.; Thomas, M.; Espadanal, M. Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Inf. Manag. 2014, 51, 497–510. [Google Scholar] [CrossRef]
- Pagani, M.; Pardo, C. The impact of digital technology on relationships in a business network. Ind Mark. Manag 2017, 67, 185–192. [Google Scholar] [CrossRef]
- Yin, W. Identifying the pathways through digital transformation to achieve supply chain resilience: An fsQCA approach. Environ. Sci. Pollut. Rus. 2022, 30, 10867–10879. [Google Scholar] [CrossRef]
- Matarazzo, M.; Penco, L.; Profumo, G.; Quaglia, R. Digital transformation and customer value creation in Made in Italy SMEs: A dynamic capabilities perspective. J. Bus. Res. 2021, 123, 642–656. [Google Scholar] [CrossRef]
- Koseoglu, O.; Keskin, B.; Ozorhon, B. Challenges and enablers in BIM-enabled digital transformation in mega projects: The Istanbul new airport project case study. Buildings 2019, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Perera, S.; Nanayakkara, S.; Rodrigo, M.; Senaratne, S.; Weinand, R. Blockchain technology: Is it hype or real in the construction industry? J. Ind. Inf. Integr. 2020, 17, 100125. [Google Scholar] [CrossRef]
- Butschan, J.; Heidenreich, S.; Weber, B.; Kraemer, T. Tackling hurdles to digital transformation—The role of competencies for successful industrial internet of things (IIoT) implementation. Int. J. Innov. Manag. 2019, 23, 1950036. [Google Scholar] [CrossRef]
- Gabriel, J.; Mayzira, A.; Aditya, J.; Itsari, M.; Satrio, S.; Ruldeviyani, Y. Critical success factors of data integration on digital human capital information system to support digital transformation-A case study at PTXYZ. In Proceedings of the 2020 8th International Conference on Cyber and IT Service Management (CITSM), Pangkal, Indonesia, 23–24 October 2020; pp. 1–7. [Google Scholar]
- Bennett, E.E.; McWhorter, R.R. Virtual HRD’s role in crisis and the post Covid-19 professional lifeworld: Accelerating skills for digital transformation. Adv. Dev. Hum. Resour. 2021, 23, 5–25. [Google Scholar] [CrossRef]
- Bikse, V.; Lusena-Ezera, I.; Rivza, P.; Rivza, B. The development of digital transformation and relevant competencies for employees in the context of the impact of the COVID-19 pandemic in latvia. Sustainability 2021, 13, 9233. [Google Scholar] [CrossRef]
- Veronique, D.; Mohamed-Amine, M.; Sylvain, P. Bayesian networks versus other probabilistic models for the multiple diagnosis of large devices. Int. J. Artif. Intell. Tools 2007, 16, 417–433. [Google Scholar] [CrossRef]
- Lin, H. Understanding the determinants of electronic supply chain management system adoption: Using the technology–organization–environment framework. Technol. Forecast. Soc. 2014, 86, 80–92. [Google Scholar] [CrossRef]
- Won, D.; Hwang, B.; Binte Mohd Samion, N.K. Cloud computing adoption in the construction industry of Singapore: Drivers, challenges, and strategies. J. Manag. Eng. 2022, 38, 5021017. [Google Scholar] [CrossRef]
- Toufaily, E.; Zalan, T.; Dhaou, S.B. A framework of blockchain technology adoption: An investigation of challenges and expected value. Inf. Manag. 2021, 58, 103444. [Google Scholar] [CrossRef]
- Elrefaey, O.; Ahmed, S.; Ahmad, I.; El-Sayegh, S. Impacts of COVID-19 on the Use of Digital Technology in Construction Projects in the UAE. Buildings 2022, 12, 489. [Google Scholar] [CrossRef]
- Chatterjee, S.; Rana, N.P.; Dwivedi, Y.K.; Baabdullah, A.M. Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technol. Forecast. Soc. 2021, 170, 120880. [Google Scholar] [CrossRef]
- Pan, M.; Pan, W. Understanding the determinants of construction robot adoption: Perspective of building contractors. J. Constr. Eng. Manag. 2020, 146, 4020040. [Google Scholar] [CrossRef]
- Lutfi, A.; Alsyouf, A.; Almaiah, M.A.; Alrawad, M.; Abdo, A.A.K.; Al-Khasawneh, A.L.; Ibrahim, N.; Saad, M. Factors influencing the adoption of big data analytics in the digital transformation era: Case study of Jordanian SMEs. Sustainability 2022, 14, 1802. [Google Scholar] [CrossRef]
- Yu, J.; Moon, T. Impact of digital strategic orientation on organizational performance through digital competence. Sustainability 2021, 13, 9766. [Google Scholar] [CrossRef]
- Correani, A.; De Massis, A.; Frattini, F.; Petruzzelli, A.M.; Natalicchio, A. Implementing a digital strategy: Learning from the experience of three digital transformation projects. Calif. Manag. Rev. 2020, 62, 37–56. [Google Scholar] [CrossRef]
- AlNuaimi, B.K.; Singh, S.K.; Ren, S.; Budhwar, P.; Vorobyev, D. Mastering digital transformation: The nexus between leadership, agility, and digital strategy. J. Bus. Res. 2022, 145, 636–648. [Google Scholar] [CrossRef]
- Chanias, S.; Myers, M.D.; Hess, T. Digital transformation strategy making in pre-digital organizations: The case of a financial services provider. J. Strateg. Inf. Syst. 2019, 28, 17–33. [Google Scholar] [CrossRef]
- Kane, G.C.; Palmer, D.; Phillips, A.N.; Kiron, D.; Buckley, N. Strategy, not technology, drives digital transformation. MIT Sloan Management Review, 14 July 2015. [Google Scholar]
- Ghobakhloo, M.; Iranmanesh, M. Digital transformation success under Industry 4.0: A strategic guideline for manufacturing SMEs. J. Manuf. Technol. Mana. 2021, 32, 1533–1556. [Google Scholar] [CrossRef]
- Luo, X.; Yu, S. Relationship between external environment, internal conditions, and digital transformation from the perspective of synergetics. Discret. Dyn Nat. Soc. 2022, 2022, 6756548. [Google Scholar] [CrossRef]
- Wrede, M.; Velamuri, V.K.; Dauth, T. Top managers in the digital age: Exploring the role and practices of top managers in firms’ digital transformation. Manag. Decis. Econ. 2020, 41, 1549–1567. [Google Scholar] [CrossRef]
- Wong, L.; Leong, L.; Hew, J.; Tan, G.W.; Ooi, K. Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. Int. J. Inf. Manag. 2020, 52, 101997. [Google Scholar] [CrossRef]
- Westerman, G.; Calméjane, C.; Bonnet, D.; Ferraris, P.; McAfee, A. Digital Transformation: A roadmap for billion-dollar organizations. MIT Cent. Digit. Bus. Capgemini Consult. 2011, 1, 1–68. [Google Scholar]
- Singh, S.; Sharma, M.; Dhir, S. Modeling the effects of digital transformation in Indian manufacturing industry. Technol. Forecast. Soc. 2021, 67, 101763. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Yang, Y. Understanding the determinants of RFID adoption in the manufacturing industry. Technol. Forecast. Soc. 2010, 77, 803–815. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, Y.; Browne, G.J.; Li, D. Adoption of building information modeling in Chinese construction industry: The technology-organization-environment framework. Eng. Constr. Archit. Manag. 2019, 26, 1878–1898. [Google Scholar] [CrossRef]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Y.; Xu, Y. Factors Influencing the Adoption of Blockchain in the Construction Industry: A Hybrid Approach Using PLS-SEM and fsQCA. Building 2022, 12, 1349. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In New Challenges to International Marketing; Emerald Group Publishing Limited: Bradford, UK, 2009. [Google Scholar]
- Vinzi, V.E.; Chin, W.W.; Henseler, J.; Wang, H. Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010; Volume 201. [Google Scholar]
- Zeng, N.; Liu, Y.; Gong, P.; Hertogh, M.; König, M. Do right PLS and do PLS right: A critical review of the application of PLS-SEM in construction management research. Front. Eng. Manag. 2021, 8, 356–369. [Google Scholar] [CrossRef]
- Ragin, C.C. Redesigning Social Inquiry: Fuzzy Sets and Beyond; University of Chicago Press: Chicago, IL, USA, 2009. [Google Scholar]
- Fiss, P.C. Building better causal theories: A fuzzy set approach to typologies in organization research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef] [Green Version]
- Woodside, A.G. Moving beyond Multiple Regression Analysis to Algorithms: Calling for Adoption of a Paradigm Shift from Symmetric to Asymmetric Thinking in Data Analysis and Crafting Theory; Elsevier: Amsterdam, The Netherlands, 2013; Volume 66, pp. 463–472. [Google Scholar]
- Hair, J.F., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM) An emerging tool in business research. Eur. Bus Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Misangyi, V.F.; Greckhamer, T.; Furnari, S.; Fiss, P.C.; Crilly, D.; Aguilera, R. Embracing causal complexity: The emergence of a neo-configurational perspective. J. Manag. 2017, 43, 255–282. [Google Scholar] [CrossRef] [Green Version]
- Ragin, C.C. Measurement versus calibration: A set-theoretic approach. In The Oxford Handbook of Political Methodology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Greckhamer, T.; Furnari, S.; Fiss, P.C.; Aguilera, R.V. Studying configurations with qualitative comparative analysis: Best practices in strategy and organization research. Strat. Organ. 2018, 16, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Pappas, I.O.; Woodside, A.G. Fuzzy-set Qualitative Comparative Analysis (fsQCA): Guidelines for research practice in Information Systems and marketing. Int. J. Inf. Manag. 2021, 58, 102310. [Google Scholar] [CrossRef]
- Zhang, M.; Du, Y. Qualitative Comparative Analysis(OCA)in Management andOrganization Research; Position, Tactics, and Directions. Chin. J. Manag. 2019, 16, 1312–1323. [Google Scholar]
- Dou, Z.; Sun, Y.; Wang, T.; Wan, H.; Fan, S. Exploring regional advanced manufacturing and its driving factors: A case study of the Guangdong–Hong Kong–Macao Greater Bay Area. Int. J. Environ. Res. Public Health 2021, 18, 5800. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.; Sun, Y.; Zhang, Y.; Wang, T.; Wu, C.; Fan, S. Regional manufacturing industry demand forecasting: A deep learning approach. Appl. Sci. 2021, 11, 6199. [Google Scholar] [CrossRef]
Basic Information | Category | Frequency | Percentage (%) |
---|---|---|---|
Gender | Men | 195 | 82.63 |
Female | 41 | 17.37 | |
Education | College and below | 21 | 8.90 |
Undergraduate | 121 | 51.27 | |
Master | 90 | 38.14 | |
PhD | 4 | 1.69 | |
Age | <25 years | 23 | 9.75 |
25–30 years | 128 | 54.24 | |
31–35 years | 50 | 21.19 | |
36–40 years | 17 | 7.20 | |
>40 years | 18 | 7.63 | |
Years of work in the construction industry | <3 years | 93 | 39.41 |
3–5 years | 62 | 26.27 | |
6–10 years | 44 | 18.64 | |
11–15 years | 21 | 8.90 | |
>15 years | 16 | 6.78 | |
Work units | Owner | 94 | 39.83 |
Construction company | 76 | 32.20 | |
Reconnaissance and design institutes | 29 | 12.29 | |
Consulting organization | 23 | 9.75 | |
Supervision company | 14 | 5.93 | |
Unit character | Government/Institutions | 30 | 12.71 |
State-owned enterprises | 117 | 49.58 | |
Private enterprises | 85 | 36.02 | |
Foreign-funded enterprises | 4 | 1.69 |
Constructs | Items | Loadings | Cronbach’s α | CR | AVE |
---|---|---|---|---|---|
Competitive Pressure (CP) | CP1 | 0.891 | 0.841 | 0.893 | 0.678 |
CP2 | 0.889 | ||||
CP3 | 0.717 | ||||
CP4 | 0.784 | ||||
Digital Cost (DC) | DC1 | 0.955 | 0.861 | 0.907 | 0.767 |
DC2 | 0.901 | ||||
DC3 | 0.761 | ||||
Digital Employees (DE) | DE1 | 0.870 | 0.903 | 0.932 | 0.775 |
DE2 | 0.891 | ||||
DE3 | 0.892 | ||||
DE4 | 0.869 | ||||
Digital Transformation (DT) | DT1 | 0.909 | 0.933 | 0.952 | 0.832 |
DT2 | 0.908 | ||||
DT3 | 0.917 | ||||
DT4 | 0.915 | ||||
Digital Transformation Strategy (DTS) | DTS1 | 0.930 | 0.917 | 0.947 | 0.857 |
DTS2 | 0.923 | ||||
DTS3 | 0.924 | ||||
Organizational Readiness (OR) | OR1 | 0.895 | 0.925 | 0.947 | 0.817 |
OR2 | 0.932 | ||||
OR3 | 0.893 | ||||
OR4 | 0.896 | ||||
Partner Pressure (PP) | PP1 | 0.941 | 0.902 | 0.939 | 0.837 |
PP2 | 0.913 | ||||
PP3 | 0.889 | ||||
Policy Support (PS) | PS1 | 0.827 | 0.868 | 0.910 | 0.717 |
PS2 | 0.880 | ||||
PS3 | 0.859 | ||||
PS4 | 0.819 | ||||
Relative Advantage (RA) | RA1 | 0.904 | 0.931 | 0.951 | 0.829 |
RA2 | 0.916 | ||||
RA3 | 0.930 | ||||
RA4 | 0.890 | ||||
Top Management Support (TMS) | TMS1 | 0.933 | 0.931 | 0.951 | 0.830 |
TMS2 | 0.848 | ||||
TMS3 | 0.932 | ||||
TMS4 | 0.928 | ||||
Use of Digital Technology (UDT) | UDT1 | 0.813 | 0.862 | 0.900 | 0.644 |
UDT2 | 0.853 | ||||
UDT3 | 0.860 | ||||
UDT4 | 0.774 | ||||
UDT5 | 0.703 |
Constructs | CP | DC | DE | DT | DTS | OR | PP | PS | RA | TMS | UDT |
---|---|---|---|---|---|---|---|---|---|---|---|
CP | 0.823 | ||||||||||
DC | 0.213 | 0.876 | |||||||||
DE | 0.559 | 0.175 | 0.880 | ||||||||
DT | 0.691 | 0.119 | 0.611 | 0.912 | |||||||
DTS | 0.663 | 0.155 | 0.693 | 0.751 | 0.926 | ||||||
OR | 0.587 | 0.125 | 0.780 | 0.680 | 0.769 | 0.904 | |||||
PP | 0.711 | 0.112 | 0.524 | 0.625 | 0.548 | 0.534 | 0.915 | ||||
PS | 0.666 | 0.128 | 0.586 | 0.670 | 0.601 | 0.601 | 0.724 | 0.847 | |||
RA | 0.434 | 0.289 | 0.530 | 0.606 | 0.524 | 0.606 | 0.344 | 0.403 | 0.910 | ||
TMS | 0.694 | 0.177 | 0.685 | 0.777 | 0.831 | 0.782 | 0.572 | 0.636 | 0.604 | 0.911 | |
UDT | 0.511 | 0.295 | 0.543 | 0.652 | 0.557 | 0.577 | 0.436 | 0.451 | 0.762 | 0.639 | 0.803 |
Hypotheses | Relationship | Path Coefficients | T Statistics | p Values | Result |
---|---|---|---|---|---|
H1 | UDT→DT | 0.162 | 2.679 | 0.007 | Supported |
H2a | RA→TMS | 0.339 | 5.433 | 0.000 | Supported |
H2b | RA→DT | 0.142 | 2.120 | 0.034 | Supported |
H3 | DE→DT | −0.039 | 0.693 | 0.488 | Not Supported |
H4 | DC→DT | −0.092 | 2.032 | 0.042 | Supported |
H5 | OR→DT | −0.027 | 0.405 | 0.686 | Not Supported |
H6 | DTS→DT | 0.250 | 3.075 | 0.002 | Supported |
H7 | TMS→DT | 0.202 | 2.377 | 0.017 | Supported |
H8a | CP→TMS | 0.379 | 4.475 | 0.000 | Supported |
H8b | CP→DT | 0.125 | 1.995 | 0.046 | Supported |
H9a | PP→TMS | 0.014 | 0.182 | 0.855 | Not Supported |
H9b | PP→DT | 0.092 | 1.304 | 0.192 | Not Supported |
H10a | PS→TMS | 0.236 | 2.582 | 0.010 | Supported |
H10b | PS→DT | 0.161 | 2.332 | 0.020 | Supported |
Relationship | Original Sample | T Statistics | p Values | Mediation Effect |
---|---|---|---|---|
RA→TMS→DT | 0.068 | 2.105 | 0.035 | Partial Mediation |
CP→TMS→DT | 0.076 | 2.095 | 0.036 | Partial Mediation |
PP→TMS→DT | 0.003 | 0.171 | 0.864 | No Mediation |
PS→TMS→DT | 0.048 | 1.747 | 0.081 | No Mediation |
Conditions | High-Level Digital Transformation | Low-Level Digital Transformation | ||
---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | |
UDT | 0.823139 | 0.802374 | 0.548858 | 0.513682 |
~UDT | 0.501096 | 0.536361 | 0.788841 | 0.810693 |
CA | 0.825980 | 0.804635 | 0.587733 | 0.549719 |
~CA | 0.537774 | 0.576019 | 0.791125 | 0.813604 |
DC | 0.708970 | 0.717806 | 0.664221 | 0.645689 |
~DC | 0.650050 | 0.668472 | 0.709706 | 0.700723 |
DE | 0.790424 | 0.829646 | 0.544602 | 0.548837 |
~DE | 0.570166 | 0.565973 | 0.830960 | 0.791965 |
OR | 0.861080 | 0.824033 | 0.602024 | 0.553154 |
~OR | 0.533065 | 0.582474 | 0.808487 | 0.848203 |
DTS | 0.883887 | 0.839778 | 0.589178 | 0.537459 |
~DTS | 0.513165 | 0.565404 | 0.824360 | 0.872067 |
TMS | 0.876379 | 0.872026 | 0.556332 | 0.531500 |
~TMS | 0.529161 | 0.554014 | 0.866047 | 0.870573 |
CP | 0.797541 | 0.842611 | 0.529325 | 0.536943 |
~CP | 0.561711 | 0.554163 | 0.844844 | 0.800262 |
PP | 0.805938 | 0.836321 | 0.548590 | 0.546575 |
~PP | 0.563048 | 0.565048 | 0.835718 | 0.805250 |
PS | 0.871130 | 0.801364 | 0.603729 | 0.533236 |
~PS | 0.492600 | 0.564214 | 0.775104 | 0.852395 |
Antecedent Condition | High Levels of Digital Transformation | Low Levels of Digital Transformation | ||
---|---|---|---|---|
hdt1 | hdt2 | hdt3 | ldt1 | |
UDT | ● | ● | ● | × |
CA | ○ | ○ | × | |
DC | × | ○ | ○ | |
DE | ● | ● | ● | × |
OR | ● | ● | ● | × |
DTS | ● | ● | ● | × |
TMS | ● | ● | ● | ⊗ |
CP | ○ | ○ | ⊗ | |
PP | ○ | ○ | ⊗ | |
PS | ● | ● | ● | ⊗ |
Raw coverage | 0.386 | 0.470 | 0.475 | 0.468 |
Unique coverage | 0.069 | 0.021 | 0.025 | 0.468 |
Consistency | 0.994 | 0.987 | 0.986 | 0.991 |
Overall solution coverage | 0.565 | 0.468 | ||
Overall solution consistency | 0.985 | 0.991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Wang, T.; Wang, Y.; Zhang, S.; Lin, W.; Dou, Z.; Du, H. Study on the Influencing Factors of Digital Transformation of Construction Enterprises from the Perspective of Dual Effects—A Hybrid Approach Based on PLS-SEM and fsQCA. Sustainability 2023, 15, 6317. https://doi.org/10.3390/su15076317
Zhang G, Wang T, Wang Y, Zhang S, Lin W, Dou Z, Du H. Study on the Influencing Factors of Digital Transformation of Construction Enterprises from the Perspective of Dual Effects—A Hybrid Approach Based on PLS-SEM and fsQCA. Sustainability. 2023; 15(7):6317. https://doi.org/10.3390/su15076317
Chicago/Turabian StyleZhang, Guanqiao, Tao Wang, Yuhan Wang, Shuai Zhang, Wenhao Lin, Zixin Dou, and Haitao Du. 2023. "Study on the Influencing Factors of Digital Transformation of Construction Enterprises from the Perspective of Dual Effects—A Hybrid Approach Based on PLS-SEM and fsQCA" Sustainability 15, no. 7: 6317. https://doi.org/10.3390/su15076317
APA StyleZhang, G., Wang, T., Wang, Y., Zhang, S., Lin, W., Dou, Z., & Du, H. (2023). Study on the Influencing Factors of Digital Transformation of Construction Enterprises from the Perspective of Dual Effects—A Hybrid Approach Based on PLS-SEM and fsQCA. Sustainability, 15(7), 6317. https://doi.org/10.3390/su15076317