Analysis of the Effect of Exhaust Configuration and Shape Parameters of Ventilation Windows on Microclimate in Round Arch Solar Greenhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Technical Route of the Research Program
2.2. Experimental Site and Measuring Procedures
2.3. Modeling and Numerical Simulation
2.3.1. Fundamental Equations and Mathematical Model
2.3.2. Boundary Conditions and Geometric Modeling
2.3.3. Grid Irrelevance Verification
3. Results and Discussion
3.1. Validation of the Simulation Model
3.2. Analysis of Airflow Pattern and Thermal Behavior in Summer
3.3. Ventilation Performance Estimation and Optimal Structure Selection
3.4. Structural Optimization of the Proposed Scheme Based on Summer and Winter
3.5. Configuration Upgrade and Performance Experimental Comparison
4. Conclusions
- (1)
- A three-dimensional numerical simulation model of CRASG ventilation considering crop canopy airflow disturbance is established.
- (2)
- The bottom ventilation configuration of the rolling film increases the air flow into the interior of the greenhouse and results in more uniform airflow through the crop canopy. The adoption of the north roof ventilation configuration enhances the airflow through the interior of the greenhouse.
- (3)
- Based on the hot summer climate conditions, the optimal ventilation configuration obtained is PN (rf). In winter, the opening angle of the north roof ventilation window is less than 40° to ensure the rapid cooling of the interior of the greenhouse without the crops being affected by the cold environment. After optimization, the deviation angle between the rotation point of the ventilation window and the center line of the greenhouse is 25° and the width is 900 mm.
- (4)
- A 10-m span RASG is established to verify the ventilation effect of PN (rf). The experimental results further verify the reliability of the numerical simulations and prove that the optimal ventilation configuration construction parameters of RASG obtained in this study are reasonable and effective.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Wu, X.; Xia, T.; Fan, Z.; Shi, W.; Li, Y.; Li, T. New insights of designing thermal insulation and heat storage of Chinese solar greenhouse in high latitudes and cold regions. Energy 2022, 242, 122953. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Zou, Z.; Wang, S. CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution. Biosyst. Eng. 2016, 142, 12–26. [Google Scholar] [CrossRef]
- Choab, N.; Allouhi, A.; El, A.; Kousksou, T.; Saadeddine, S.; Jamil, A. Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies. Sol. Energy. 2019, 191, 109–137. [Google Scholar] [CrossRef]
- Xu, F.; Shang, C.; Li, H.; Xue, X.; Sun, W.; Chen, H.; Li, Y.; Zhang, Z.; Li, X.; Guo, W. Comparison of thermal and light performance in two typical Chinese solar greenhouses in Beijing. Int. J. Agric. Biol. Eng. 2019, 12, 24–32. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Yue, X.; Xu, H.; Li, T.; Li, Y. Effect of the ridge position ratio on the thermal environment of the Chinese solar greenhouse. R. Soc. Open Sci. 2021, 8, 201707. [Google Scholar] [CrossRef]
- Tong, G.; Christopher, D.M.; Zhao, R.; Wang, J. Effect of location and distribution of insulation layers on the dynamic thermal performance of chinese solar greenhouse walls. Appl. Eng. Agric. 2014, 30, 457–469. [Google Scholar] [CrossRef]
- Tong, X.; Sun, Z.; Sigrimis, N.; Li, T. Energy sustainability performance of a sliding cover solar greenhouse: Solar energy capture aspects. Biosyst. Eng. 2018, 176, 88–102. [Google Scholar] [CrossRef]
- Sun, Z.; Huang, W.; Li, T.; Tong, X.; Bai, Y.; Ma, J. Light and temperature performance of energy-saving solar greenhouse assembled with color plate. Trans. Chin. Soc. Agric. Eng. 2013, 29, 159–167. [Google Scholar]
- Tong, X.; Sun, Z.; Li, T.; Liu, Y. Experimental effects of Solar Water-cycling System for solar greenhouse in winter and summer. Acta Energ. Sol. Sin. 2016, 37, 2306–2313. [Google Scholar]
- Tong, G.; Christopher, D.M.; Li, B. Numerical modelling of temperature variations in a Chinese solar greenhouse. Comput. Electron. Agric. 2009, 68, 129–139. [Google Scholar] [CrossRef]
- Xia, T.; Li, Y.; Wu, X.; Fan, Z.; Shi, W.; Liu, X.; Li, T. Performance of a new active solar heat storage–release system for Chinese assembled solar greenhouses used in high latitudes and cold regions. Energy Rep. 2022, 8, 784–797. [Google Scholar] [CrossRef]
- Cao, K.; Xu, H.; Zhang, R.; Xu, D.; Yan, L.; Sun, Y.; Xia, L.; Zhao, J.; Zou, Z.; Bao, E. Renewable and sustainable strategies for improving the thermal environment of Chinese solar greenhouses. Energy Build. 2019, 202, 109414. [Google Scholar] [CrossRef]
- Amani, M.; Foroushani, S.; Sultan, M.; Bahrami, M. Comprehensive review on dehumidification strategies for agricultural greenhouse applications. Appl. Therm. Eng. 2020, 181, 115979. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, Y.; Yang, Q.; Fang, H.; Lu, W.; Zhou, S. Dehumidification in a chinese solar greenhouse using dry outdoor air heated by an active heat storage-release system. Appl. Eng. Agric. 2021, 32, 447–456. [Google Scholar] [CrossRef]
- Kitaya, Y.; Tsuruyama, J.; Shibuya, T.; Yoshida, M.; Kiyota, M. Effects of air current speed on gas exchange in plant leaves and plant canopies. Adv. Sp. Res. 2003, 31, 177–182. [Google Scholar] [CrossRef]
- Roy, J.C.; Pouillard, J.B.; Boulard, T.; Fatnassi, H.; Grisey, A. Experimental and CFD results on the CO2 distribution in a semi closed greenhouse. Acta Hortic. 2014, 1037, 993–1000. [Google Scholar] [CrossRef]
- Kempkes, F.; De Zwart, H.F.; Munoz, P.; Montero, J.I.; Baptista, F.J.; Giuffrida, F.; Gilli, C.; Stepowska, A.; Stanghellini, C. Heating and dehumidification in production greenhouses at northern latitudes: Energy use. Acta Hortic. 2017, 1164, 445–452. [Google Scholar] [CrossRef]
- Bot, G.P.A. Greenhouse Climate: From Physical Processes to a Dynamic Model. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1983. [Google Scholar]
- de Jong, T. Natural Ventilation of Large Multi-Span Greenhouses. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1990. Available online: http://edepot.wur.nl/206452 (accessed on 1 March 2023).
- Teitel, M.; Wenger, E. Air exchange and ventilation efficiencies of a monospan greenhouse with one inflow and one outflow through longitudinal side openings. Biosyst. Eng. 2014, 119, 98–107. [Google Scholar] [CrossRef]
- Baeza, E.J.; Pérez-Parra, J.J.; Montero, J.I.; Bailey, B.J.; López, J.C.; Gázquez, J.C. Analysis of the role of sidewall vents on buoyancy-driven natural ventilation in parral-type greenhouses with and without insect screens using computational fluid dynamics. Biosyst. Eng. 2009, 104, 86–96. [Google Scholar] [CrossRef]
- Benni, S.; Tassinari, P.; Bonora, F.; Barbaresi, A.; Torreggiani, D. Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Build. 2016, 125, 276–286. [Google Scholar] [CrossRef]
- Kittas, C.; Papadakis, G.; Boulard, T. Greenhouse ventilation rates through combined roof and side openings: An experimental study. Acta Hortic. 1997, 443, 31–38. [Google Scholar] [CrossRef]
- Boulard, T.; Wang, S. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel. Comput. Electron. Agric. 2002, 34, 173–190. [Google Scholar] [CrossRef]
- Bailey, J.E.F.B.J. The Influence of Fans on Environmental Conditions in Greenho uses. J. Agric. Eng. Res. 1994, 58, 201–210. [Google Scholar]
- Fernández, J.E.; Bailey, B.J. Measurement and prediction of greenhouse ventilation rates. Agric. For. Meteorol. 1992, 58, 229–245. [Google Scholar] [CrossRef]
- Zhang, Y.; Mahrer, Y.; Margolin, M. Predicting the microclimate inside a greenhouse: An application of a one-dimensional numerical model in an unheated greenhouse. Agric. For. Meteorol. 1997, 86, 291–297. [Google Scholar] [CrossRef]
- Rocha, G.A.O.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. [Google Scholar] [CrossRef]
- Villagrán, E.; Flores-Velazquez, J.; Akrami, M.; Bojacá, C. Influence of the Height in a Colombian Multi-Tunnel Greenhouse on Natural Ventilation and Thermal Behavior: Modeling Approach. Sustainability 2021, 13, 13631. [Google Scholar] [CrossRef]
- Villagrán, E.; Baeza Romero, E.; Bojacá, C. Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosyst. Eng. 2019, 188, 288–304. [Google Scholar] [CrossRef]
- Saberian, A.; Sajadiye, S.M. Assessing the variable performance of fan-and-pad cooling in a subtropical desert greenhouse. Appl. Therm. Eng. 2020, 179, 115672. [Google Scholar] [CrossRef]
- Park, S.-J.; Lee, I.-B.; Lee, S.-Y.; Kim, J.-G.; Choi, Y.-B.; Decano-Valentin, C.; Cho, J.-H.; Jeong, H.-H.; Yeo, U.-H. Numerical Analysis of Ventilation Efficiency of a Korean Venlo-Type Greenhouse with Continuous Roof Vents. Agriculture 2022, 12, 1349. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lee, I.-B.; Kim, R.-W. Evaluation of wind-driven natural ventilation of single-span greenhouses built on reclaimed coastal land. Biosyst. Eng. 2018, 171, 120–142. [Google Scholar] [CrossRef]
- Santolini, E.; Pulvirenti, B.; Benni, S.; Barbaresi, L.; Torreggiani, D.; Tassinari, P. Numerical study of wind-driven natural ventilation in a greenhouse with screens. Comput. Electron. Agric. 2018, 149, 41–53. [Google Scholar] [CrossRef]
- Akrami, M.; Mutlum, C.D.; Javadi, A.A.; Salah, A.H.; Fath, H.E.S.; Dibaj, M.; Farmani, R.; Mohammed, R.H.; Negm, A. Analysis of Inlet Configurations on the Microclimate Conditions of a Novel Standalone Agricultural Greenhouse for Egypt Using Computational Fluid Dynamics. Sustainability 2021, 13, 1446. [Google Scholar] [CrossRef]
- Saberian, A.; Sajadiye, S.M. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renew. Energy 2019, 138, 722–737. [Google Scholar] [CrossRef]
- Wang, S.; Boulard, T.; Haxaire, R. Air speed profiles in a naturally ventilated greenhouse with a tomato crop. Agric. For. Meteorol. 1999, 96, 181–188. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Yue, X.; Liu, X.; Tian, S.; Li, T. Evaluation of airflow pattern and thermal behavior of the arched greenhouses with designed roof ventilation scenarios using CFD simulation. PLoS ONE 2020, 15, 0239851. [Google Scholar] [CrossRef]
- Fang, H.; Yang, Q.; Zhang, Y.; Cheng, R.; Zhang, F.; Lu, W. Simulation on ventilation flux of solar greenhouse based on the coupling between stack and wind effects. Chin. J. Agrometeorol. 2016, 37, 531. [Google Scholar] [CrossRef]
- Jiang, G.; Hu, Y.; Liu, Y.; Zou, Z. Analysis on insulation performance of sunken solar greenhouse based on CFD. Trans. Chin. Soc. Agric. Eng. 2011, 27, 275–281. [Google Scholar]
- Zhang, G.; Fu, Z.; Yang, M.; Liu, X.; Dong, Y.; Li, X. Nonlinear simulation for coupling modeling of air humidity and vent opening in Chinese solar greenhouse based on CFD. Comput. Electron. Agric. 2019, 162, 337–347. [Google Scholar] [CrossRef]
- He, K.; Chen, D.; Sun, L.; Liu, Z.; Huang, Z. The effect of vent openings on the microclimate inside multi-span greenhouses during summer and winter seasons. Eng. Appl. Comput. Fluid Mech. 2015, 9, 399–410. [Google Scholar] [CrossRef]
- Santolini, E.; Pulvirenti, B.; Guidorzi, P.; Bovo, M.; Torreggiani, D.; Tassinari, P. Analysis of the effects of shading screens on the microclimate of greenhouses and glass facade buildings. Build. Environ. 2022, 211, 108691. [Google Scholar] [CrossRef]
- Xu, K.; Guo, X.; He, J.; Yu, B.; Tan, J.; Guo, Y. A study on temperature spatial distribution of a greenhouse under solar load with considering crop transpiration and optical effects. Energy Convers. Manag. 2022, 254, 115277. [Google Scholar] [CrossRef]
- An, C.H.; Ri, H.J.; Han, T.U.; Il Kim, S.; Ju, U.S. Feasibility of winter cultivation of fruit vegetables in a solar greenhouse in temperate zone; experimental and numerical study. Sol. Energy. 2022, 233, 18–30. [Google Scholar] [CrossRef]
- Liu, R.; Liu, J.; Liu, H.; Yang, X.; Bárcena, J.F.B.; Li, M. A 3-D simulation of leaf condensation on cucumber canopy in a solar greenhouse. Biosyst. Eng. 2021, 210, 310–329. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.; Zhu, D.; Zhang, X.; Ge, M.; Cai, Y. Optimal design for solar greenhouses based on canopy height. J. Build. Eng. 2022, 53, 104473. [Google Scholar] [CrossRef]
- Nebbali, R.; Roy, J.C.; Boulard, T. Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse. Renew. Energy. 2012, 43, 111–129. [Google Scholar] [CrossRef]
- Boulard, T.; Roy, J.C.; Pouillard, J.B.; Fatnassi, H.; Grisey, A. Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosyst. Eng. 2017, 158, 110–133. [Google Scholar] [CrossRef]
- Xu, F.; Cai, Y.; Chen, J.; Zhang, L. Temperature/flow field simulation and parameter optimal design for greenhouses with fan-pad evaporative cooling system. Trans. Chin. Soc. Agric. Eng. 2015, 31, 201–208. [Google Scholar]
- Wu, F.; Xu, F.; Zhang, L.; Ma, X. Numerical simulation on thermal environment of heated glass greenhouse based on porous medium. Trans. Chin. Soc. Agric. Mach. 2011, 42, 180–185. [Google Scholar]
- Zhang, Y.; Henke, M.; Li, Y.; Yue, X.; Xu, D.; Liu, X.; Li, T. High resolution 3D simulation of light climate and thermal performance of a solar greenhouse model under tomato canopy structure. Renew. Energy 2020, 160, 730–745. [Google Scholar] [CrossRef]
- Velázquez, J.F.; García, M.V. Regional management of the environment in a zenith greenhouse with computational fluid dynamics (CFD). Ing. Agric. Biosist. 2019, 11, 9–25. [Google Scholar] [CrossRef]
- Villagran, E.; Leon, R.; Rodriguez, A.; Jaramillo, J. 3D Numerical Analysis of the Natural Ventilation Behavior in a Colombian Greenhouse Established in Warm Climate Conditions. Sustainability 2020, 12, 8101. [Google Scholar] [CrossRef]
- Liang, B.; Zhao, S.; Li, Y.; Wang, P.; Liu, Z.; Zhang, J.; Ding, T. Study on the Natural Ventilation Characteristics of a Solar Greenhouse in a High-Altitude Area. Agronomy 2022, 12, 2387. [Google Scholar] [CrossRef]
- Boulard, T.; Fatnassi, H.; Majdoubi, H.; Bouirden, L. Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study. Acta Hortic. 2008, 801, 837–846. [Google Scholar] [CrossRef]
Material Name | Thickness (mm) | Density (kg m−3) | Specific heat Capacity (J kg−1 K−1) | Thermal Conductivity (W m−1 K−1) | Radiation Absorption Rate (%) | Radiation Transmittance (%) |
---|---|---|---|---|---|---|
Air | - | 1.225 | 1006.43 | 0.0242 | - | - |
Polystyrene board (north roof) | 110 | 30 | 1368 | 0.042 | - | - |
Wood | 370 | 500 | 2520 | 0.29 | 0.7 | - |
Soil | - | 1800 | 828 | 1.16 | 0.86 | - |
Polystyrene film | 0.1 | 970 | 750 | 0.34 | 0.1 | 0.8 |
Tomato canopy | - | 300 | 1000 | 0.173 | 0.9 | - |
Classifications | Boundary Conditions | Parameters | Boundary Conditions | Parameters |
---|---|---|---|---|
Environmental parameter (Summer) | Outside temperature | 26.2 °C | Inside air temperature | 50 °C |
Outside humidity | 51.5% | Canopy temperature | 47.3 °C | |
Prevailing wind velocity | 3.4 m s−1 | Inside air humidity | 75.6% | |
Inside soil surface temperature | 55.7 °C | Canopy humidity | 85.2% | |
Environmental parameter (Winter) | Outside temperature | −7.6 °C | Inside air temperature | 32 °C |
Outside humidity | 35.8% | Canopy temperature | 30.7 °C | |
Prevailing wind velocity | 3.2 m s−1 | Inside air humidity | 82.4% | |
Inside soil surface temperature | 26.6 °C | Canopy humidity | 86.3% | |
Plant canopy (Summer) | Porosity | 0.85 | Internal loss factor (C1) | 0.2 |
Pressure drop coefficient [42,43] | 0.32 | leaf area index (LAI) | 2.1 | |
d | 8 mm | Saturated water vapor pressure difference | 550 Pa | |
Latent heat of evaporation | 2.43 J·kg−1 | ra | 792 s·m−1 | |
rs | 200 s·m−1 | |||
Plant canopy (Winter) | Porosity | 0.78 | Internal loss factor (C1) | 0.2 |
Pressure drop coefficient [42,43] | 0.32 | leaf area index (LAI) | 2.4 | |
d | 12 mm | Saturated water vapor pressure difference | 535 Pa | |
Latent heat of evaporation | 2.38 J·kg−1 | ra | 864 s·m−1 | |
rs | 200 s·m−1 |
Continuity Equation | X-Momentum Equation | Y-Momentum Equation | Z-Momentum Equation | Energy Equation | DO-Intensity |
---|---|---|---|---|---|
1 × 10−3 | 1 × 10−3 | 1 × 10−3 | 1 × 10−3 | 1 × 10−6 | 1 × 10−6 |
Variables | Rough Grid | Middle Grid | Fine Grid |
---|---|---|---|
Number of elements in the greenhouse | 721,673 | 1,613,721 | 2,355,716 |
Number of elements in the plants | 228,246 | 395,738 | 625,712 |
Minimum orthogonal quality | 0.21 | 0.35 | 0.3 |
Maximum skewness | 0.79 | 0.68 | 0.76 |
Discrete time (min) | 3.52 | 4.13 | 8.1 |
PRMSD of air temperature in summer (%) | 6.4 | 4.2 | 3.4 |
PRMSD of air temperature in winter (%) | 6.6 | 4.7 | 3.9 |
F Test to Compare Two Variances | H0: σ(Dm)2 = σ(Ds)2 | H1: σ(Dm)2 ≠ σ(Ds)2 |
---|---|---|
Temperature | Relative Humidity | |
F | 0.059 | 0.006 |
p-value | 0.808 | 0.938 |
95% confidence interval | {−0.239, 0.267} | {−0.254, 0.252} |
Two Sample t-test | H0: µDm = µDs | H1: µDm ≠ µDs |
Temperature | Relative Humidity | |
T | 0.111 | −0.010 |
p-value | 0.912 | 0.992 |
95% confidence interval | {−0.587, 0.657} | {−2.232, 2.230} |
Mean (µ) | µDm = 38.24 °C | µDm = 72.43% |
µDs = 38.17 °C | µDs = 72.36% |
Temperature (°C) | Relative Humidity (%) | |||||
---|---|---|---|---|---|---|
MAE * | RMSE * | R2 | MAE * | RMSE * | R2 | |
S01-Second100 | 0.27 | 0.33 | 0.85 | 0.23 | 0.28 | 0.93 |
S02-Second200 | 0.24 | 0.33 | 0.82 | 0.32 | 0.40 | 0.88 |
S03-Second300 | 0.38 | 0.48 | 0.86 | 0.41 | 0.48 | 0.78 |
S04-Second400 | 0.47 | 0.56 | 0.73 | 0.37 | 0.49 | 0.72 |
S05-Second500 | 0.24 | 0.30 | 0.72 | 0.23 | 0.32 | 0.75 |
S06-Second600 | 0.28 | 0.33 | 0.82 | 0.21 | 0.28 | 0.90 |
S07-Second700 | 0.26 | 0.32 | 0.85 | 0.30 | 0.36 | 0.82 |
S08-Second800 | 0.30 | 0.37 | 0.87 | 0.18 | 0.26 | 0.93 |
S09-Second900 | 0.33 | 0.39 | 0.89 | 0.30 | 0.39 | 0.88 |
S10-Second1000 | 0.18 | 0.22 | 0.94 | 0.27 | 0.36 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Li, Y.; Jiang, L.; Wang, L.; Li, T.; Liu, X. Analysis of the Effect of Exhaust Configuration and Shape Parameters of Ventilation Windows on Microclimate in Round Arch Solar Greenhouse. Sustainability 2023, 15, 6432. https://doi.org/10.3390/su15086432
Fan Z, Li Y, Jiang L, Wang L, Li T, Liu X. Analysis of the Effect of Exhaust Configuration and Shape Parameters of Ventilation Windows on Microclimate in Round Arch Solar Greenhouse. Sustainability. 2023; 15(8):6432. https://doi.org/10.3390/su15086432
Chicago/Turabian StyleFan, Zilong, Yiming Li, Lingling Jiang, Lu Wang, Tianlai Li, and Xingan Liu. 2023. "Analysis of the Effect of Exhaust Configuration and Shape Parameters of Ventilation Windows on Microclimate in Round Arch Solar Greenhouse" Sustainability 15, no. 8: 6432. https://doi.org/10.3390/su15086432
APA StyleFan, Z., Li, Y., Jiang, L., Wang, L., Li, T., & Liu, X. (2023). Analysis of the Effect of Exhaust Configuration and Shape Parameters of Ventilation Windows on Microclimate in Round Arch Solar Greenhouse. Sustainability, 15(8), 6432. https://doi.org/10.3390/su15086432