Thermal Regeneration of Activated Carbon Used as an Adsorbent for Hydrogen Sulfide (H2S)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorption and Regeneration Experiments
2.2. Material Characterization
3. Results and Discussion
3.1. GAC Characterization
3.2. Adsorption
3.3. Thermal Regeneration
4. Conclusions
5. Implications and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjamin, M.M.; Lawler, D.F. Water Quality Engineering: Physical/Chemical Treatment Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-11863-227-7. [Google Scholar]
- Coppola, G.; Papurello, D. Biogas Cleaning: Activated Carbon Regeneration for H2S Removal. Clean Technol. 2019, 1, 40–57. [Google Scholar] [CrossRef] [Green Version]
- Bagreev, A.; Angel Menendez, J.; Dukhno, I.; Tarasenko, Y.; Bandosz, T.J. Bituminous Coal-Based Activated Carbons Modified with Nitrogen as Adsorbents of Hydrogen Sulfide. Carbon 2004, 42, 469–476. [Google Scholar] [CrossRef]
- Bagreev, A.; Rahman, H.; Bandosz, T.J. Wood-Based Activated Carbons as Adsorbents of Hydrogen Sulfide: A Study of Adsorption and Water Regeneration Processes. Ind. Eng. Chem. Res. 2000, 39, 3849–3855. [Google Scholar] [CrossRef]
- Wang, S.; Nam, H.; Nam, H. Preparation of Activated Carbon from Peanut Shell with KOH Activation and Its Application for H2S Adsorption in Confined Space. J. Environ. Chem. Eng. 2020, 8, 103683. [Google Scholar] [CrossRef]
- Bagreev, A.; Rahman, H.; Bandosz, T.J. Study of H2S Adsorption and Water Regeneration of Spent Coconut-Based Activated Carbon. Environ. Sci. Technol. 2000, 34, 4587–4592. [Google Scholar] [CrossRef]
- Bagreev, A.; Katikaneni, S.; Parab, S.; Bandosz, T.J. Desulfurization of Digester Gas: Prediction of Activated Carbon Bed Performance at Low Concentrations of Hydrogen Sulfide. Catal. Today 2005, 99, 329–337. [Google Scholar] [CrossRef]
- Henning, K.-D.; Schäfer, S. Impregnated Activated Carbon for Environmental Protection. Gas Sep. Purif. 1993, 7, 235–240. [Google Scholar] [CrossRef]
- Chiang, H.-L.; Tsai, J.-H.; Tsai, C.-L.; Hsu, Y.-C. Adsorption Characteristics of Alkaline Activated Carbon Exemplified by Water Vapor, H2S, and CH3SH Gas. Sep. Sci. Technol. 2000, 35, 903–918. [Google Scholar] [CrossRef]
- Huang, C.-C.; Chen, C.-H.; Chu, S.-M. Effect of Moisture on H2S Adsorption by Copper Impregnated Activated Carbon. J. Hazard. Mater. 2006, 136, 866–873. [Google Scholar] [CrossRef]
- Nakamura, T.; Tanada, S.; Kawasaki, N.; Hara, T.; Fujisawa, J.; Shibata, K. Hydrogen Sulfide Removal by Iron Containing Activated Carbon. Toxicol. Environ. Chem. 1996, 55, 279–283. [Google Scholar] [CrossRef]
- Balsamo, M.; Cimino, S.; de Falco, G.; Erto, A.; Lisi, L. ZnO-CuO Supported on Activated Carbon for H2S Removal at Room Temperature. Chem. Eng. J. 2016, 304, 399–407. [Google Scholar] [CrossRef]
- Yan, R.; Chin, T.; Ng, Y.L.; Duan, H.; Liang, D.T.; Tay, J.H. Influence of Surface Properties on the Mechanism of H2S Removal by Alkaline Activated Carbons. Environ. Sci. Technol. 2004, 38, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Adib, F.; Bagreev, A.; Bandosz, T.J. Effect of PH and Surface Chemistry on the Mechanism of H2S Removal by Activated Carbons. J. Colloid Interface Sci. 1999, 216, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Bandosz, T.J. Effect of Pore Structure and Surface Chemistry of Virgin Activated Carbons on Removal of Hydrogen Sulfide. Carbon 1999, 37, 483–491. [Google Scholar] [CrossRef]
- Marafi, M.; Stanislaus, A. Spent Catalyst Waste Management: A Review: Part I—Developments in Hydroprocessing Catalyst Waste Reduction and Use. Resour. Conserv. Recycl. 2008, 52, 859–873. [Google Scholar] [CrossRef]
- Zhou, W.; Meng, X.; Gao, J.; Zhao, H.; Zhao, G.; Ma, J. Electrochemical Regeneration of Carbon-Based Adsorbents: A Review of Regeneration Mechanisms, Reactors, and Future Prospects. Chem. Eng. J. Adv. 2021, 5, 100083. [Google Scholar] [CrossRef]
- Bandosz, T.J. On the Adsorption/Oxidation of Hydrogen Sulfide on Activated Carbons at Ambient Temperatures. J. Colloid Interface Sci. 2002, 246, 1–20. [Google Scholar] [CrossRef]
- Bagreev, A.; Rahman, H.; Bandosz, T.J. Study of Regeneration of Activated Carbons Used as H2S Adsorbents in Water Treatment Plants. Adv. Environ. Res. 2002, 6, 303–311. [Google Scholar] [CrossRef]
- Salvador, F.; Jiménez, C.S. A New Method for Regenerating Activated Carbon by Thermal Desorption with Liquid Water under Subcritical Conditions. Carbon 1996, 34, 511–516. [Google Scholar] [CrossRef]
- Cosarsonas, L.C.; Rustum, R.; Garcia, S. Comparison of Two Water Regeneration Strategies for Activated Carbon Loaded with Hydrogen Sulphide Gas. MESE 2016, 2, 445–453. [Google Scholar] [CrossRef]
- Bagreev, A.; Rahman, H.; Bandosz, T.J. Thermal Regeneration of a Spent Activated Carbon Previously Used as Hydrogen Sulfide Adsorbent. Carbon 2001, 39, 1319–1326. [Google Scholar] [CrossRef]
- Ania, C.O.; Menéndez, J.A.; Parra, J.B.; Pis, J.J. Microwave-Induced Regeneration of Activated Carbons Polluted with Phenol. A Comparison with Conventional Thermal Regeneration. Carbon 2004, 42, 1383–1387. [Google Scholar] [CrossRef]
- Márquez, P.; Benítez, A.; Hidalgo-Carrillo, J.; Urbano, F.J.; Caballero, Á.; Siles, J.A.; Martín, M.A. Simple and Eco-Friendly Thermal Regeneration of Granular Activated Carbon from the Odour Control System of a Full-Scale WWTP: Study of the Process in Oxidizing Atmosphere. Sep. Purif. Technol. 2021, 255, 117782. [Google Scholar] [CrossRef]
- Catena, A.; Zhang, J.; Commane, R.; Murray, L.; Schwab, M.; Leibensperger, E.; Marto, J.; Smith, M.; Schwab, J. Hydrogen Sulfide Emission Properties from Two Large Landfills in New York State. Atmosphere 2022, 13, 1251. [Google Scholar] [CrossRef]
- ASTM D6646-03(2014); Standard Test Method for Determination of the Accelerated Hydrogen Sulfide Breakthrough Capacity of Granular and Pelletized Activated Carbon. ASTM: West Conshohocken, PA, USA. Available online: https://www.astm.org/d6646-03r14.html (accessed on 21 January 2023).
- Singh, K.P.; Malik, A.; Sinha, S.; Ojha, P. Liquid-Phase Adsorption of Phenols Using Activated Carbons Derived from Agricultural Waste Material. J. Hazard. Mater. 2008, 150, 626–641. [Google Scholar] [CrossRef] [PubMed]
- Xiao, A.S.; Yan, K.L. Removal of Hydrogen Sulfide on Activated Carbon Supported Ionic Liquids. IOP Conf. Ser. Mater. Sci. Eng. 2019, 479, 012060. [Google Scholar] [CrossRef]
- Chaudhari, G.N.; Bambole, D.R.; Bodade, A.B.; Padole, P.R. Characterization of Nanosized TiO2 Based H2S Gas Sensor. J. Mater. Sci. 2006, 41, 4860–4864. [Google Scholar] [CrossRef]
- Bunker, B. Construction and Operation of a Pilot-Scale Odor Control Device. Master’s Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2022. [Google Scholar]
Sample | BET Surface Area (m2/g) | Micropore Volume (cm3/g) | Mesopore Volume (cm3/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|---|---|
Carbon I | 433 | 0.13 | 0.18 | 0.31 | 3.34 |
Carbon II | 372 | 0.10 | 0.16 | 0.27 | 3.34 |
Carbon III | 397 | 0.10 | 0.22 | 0.34 | 3.62 |
Element | Carbon I | Carbon II | Carbon III |
---|---|---|---|
C | 65.1 | 73.3 | 64.5 |
O | 11.4 | 10.1 | 14.4 |
Na | 0.4 | 0.0 | 0.0 |
Mg | 1.3 | 0.7 | 1.5 |
Al | 2.0 | 1.1 | 1.4 |
Si | 2.3 | 1.7 | 1.6 |
S | 1.3 | 2.6 | 2.2 |
Ca | 12.9 | 8.1 | 10.2 |
Fe | 3.5 | 2.3 | 4.3 |
Sample | 1 A-R Cycle | 2 A-R Cycles |
---|---|---|
Sample 1 | 85% | 75% |
Sample 2 | 82% | 45% |
Sample 3 | 43% | 61% |
Average (±σ) | 70 ± 23% | 60 ± 15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunker, B.; Dvorak, B.; Aly Hassan, A. Thermal Regeneration of Activated Carbon Used as an Adsorbent for Hydrogen Sulfide (H2S). Sustainability 2023, 15, 6435. https://doi.org/10.3390/su15086435
Bunker B, Dvorak B, Aly Hassan A. Thermal Regeneration of Activated Carbon Used as an Adsorbent for Hydrogen Sulfide (H2S). Sustainability. 2023; 15(8):6435. https://doi.org/10.3390/su15086435
Chicago/Turabian StyleBunker, Brendan, Bruce Dvorak, and Ashraf Aly Hassan. 2023. "Thermal Regeneration of Activated Carbon Used as an Adsorbent for Hydrogen Sulfide (H2S)" Sustainability 15, no. 8: 6435. https://doi.org/10.3390/su15086435
APA StyleBunker, B., Dvorak, B., & Aly Hassan, A. (2023). Thermal Regeneration of Activated Carbon Used as an Adsorbent for Hydrogen Sulfide (H2S). Sustainability, 15(8), 6435. https://doi.org/10.3390/su15086435