A Study of Countermeasures to Activate the Consumption Potential of Urban Residents in Yangtze River Delta Region by Linking Supply and Demand Synergy
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Consumption Function Selection
3.2. Identification and Estimation of Panel Data Model
3.3. Data Sources and Study Scoping
4. Results
4.1. Unit Root Test
4.2. Co-Integration Test
4.3. Model Selection
- Judging the type of model
- 2
- Determine the fixed effects and random effects of the model
4.4. Empirical Results
5. Discussion
5.1. Food Consumption
5.2. Clothing Consumption
5.3. Residential Consumption
5.4. Household Equipment Consumption
5.5. Transportation and Communication
5.6. Cultural, Educational and Recreational
5.7. Healthcare
6. Conclusions
6.1. Main Conclusions
6.2. Main Recommendations
7. Limitations and Improvements
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Food | Dress | Residence | Home Equipment | Transportation Communication | Culture, Education, and Entertainment | Healthcare | |
---|---|---|---|---|---|---|---|
Shanghai | 0.061727 *** | 0.010313 | 0.351289 *** | 0.018276 *** | 0.098788 *** | 0.085863 *** | 0.07392 *** |
Nanjing | 0.042214 *** | 0.031263 *** | 0.19717 *** | 0.029465 *** | 0.119411 *** | 0.125507 *** | 0.018664 *** |
Wuxi | 0.076218 *** | 0.056464 *** | 0.215056 *** | 0.037396 *** | 0.189734 *** | 0.110664 *** | 0.028019 *** |
Xuzhou | 0.059211 *** | 0.021749 ** | 0.192569 *** | 0.049701 *** | 0.133064 *** | 0.048062 *** | 0.039894 *** |
Changzhou | 0.040227 *** | 0.023638 *** | 0.172206 *** | 0.028548 *** | 0.135555 *** | 0.102861 *** | 0.025164 *** |
Suzhou | 0.051942 *** | 0.021239 ** | 0.218808 *** | 0.026633 *** | 0.188936 *** | 0.105479 *** | 0.020463 *** |
Nantong | 0.087199 *** | 0.031576 *** | 0.225877 *** | 0.035207 *** | 0.174905 *** | 0.082495 *** | 0.038853 *** |
Lianyungang | 0.098599 *** | 0.039481 *** | 0.180882 *** | 0.038199 *** | 0.091116 *** | 0.161662 *** | 0.017554 *** |
Huai’an | 0.042527 *** | 0.028763 *** | 0.169334 *** | 0.028785 *** | 0.07492 *** | 0.111424 *** | 0.010055 *** |
Yancheng | 0.05005 *** | 0.02264 ** | 0.142883 *** | 0.030645 *** | 0.135322 *** | 0.108683 *** | 0.027775 *** |
Yangzhou | 0.07539 *** | 0.025229 *** | 0.189497 *** | 0.03122 *** | 0.11852 *** | 0.102683 *** | 0.021046 *** |
Zhenjiang | 0.045845 *** | 0.035612 *** | 0.194082 *** | 0.031597 *** | 0.152401 *** | 0.104434 *** | 0.01982 *** |
Taizhou | 0.078148 *** | 0.035106 *** | 0.228766 *** | 0.032374 *** | 0.152712 *** | 0.083433 *** | 0.047361 *** |
Suqian | 0.130005 *** | 0.037857 *** | 0.147247 *** | 0.053033 *** | 0.092295 *** | 0.166172 *** | 0.043833 *** |
Hangzhou | 0.068053 *** | 0.023951 *** | 0.286812 *** | 0.045272 *** | 0.171923 *** | 0.085836 *** | 0.059148 *** |
Zhoushan | 0.10292 *** | 0.066098 *** | 0.201018 *** | 0.033934 *** | 0.131234 *** | 0.073298 *** | 0.03539 *** |
Jiaxing | 0.063637 *** | 0.02126 *** | 0.181707 *** | 0.039152 *** | 0.203049 *** | 0.044349 *** | 0.030926 *** |
Wenzhou | 0.08545 *** | 0.019299 * | 0.311242 *** | 0.03675 *** | 0.091617 *** | 0.080657 *** | 0.017687 *** |
Ningbo | 0.073416 *** | 0.025871 ** | 0.23681 *** | 0.033974 *** | 0.181449 *** | 0.078214 *** | 0.032718 *** |
Shaoxing | 0.057002 *** | 0.031362 *** | 0.25397 *** | 0.020728 *** | 0.127633 *** | 0.05803 *** | 0.045052 *** |
Huzhou | 0.094797 *** | 0.029915 *** | 0.217763 *** | 0.030202 *** | 0.16417 *** | 0.055059 ** | 0.036768 * |
Lishui | 0.110684 *** | 0.070826 *** | 0.351518 *** | 0.031094 *** | 0.09483 *** | 0.017876 | 0.101737 *** |
Taizhou | 0.080818 *** | 0.050437 *** | 0.264788 *** | 0.052633 *** | 0.153017 *** | 0.022344 * | 0.017275 *** |
Jinhua | 0.070195 *** | 0.031425 *** | 0.256588 *** | 0.042083 *** | 0.169065 *** | 0.046282 *** | 0.046544 *** |
Quzhou | 0.029062 | 0.02276 | 0.235011 *** | 0.033783 *** | 0.108246 *** | 0.06425 *** | 0.037234 *** |
Hefei | 0.078361 *** | 0.009312 | 0.199134 *** | 0.019788 *** | 0.190333 *** | 0.08071 *** | 0.026536 *** |
Bozhou | 0.125932 *** | 0.031237 *** | 0.155805 *** | 0.047041 *** | 0.178429 *** | 0.098578 *** | 0.043497 *** |
Huaibei | 0.060709 * | 0.022023 ** | 0.140241 *** | 0.049232 *** | 0.194225 *** | 0.07092 *** | 0.063298 *** |
Cebu | 0.039499 | 0.033882 *** | 0.11725 *** | 0.021824 *** | 0.061362 *** | 0.068549 *** | 0.038979 ** |
Fuyang | 0.092277 *** | 0.036273 *** | 0.207249 *** | 0.054719 *** | 0.122466 *** | 0.061536 *** | 0.02278 |
Bengbu | 0.097339 *** | 0.024207 *** | 0.099089 *** | 0.032355 *** | 0.140116 *** | 0.041844 *** | 0.013805 |
Huainan | 0.070373 *** | 0.011213 * | 0.10431 *** | 0.024923 *** | 0.142342 *** | 0.069437 *** | 0.047509 *** |
Chuzhou | 0.110094 *** | 0.027593 * | 0.226179 *** | 0.059546 *** | 0.131356 *** | 0.08883 *** | 0.051223 *** |
Lu’an | 0.150727 *** | 0.05118 *** | 0.202339 *** | 0.030855 *** | 0.129274 *** | 0.066955 *** | 0.025032 ** |
Wuhu | 0.108098 *** | 0.022742 *** | 0.154449 *** | 0.030314 *** | 0.16062 *** | 0.053027 *** | 0.036435 *** |
Ma On Shan | 0.168728 *** | 0.049314 *** | 0.132133 *** | 0.042758 *** | 0.195742 *** | 0.126358 *** | 0.026384 *** |
Anqing | 0.080629 *** | 0.019196 | 0.182203 *** | 0.03638 *** | 0.093533 *** | 0.039991 * | 0.050029 *** |
Chizhou | 0.114453 *** | 0.038324 | 0.136713 *** | 0.080617 ** | 0.134822 *** | 0.092293 *** | 0.061905 *** |
Tongling | 0.132819 *** | 0.045796 ** | 0.211593 *** | 0.066971 *** | 0.152131 *** | 0.112582 *** | 0.034056 *** |
Xuancheng | 0.084606 *** | 0.023054 ** | 0.134154 *** | 0.04276 *** | 0.133401 *** | 0.069446 *** | 0.043997 *** |
Huangshan | 0.081624 *** | 0.014881 | 0.187929 *** | 0.032426 *** | 0.104439 *** | 0.054723 *** | 0.036199 *** |
Hot Spot Area | Hotter Areas | Cooler Spot Areas | Cold Spot Area | |
---|---|---|---|---|
Food | Suqian, Bozhou, Liuan, Maanshan, Tongling | Lianyungang, Bengbu, Chuzhou, Fuyang, Huzhou, Zhoushan, Lishui | Huabei, Huainan, Hefei, Anqing, Yangzhou, Taizhou, Nantong, Wuxi, Shanghai, Xuancheng, Huangshan, Hangzhou, Jiaxing, Jinhua, Ningbo, Taizhou, Wenzhou | Xuzhou, Suizhou, Huaian, Yancheng, Nanjing, Zhenjiang, Changzhou, Suzhou, Shaoxing, Quzhou |
Dress | Zhoushan, Liuan, Tongling, Maanshan, Wuxi, Lishui, Taizhou | Lianyungang, Suqian, Huaian, Suizhou, Bozhou, Fuyang, Nantong, Taizhou, Zhenjiang, Nanjing, Huzhou, Chizhou, Shaoxing, Jinhua | Xuzhou, Huabei, Bengbu, Chuzhou, Yangzhou, Yancheng, Anqing, Wuhu, Xuancheng, Changzhou, Suzhou, Jiaxing, Hangzhou, Quzhou, Ningbo, Wenzhou | Shanghai, Huangshan, Huainan, Hefei |
Residence | Shanghai, Hangzhou, Lishui, Wenzhou | Chuzhou, Nantong, Taizhou, Wuxi, Suzhou, Huzhou, Quzhou, Jinhua, Shaoxing, Taizhou, Ningbo | Zhoushan, Jiaxing, Huangshan, Anqing, Tongling, Changzhou, Nanjing, Zhenjiang, Yangzhou, Hefei, Liuan, Fuyang, Huaian, Xuzhou, Lianyungang | Yancheng, Suqian, Suizhou, Huabei, Bozhou, Bengbu, Huainan, Maanshan, Wuhu, Xuancheng, Chizhou |
Home Equipment | Chizhou, Tongling | Xuzhou, Suqian, Huaibei, Bozhou, Fuyang, Chuzhou, Maanshan, Xuancheng, Hangzhou, Jinhua, Taizhou | Lianyungang, Yancheng, Huaian, Bengbu, Liuan, Anqing, Huangshan, Wuhu, Huzhou, Jiaxing, Changzhou, Wuxi, Zhenjiang, Nanjing, Yangzhou, Taizhou, Nantong, Quzhou, Lishui, Wenzhou, Ningbo, Zhoushan | Shanghai, Suzhou, Shaoxing, Hefei, Huainan, Cebu |
Transportation Communication | Ningbo, Jiaxing, Suzhou, Wuxi, Nantong, Maanshan, Hefei, Bozhou, Huabei | Taizhou, Jinhua, Hangzhou, Huzhou, Wuhu, Tongling, Zhenjiang, Taizhou | Xuzhou, Yancheng, Fuyang, Bengbu, Huainan, Liuan, Chuzhou, Nanjing, Yangzhou, Changzhou, Xuancheng, Chizhou, Shaoxing, Zhoushan | Lianyungang, Suqian, Suizhou, Huaian, Anqing, Shanghai, Huangshan, Quzhou, Lishui, Wenzhou |
Culture, Education and Entertainment | Lianyungang, Suqian | Bozhou, Huaian, Yancheng, Yangzhou, Zhenjiang, Nanjing, Maanshan, Changzhou, Wuxi, Suzhou, Chizhou, Tongling | Huabei, Suizhou, Fuyang, Huainan, Liuan, Hefei, Chuzhou, Taizhou, Nantong, Shanghai, Xuancheng, Hangzhou, Quzhou, Wenzhou, Ningbo, Zhoushan | Xuzhou, Bengbu, Anqing, Wuhu, Huangshan, Huzhou, Jiaxing, Shaoxing, Jinhua, Taizhou, Lishui |
Healthcare | Shanghai, Yeosu | Suqian, Huaibei, Bozhou, Huainan, Chuzhou, Taizhou, Anqing, Chizhou, Xuancheng, Hangzhou, Shaoxing, Jinhua | Xuzhou, Suizhou, Yancheng, Nantong, Wuxi, Wuhu, Tongling, Huzhou, Jiaxing, Huangshan, Quzhou, Ningbo, Zhoushan | Lianyungang, Huaian, Bengbu, Fuyang, Liuan, Hefei, Yangzhou, Zhenjiang, Nanjing, Maanshan, Changzhou, Suzhou, Taizhou, Wenzhou |
References
- Kang, Y. The State Council Information Office Held a Press Conference on the Operation of the Chinese Economy in 2022. Available online: http://www.gov.cn/xinwen/2023-01/17/content_5737627.htm (accessed on 20 March 2023).
- Huang, H.; Lao, Y. Zhejiang Statistics. Total Population and Distribution Characteristics of the Triangle. Available online: https://m.thepaper.cn/baijiahao_14681783 (accessed on 21 March 2023).
- Liu, H. Accelerate the Establishment of a “Dual Circulation” Development Pattern in Which Domestic Economic Cycle Plays a Leading Role while International Economic Cycle Remains Its Extension and Supplement. Available online: http://www.gov.cn/guowuyuan/2020-11/25/content_5563986.htm (accessed on 21 March 2023).
- Chen, J. Experts Interpret the Direction of Industrial Structure Optimization in the Yangtze River Delta Region in the New Period. Available online: http://district.ce.cn/newarea/roll/202007/28/t20200728_35411036.shtml (accessed on 20 March 2023).
- Long, S.; Zhang, M.; Tian, H. Research on the influence mechanism of “double upgrade” of industry and consumption to smooth the double cycle of economy. Reform 2021, 02, 90–105. [Google Scholar]
- Pan, X. Consumption upgrading leads industrial upgrading:mechanism of action and operational orientation. Contemp. Econ. Manag. 2019, 41, 11–16. [Google Scholar] [CrossRef]
- Li, G. An empirical study on the adjustment of residents’ consumption structure to promote industrial structure upgrading. Bus. Econ. Res. 2020, 05, 57–59. [Google Scholar]
- Zhao, J. The relationship between consumption structure, industrial structure and economic growth-empirical evidence from Chinese panel data. Bus. Econ. Res. 2018, 22, 166–169. [Google Scholar]
- Shen, Y.; Zhao, Q.; Zhu, Y. Research on the role mechanism of industrial intelligence on consumption upgrading–theoretical analysis and empirical test. Econ. J. 2021, 78–88. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, D. An empirical study on the interaction between industrial structure change and consumption upgrade. J. Wuhan Univ. Technol. (Soc. Sci. Ed.) 2019, 32, 121–129. [Google Scholar] [CrossRef]
- Varian, H.R. Intermediate Microeconomics: A Modern Approach; Fei, F.Y.; Zhu, B.H., Translators; Truth & Wisdom Press: Shanghai, China, 2015. [Google Scholar]
- Wang, Z.; Yao, J.; Sun, H. Urban-rural income gap, consumption propensity and consumption structure upgrading. Stat. Decis. Mak. 2022, 38, 51–54. [Google Scholar]
- Li, L.; Liu, J. Heterogeneity analysis of urban and rural residents’ consumption in China based on AIDS model. Henan Soc. Sci. 2023, 31, 61–69. [Google Scholar]
- Lei, L.; Hu, H. Empirical analysis of marginal consumption propensity of rural residents with different income sources--based on provincial panel data from 1997–2013. Consum. Econ. 2015, 31, 34–39. [Google Scholar]
- Min, S.; Li, W.; Li, H. Analysis of the impact of income distribution structure on urban residents’ consumption. Bus. Econ. Res. 2019, 16, 56–58. [Google Scholar]
- Li, Y.; Zhong, X. Fiscal policy and the marginal propensity to consume of urban and rural residents. China Soc. Sci. 2012, 12, 63–81+207. [Google Scholar]
- Xu, G.; Xu, K.; Lu, Q. The impact of tax reduction on consumption expansion and upgrading--an analysis based on panel quantile model. Consum. Econ. 2020, 36, 53–62. [Google Scholar]
- Popescu, G.; Istudor, N.; Zaharia, A.; Diaconeasa, M.; Panait, I.; Cucu, M. A Macroeconomic Review of the Factors Influencing Fruit Consumption in Romania—The Road towards Sustainability. Sustainability 2021, 13, e12793. [Google Scholar] [CrossRef]
- Zang, X.; Chen, H.; Song, M. Research on the dynamic influence mechanism of habit formation on consumption of urban residents in China. South. Econ. 2020, 60–75. [Google Scholar]
- Feng, F. Research on the impact of social security on urban residents’ consumption--an empirical analysis from CGSS2010. J. Yunnan Univ. Financ. Econ. 2016, 32, 62–71. [Google Scholar]
- Luo, X.; Wei, J. Research on the impact of population aging on service consumption of rural residents--an analysis based on inter-provincial panel data model. Price Theory Pract. 2021, 71–74. [Google Scholar] [CrossRef]
- Ran, Y.; Zhang, D.; Zhao, H. Application of ArcGIS in the Third National Land Survey. China Met. Bull. 2021, 06, 204–205. [Google Scholar]
- Zu, P.; Yu, F.; Xie, K. Application of ArcGIS model builder in natural resource inventory. Mapp. Spat. Geogr. Inf. 2023, 46, 118–120. [Google Scholar]
- Ding, X.; Hu, Q.; Yang, Q. Geological hazard evaluation of mine based on ArcGis. World Nonferrous Met. 2022, 23, 232–234. [Google Scholar]
- Gan, Y.; Zhu, Y.; Luo, J.; Gao, Z. Study on the evolution of urban living service space and the influencing factors from the perspective of consumption upgrading--Wuhan vegetable market as an example. Adv. Geogr. Sci. 2022, 41, 118–130. [Google Scholar]
- Liu, S.; Lou, J. Factors influencing leisure consumption potential of urban residents and its spatial heterogeneity. Geogr. Res. Dev. 2022, 41, 52–56+83. [Google Scholar]
- Li, J.; Ye, X. The development line of consumption economic theory:review, trends, and prospects. Explor. Econ. Issues 2017, 175–181. [Google Scholar]
- Du, X.; Li, X.; Lin, Z. Research on the relationship between income and consumption of rural residents in Sichuan Province based on the absolute income hypothesis. Hubei Agric. Sci. 2014, 53, 2698–2702. [Google Scholar]
- Liu, R. Persistent income and consumption demand of Chinese residents. Ind. Technol. Econ. 2018, 37, 38–44. [Google Scholar]
- Li, L. Implications of consumption function theory for Chinese residents’ consumption. Financ. Econ. 2016, 24, 38–39. [Google Scholar]
- Jiang, Y.; Deng, X. The income determinism of residents’ consumption behavior--Inter-provincial verification of urban and rural residents’ consumption functions in China. J. Cent. Univ. Financ. Econ. 2011, 11, 74–80. [Google Scholar]
- Zhu, X.; Xie, W.Q. Study on the consumption effect of income from different sources-an empirical analysis based on national panel data from 1998–2016. Jiangxi Soc. Sci. 2018, 38, 76–83. [Google Scholar]
- Chen, L.J.; Yi, D.H.F. A study of regional differences in consumption of urban residents in China. Consum. Econ. 2002, 03, 3–5. [Google Scholar]
- Chen, C.-L.; Yi, J.-J. Income Disparity and Criminal Crime: An Empirical Study Based on Provincial Panel Data in China. World Econ. 2009, 32, 13–25. [Google Scholar]
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2013.
- Lian, Y.J.; Wang, W.D.; Ye, R.C. Monte Carlo simulation analysis of the validity of Hausman test statistic. Math. Stat. Manag. 2014, 33, 830–841. [Google Scholar]
- Tang, Y. Time-varying evolutionary mechanism and regional characteristics of rural residents’ food consumption structure. Bus. Econ. Res. 2021, 03, 131–135. [Google Scholar]
- Li, T.; Bo, H.; Nie, W. Whether free trade has changed the structure of regional food production-data from food enterprises at the provincial level. Econ. Issues 2021, 112–120+129. [Google Scholar] [CrossRef]
- Yu, H.; Niu, M.; Han, L. China’s “blue granary” construction ideas and industrial chain reconstruction. Agric. Econ. Issues 2019, 11, 72–81. [Google Scholar]
- Mei, H.; Liu, C.; Li, J.; Yuan, W.; Qin, X. Analysis of the coupled spatio-temporal evolution of green food supply and demand in China. Ecol. Econ. 2020, 36, 121–128. [Google Scholar]
- Jin, P.; Shen, L.; Xue, Z.; Gao, Y. Analysis of the development status and strategies of mass customization in China’s garment industry. Shanghai Text. Sci. Technol. 2020, 48, 1–4. [Google Scholar]
- Qie, K.; Chen, L. Green innovation indicators and quantitative assessment of apparel brands. Silk 2020, 57, 59–64. [Google Scholar]
- Yan, J. Body perceptions and dressing practices: A qualitative examination of urban women’s fashion sportswear consumption behavior. Sport. Sci. 2021, 42, 89–94. [Google Scholar]
- Lin, C. An Empirical Study on the Development of Circulation Industry and the Promotion of High-end Consumption: A Perspective on Culture, Education and Entertainment Consumption and Clothing Consumption. Bus. Econ. Res. 2018, 08, 41–44. [Google Scholar]
- Lin, C.; Lv, P. The reform of residential land supply system in the new era:realistic challenges and path options. Manag. Mod. 2019, 39, 86–89. [Google Scholar]
- Tang, X.J.; Yao, L.Z. The impact of residential land supply on Shanghai housing market--an empirical study based on dynamic stock-flow model. East China Econ. Manag. 2014, 28, 8–12. [Google Scholar]
- Guo, X.; Mu, X.; Ding, Z.; Ming, Q. A study on the coordination pattern of tourism efficiency and high-speed traffic under the integration of “traffic and tourism”—The example of 41 cities in Yangtze River Delta. Geogr. Res. 2021, 40, 1042–1063. [Google Scholar]
- Zhu, Z.M.; Qi, X.H. A study on the spatial development of Minnan Delta based on Moran’I. Econ. Geogr. 2009, 29, 1977–1980+2070. [Google Scholar]
- Li, G.; Wang, P.; Wu, W.; Shi, L. Urban rail transit stratification and classification methods from the perspective of supply and demand balance. J. Chang’Univ. (Nat. Sci. Ed.) 2020, 40, 87–96. [Google Scholar]
- Liu, C.; Gu, Y.; Liu, Y.; Song, W. Spatial differentiation of urban shadow educational institutions and the domaining of educational resources-Nanjing as an example. Econ. Geogr. 2021, 41, 1–21. [Google Scholar]
- Zhang, M.; Chen, C. An empirical analysis of the impact of urban residents’ cultural consumption on economic growth. Bus. Econ. Res. 2019, 22, 47–50. [Google Scholar]
- Gui, H.; Sun, H. How the urban-rural education gap affects cultural consumption imbalance. Mod. Financ. Econ. (J. Tianjin Univ. Financ. Econ.) 2021, 41, 68–82. [Google Scholar]
- Nie, G.; Yan, R. Research on the spillover effect of population aging on regional industrial structure upgrading--based on the change of residents’ consumption structure. Chongqing Soc. Sci. 2020, 07, 20–34. [Google Scholar]
- Wang, W.; Liu, Y.F. Population aging and the upgrading of household consumption structure of residents--an empirical study based on CFPS2012 data. J. Shandong Univ. (Philos. Soc. Sci. Ed.) 2017, 5, 84–92. [Google Scholar]
- Xia, Y. New directions of supply-side reform of health care services in the new era. Adm. Reform 2019, 01, 80–85. [Google Scholar]
Inspection Method | LLC Inspection | ADF Inspection | Conclusion |
---|---|---|---|
x | 10.8306 | 4.8798 | non-stationary |
y1 | −5.35028 *** | 87.4942 | non-stationary |
y2 | −3.4867 *** | 47.4958 | non-stationary |
y3 | 2.9381 | 12.8728 | non-stationary |
y4 | −1.70615 ** | 62.0453 | non-stationary |
y5 | −1.04431 | 37.5677 | non-stationary |
y6 | −3.89788 *** | 73.6657 | non-stationary |
y7 | 3.3084 | 45.5026 | non-stationary |
Dx | −16.7542 *** | 286.214 *** | Smooth and stable |
Dy1 | −23.1622 *** | 413.038 *** | Smooth and stable |
Dy2 | −17.0055 *** | 232.7804 *** | Smooth and stable |
Dy3 | −21.0431 *** | 332.409 *** | Smooth and stable |
Dy4 | −22.0264 *** | 471.179 *** | Smooth and stable |
Dy5 | −21.4638 *** | 383.452 *** | Smooth and stable |
Dy6 | −21.8665 *** | 367.044 *** | Smooth and stable |
Dy7 | −18.9222 *** | 381.548 *** | Smooth and stable |
Kao Inspection | Pedroni Inspection | Conclusion | |
---|---|---|---|
y1 | −3.2368 *** | Co-integration | |
y2 | 1.742274 ** | Co-integration | |
y3 | −6.1588 *** | Co-integration | |
y4 | −5.6008 *** | Co-integration | |
y5 | −8.0537 *** | Co-integration | |
y6 | −4.9870 *** | Co-integration | |
y7 | −4.5448 *** | Co-integration |
S1 | S2 | S3 | F1 | F2 | Type | |
---|---|---|---|---|---|---|
y1 | 35,837,841 | 54,081,934 | 214,286,123 | 6.7834 | 33.1748 | Variable coefficient |
y2 | 12,510,347 | 20,555,386 | 64,553,217 | 8.5689 | 27.7159 | Variable coefficient |
y3 | 154,247,558 | 265,776,058 | 544,678,573 | 9.6346 | 16.8641 | Variable coefficient |
y4 | 16,048,062 | 29,469,576 | 42,775,924 | 11.1441 | 11.0963 | Variable coefficient |
y5 | 102,219,540 | 137,463,601 | 228,632,550 | 4.5943 | 8.2394 | Variable coefficient |
y6 | 29,653,295 | 53,137,606 | 131,257,543 | 10.5529 | 22.8284 | Variable coefficient |
y7 | 19,855,414 | 29,052,510 | 47,938,889 | 6.1722 | 9.4234 | Variable coefficient |
Statistical Quantities | p-Value | Conclusion | |
---|---|---|---|
y1 | 27.6500 | 0.0000 | Fixed effects |
y2 | 12.3500 | 0.0004 | Fixed effects |
y3 | 82.3400 | 0.0000 | Fixed effects |
y4 | 3.7900 | 0.0514 | Fixed effects |
y5 | 8.5800 | 0.0034 | Fixed effects |
y6 | 14.6700 | 0.0001 | Fixed effects |
y7 | 1.9300 | 0.1647 | Random effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhang, X. A Study of Countermeasures to Activate the Consumption Potential of Urban Residents in Yangtze River Delta Region by Linking Supply and Demand Synergy. Sustainability 2023, 15, 6704. https://doi.org/10.3390/su15086704
Chen J, Zhang X. A Study of Countermeasures to Activate the Consumption Potential of Urban Residents in Yangtze River Delta Region by Linking Supply and Demand Synergy. Sustainability. 2023; 15(8):6704. https://doi.org/10.3390/su15086704
Chicago/Turabian StyleChen, Jinyu, and Xiaoli Zhang. 2023. "A Study of Countermeasures to Activate the Consumption Potential of Urban Residents in Yangtze River Delta Region by Linking Supply and Demand Synergy" Sustainability 15, no. 8: 6704. https://doi.org/10.3390/su15086704
APA StyleChen, J., & Zhang, X. (2023). A Study of Countermeasures to Activate the Consumption Potential of Urban Residents in Yangtze River Delta Region by Linking Supply and Demand Synergy. Sustainability, 15(8), 6704. https://doi.org/10.3390/su15086704