Food and Sustainability: Is It a Matter of Choice?
Abstract
:1. Introduction
2. Food and Environment
Environmental Impact of Plant-Based Diet
3. Methods
4. Results
4.1. Chicken Meat
4.2. Eggs
4.3. Milk and Dairy Products
4.4. Fish and Other Aquatic Foods
4.5. Fruits and Vegetables
4.6. Other Plant Foods
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CF | carbon footprint |
CO2eq | carbon-dioxide equivalent |
CW | carcass weight |
eq tonne | tonne equivalent |
FPCM | fat and-protein-corrected milk |
FAO | Food and Agriculture Organization of the United Nations |
FAOSTAT | Food and Agriculture Statistics0 |
GHG | greenhouse gas |
GHGE | greenhouse gas emission |
G20 | Group of Twenty |
kg CO2eq t | kilograms of CO2 equivalent per tonne |
LCA | life cycle analysis |
LW | liveweight |
MP | microplastics |
N-eq | nitrogen equivalent |
NDGs | National Dietary Guidelines |
N:P | nitrogen and phosphorus ration |
P-eq | phosphorus equivalent |
UK | United Kingdom |
UN | United Nations |
US | United States |
WHO | World Health Organization |
WF | water footprint |
References
- Drywień, M.E.; Hamulka, J.; Jezewska-Zychowicz, M. Perceived Nutrition and Health Concerns: Do They Protect against Unhealthy Dietary Patterns in Polish Adults? Nutrients 2021, 13, 170. [Google Scholar] [CrossRef] [PubMed]
- Kvaavik, E.; Batty, G.D.; Ursin, G.; Huxley, R.; Gale, C.R. Influence of Individual and Combined Health Behaviors on Total and Cause-Specific Mortality in Men and Women: The United Kingdom Health and Lifestyle Survey. Arch. Intern. Med. 2010, 170, 711–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostfeld, R.J. Definition of a plant-based diet and overview of this special issue. J. Geriatr. Cardiol. 2017, 14, 315. [Google Scholar] [CrossRef]
- Hu, F.B. Plant-based foods and prevention of cardiovascular disease: An overview. Am. J. Clin. Nutr. 2003, 78, 544s–551s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, vegan diets and multiple health outcomes: A systematic review with meta-analysis of observational studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef]
- Orlich, M.J.; Singh, P.N.; Sabaté, J.; Jaceldo-Siegl, K.; Fan, J.; Knutsen, S.; Beeson, W.L.; Fraser, G.E. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern. Med. 2013, 173, 1230–1238. [Google Scholar] [CrossRef]
- Ornish, D.; Scherwitz, L.W.; Billings, J.H.; Brown, S.E.; Gould, K.L.; Merritt, T.A.; Sparler, S.; Armstrong, W.T.; Ports, T.A.; Kirkeeide, R.L.; et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA 1998, 280, 2001–2007. [Google Scholar] [CrossRef]
- Kahleova, H.; Levin, S.; Barnard, N. Cardio-Metabolic Benefits of Plant-Based Diets. Nutrients 2017, 9, 848. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Caulfield, L.E.; Garcia-Larsen, V.; Steffen, L.M.; Coresh, J.; Rebholz, C.M. Plant-Based Diets Are Associated with a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All-Cause Mortality in a General Population of Middle-Aged Adults. J. Am. Heart Assoc. 2019, 8, e012865. [Google Scholar] [CrossRef]
- Kahleova, H.; Matoulek, M.; Malinska, H.; Oliyarnik, O.; Kazdova, L.; Neskudla, T.; Skoch, A.; Hajek, M.; Hill, M.; Kahle, M.; et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet. Med. 2011, 28, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Tonstad, S.; Butler, T.; Yan, R.; Fraser, G.E. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care 2009, 32, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Qian, F.; Liu, G.; Hu, F.B.; Bhupathiraju, S.N.; Sun, Q. Association between Plant-Based Dietary Patterns and Risk of Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2019, 179, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Westhoek, H.; Lesschen, J.P.; Rood, T.; Wagner, S.; De Marco, A.; Murphy-Bokern, D.; Leip, A.; van Grinsven, H.; Sutton, M.A.; Oenema, O. Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Glob. Environ. Chang. 2014, 26, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Lacour, C.; Seconda, L.; Allès, B.; Hercberg, S.; Langevin, B.; Pointereau, P.; Lairon, D.; Baudry, J.; Kesse-Guyot, E. Environmental Impacts of Plant-Based Diets: How does Organic Food Consumption Contribute to Environmental Sustainability? Front. Nutr. 2018, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolppanen, S.; Kang, J. The effect of values on carbon footprint and attitudes towards pro-environmental behavior. J. Clean. Prod. 2020, 282, 124524. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Emissions Gap Report 2020—Executive Summary; DEW/2310/NA. 2020. Available online: https://wedocs.unep.org/20.500.11822/34438 (accessed on 2 January 2023).
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Poore, J.; Nemecek, T. Erratum for the Research Article “Reducing food’s environmental impacts through producers and consumers” by J. Poore and T. Nemecek. Science 2018, 363, aaq0216. [Google Scholar] [CrossRef] [Green Version]
- Willits-Smith, A.; Aranda, R.; Heller, M.C.; Rose, D. Addressing the carbon footprint, healthfulness, and costs of self-selected diets in the USA: A population-based cross-sectional study. Lancet Planet. Health 2020, 4, e98–e106. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Sharma, P.; Shu, S.; Lin, T.-S.; Ciais, P.; Tubiello, F.N.; Smith, P.; Campbell, N.; Jain, A.K. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2021, 2, 724–732. [Google Scholar] [CrossRef]
- González-García, S.; Esteve-Llorens, X.; Moreira, M.T.; Feijoo, G. Carbon footprint and nutritional quality of different human dietary choices. Sci. Total Environ. 2018, 644, 77–94. [Google Scholar] [CrossRef]
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Castellani, V.; Sala, S. Environmental impacts of food consumption in Europe. J. Clean. Prod. 2016, 140, 753–765. [Google Scholar] [CrossRef]
- Ran, Y.; van Middelaar, C.E.; Lannerstad, M.; Herrero, M.; de Boer, I.J.M. Freshwater use in livestock production—To be used for food crops or livestock feed? Agric. Syst. 2017, 155, 151–158. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Ayeb-Karlsson, S.; Belesova, K.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Chambers, J.; et al. The Lancet Countdown on health and climate change: From 25 years of inaction to a global transformation for public health. Lancet 2018, 391, 581–630. [Google Scholar] [CrossRef] [PubMed]
- Borg, M.; Bi, P.; Nitschke, M.; Williams, S.; McDonald, S. The impact of daily temperature on renal disease incidence: An ecological study. Environ. Health 2017, 16, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wondmagegn, B.Y.; Xiang, J.; Dear, K.; Williams, S.; Hansen, A.; Pisaniello, D.; Nitschke, M.; Nairn, J.; Scalley, B.; Xiao, A.; et al. Increasing impacts of temperature on hospital admissions, length of stay, and related healthcare costs in the context of climate change in Adelaide, South Australia. Sci. Total Environ. 2021, 773, 145656. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Geladari, E.V.; Kounatidis, D.; Geladari, C.V.; Stratigou, T.; Dourakis, S.P.; Andreadis, E.A.; Dalamaga, M. Diabetes mellitus in the era of climate change. Diabetes Metab. 2021, 47, 101205. [Google Scholar] [CrossRef] [PubMed]
- Ruszkiewicz, J.A.; Tinkov, A.A.; Skalny, A.V.; Siokas, V.; Dardiotis, E.; Tsatsakis, A.; Bowman, A.B.; da Rocha, J.B.T.; Aschner, M. Brain diseases in changing climate. Environ. Res. 2019, 177, 108637. [Google Scholar] [CrossRef]
- McTavish, R.K.; Richard, L.; McArthur, E.; Shariff, S.Z.; Acedillo, R.; Parikh, C.R.; Wald, R.; Wilk, P.; Garg, A.X. Association between High Environmental Heat and Risk of Acute Kidney Injury among Older Adults in a Northern Climate: A Matched Case-Control Study. Am. J. Kidney Dis. 2018, 71, 200–208. [Google Scholar] [CrossRef]
- Poole, J.A.; Barnes, C.S.; Demain, J.G.; Bernstein, J.A.; Padukudru, M.A.; Sheehan, W.J.; Fogelbach, G.G.; Wedner, J.; Codina, R.; Levetin, E.; et al. Impact of weather and climate change with indoor and outdoor air quality in asthma: A Work Group Report of the Environmental Exposure and Respiratory Health Committee. J. Allergy Clin. Immunol. 2019, 143, 1702–1710. [Google Scholar] [CrossRef] [Green Version]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiatt, R.A.; Beyeler, N. Cancer and climate change. Lancet Oncol. 2020, 21, e519–e527. [Google Scholar] [CrossRef] [PubMed]
- Gephart, J.A.; Davis, K.F.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; Pace, M.L. The environmental cost of subsistence: Optimizing diets to minimize footprints. Sci. Total Environ. 2016, 553, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabès, A.; Seconda, L.; Langevin, B.; Allès, B.; Touvier, M.; Hercberg, S.; Lairon, D.; Baudry, J.; Pointereau, P.; Kesse-Guyot, E. Greenhouse gas emissions, energy demand and land use associated with omnivorous, pesco-vegetarian, vegetarian, and vegan diets accounting for farming practices. Sustain. Prod. Consum. 2020, 22, 138–146. [Google Scholar] [CrossRef]
- van de Kamp, M.E.; van Dooren, C.; Hollander, A.; Geurts, M.; Brink, E.J.; van Rossum, C.; Biesbroek, S.; de Valk, E.; Toxopeus, I.B.; Temme, E.H.M. Healthy diets with reduced environmental impact?—The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines. Food Res. Int. 2018, 104, 14–24. [Google Scholar] [CrossRef]
- Veeramani, A.; Dias, G.M.; Kirkpatrick, S.A. Carbon footprint of dietary patterns in Ontario, Canada: A case study based on actual food consumption. J. Clean. Prod. 2017, 162, 1398–1406. [Google Scholar] [CrossRef]
- Medawar, E.; Huhn, S.; Villringer, A.; Veronica Witte, A. The effects of plant-based diets on the body and the brain: A systematic review. Transl. Psychiatry 2019, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.; Chapagain, A.; Aldaya, M.; Mekonnen, M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Haghighi, E.; Madani, K.; Hoekstra, A. The water footprint of water conservation using shade balls in California. Nat. Sustain. 2018, 1, 358–360. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; Regional Office for Europe. Food-Based Dietary Guidelines in the WHO European Region; WHO Regional Office for Europe: Copenhagen, Denmark, 2003.
- Vanham, D.; Mekonnen, M.M.; Hoekstra, A.Y. The water footprint of the EU for different diets. Ecol. Indic. 2013, 32, 1–8. [Google Scholar] [CrossRef]
- Harris, F.; Moss, C.; Joy, E.J.M.; Quinn, R.; Scheelbeek, P.F.D.; Dangour, A.D.; Green, R. The Water Footprint of Diets: A Global Systematic Review and Meta-analysis. Adv. Nutr. 2020, 11, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Machovina, B.; Feeley, K.J.; Ripple, W.J. Biodiversity conservation: The key is reducing meat consumption. Sci. Total Environ. 2015, 536, 419–431. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2018 Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Westhoek, H.; Ingram, J.; Van Berkum, S.; Özay, L.; Hajer, M. Food Systems and Natural Resources. In A Report of the Working Group on Food Systems of the International Resource Panel; UNEP: Nairobi, Kenya, 2016. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Loken, B.; DeClerk, F. Diets for a Better Future: Rebooting and Reimagining Healthy and Sustainable Food Systems in the G20; EAT Foundation: Oslo, Norway, 2020. [Google Scholar]
- Mekonnen, M.; Hoekstra, A. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 749–758. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAOSTAT: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 December 2022).
- Yildiz, D. Global Poultry Industry and Trends. 2021. Available online: https://www.feedandadditive.com/global-poultry-industry-and-trends/ (accessed on 28 December 2022).
- Duarte da Silva Lima, N.; de Alencar Nääs, I.; Garcia, R.G.; Jorge de Moura, D. Environmental impact of Brazilian broiler production process: Evaluation using life cycle assessment. J. Clean. Prod. 2009, 237, 117752. [Google Scholar] [CrossRef]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Broiler production systems. Poult. Sci. 2012, 91, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Andretta, I.; Hickmann, F.M.W.; Remus, A.; Franceschi, C.H.; Mariani, A.B.; Orso, C.; Kipper, M.; Létourneau-Montminy, M.P.; Pomar, C. Environmental Impacts of Pig and Poultry Production: Insights From a Systematic Review. Front. Vet. Sci. 2021, 8, 750733. [Google Scholar] [CrossRef]
- Barthelmie, R.J. Impact of Dietary Meat and Animal Products on GHG Footprints: The UK and the US. Climate 2022, 10, 43. [Google Scholar] [CrossRef]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Predicting the environmental impacts of chicken systems in the United Kingdom through a life cycle assessment: Egg production systems. Poult. Sci. 2012, 91, 26–40. [Google Scholar] [CrossRef]
- Wiedemann, S.G.; McGahan, E.J.; Murphy, C.M. Resource use and environmental impacts from Australian chicken meat production. J. Clean. Prod. 2017, 140, 675–684. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, E.M.; González, A.D. Energy and carbon footprints of chicken and pork from intensive production systems in Argentina. Sci. Total Environ. 2019, 673, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, N. Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. Agric. Syst. 2008, 98, 67–73. [Google Scholar] [CrossRef]
- Prudêncio da Silva, V.; van der Werf, H.M.; Soares, S.R.; Corson, M.S. Environmental impacts of French and Brazilian broiler chicken production scenarios: An LCA approach. J. Environ. Manag. 2014, 133, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Cesari, V.; Zucali, M.; Sandrucci, A.; Tamburini, A.; Bava, L.; Toschi, I. Environmental impact assessment of an Italian vertically integrated broiler system through a Life Cycle approach. J. Clean. Prod. 2017, 143, 904–911. [Google Scholar] [CrossRef]
- Skunca, D.; Tomasevic, I.B.; Nastasijević, I.; Tomović, V.; Djekić, I. Life cycle assessment of the chicken meat chain. J. Clean. Prod. 2018, 184, 440–450. [Google Scholar] [CrossRef]
- Ibidhi, R.; Hoekstra, A.Y.; Gerbens-Leenes, P.W.; Chouchane, H. Water, land and carbon footprints of sheep and chicken meat produced in Tunisia under different farming systems. Ecol. Indic. 2017, 77, 304–313. [Google Scholar] [CrossRef]
- Smith, L.G.; Kirk, G.J.D.; Jones, P.J.; Williams, A.G. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat. Commun. 2019, 10, 4641. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Katajajuuri, J.-M. Experiences and Improvement Possibilities-LCA Case Study of Broiler Chicken Production. 2007. Available online: https://www.lcm2007.ethz.ch/paper/176.pdf (accessed on 20 February 2023).
- Williams, A.; Audsley, E.; Sandars, D. Determining the Environmental Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities; Main Report, Defra Research Project IS0205; Cranfield University and Defra: Bedford, UK, 2006. [Google Scholar]
- Linden, J. Greenhouse Gas Emissions from Pig and Chicken Supply Chains. 2013. Available online: https://www.thepoultrysite.com/articles/greenhouse-gas-emissions-from-pig-and-chicken-supply-chains (accessed on 28 December 2022).
- MacLeod, M.; Gerber, P.; Mottet, A.; Tempio, G.; Falcucci, A.; Opio, C.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Pig and Chicken Supply Chains—A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Abín, R.; Laca, A.; Laca, A.; Díaz, M. Environmental assesment of intensive egg production: A Spanish case study. J. Clean. Prod. 2018, 179, 160–168. [Google Scholar] [CrossRef]
- Pelletier, N. Life cycle assessment of Canadian egg products, with differentiation by hen housing system type. J. Clean. Prod. 2017, 152, 167–180. [Google Scholar] [CrossRef]
- Guillaume, A.; Hubatová-Vacková, A.; Kočí, V. Environmental Impacts of Egg Production from a Life Cycle Perspective. Agriculture 2022, 12, 355. [Google Scholar] [CrossRef]
- Taylor, R.C.; Omed, H.; Edwards-Jones, G. The greenhouse emissions footprint of free-range eggs. Poult. Sci. 2014, 93, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Xiaoming, X. A comparative study on carbon footprints between plant- and animal-based foods in China. J. Clean. Prod. 2016, 112, 2581–2592. [Google Scholar] [CrossRef]
- Ghasempour, A.; Ahmadi, E. Assessment of environment impacts of egg production chain using life cycle assessment. J. Environ. Manag. 2016, 183, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Zheng, W.; Li, B.; Liu, Z.; Zhang, Y. Water Footprint Assessment of Eggs in a Parent-Stock Layer Breeder Farm. Water 2019, 11, 2546. [Google Scholar] [CrossRef] [Green Version]
- Dekker, S.E.M.; Boer; Aarnink, A.; Groot Koerkamp, P.W.G. Enviromental hotspot identification of organic egg production. In Proceedings of the 6th International Conference on LCA in the Agri-Food Sector, Zurich, Switzerland, 12–14 November 2008. [Google Scholar]
- Milani, F.X.; Nutter, D.; Thoma, G. Invited review: Environmental impacts of dairy processing and products: A review. J. Dairy Sci. 2011, 94, 4243–4254. [Google Scholar] [CrossRef]
- González-Quintero, R.; Kristensen, T.; Sánchez-Pinzón, M.S.; Bolívar-Vergara, D.M.; Chirinda, N.; Arango, J.; Pantevez, H.; Barahona-Rosales, R.; Knudsen, M.T. Carbon footprint, non-renewable energy and land use of dual-purpose cattle systems in Colombia using a life cycle assessment approach. Livest. Sci. 2021, 244, 104330. [Google Scholar] [CrossRef]
- Jayasundara, S.; Worden, D.; Weersink, A.; Wright, T.; VanderZaag, A.; Gordon, R.; Wagner-Riddle, C. Improving farm profitability also reduces the carbon footprint of milk production in intensive dairy production systems. J. Clean. Prod. 2019, 229, 1018–1028. [Google Scholar] [CrossRef]
- Boxmeer, E.; Modernel, P.; Viets, T.C. Environmental and economic performance of Dutch dairy farms on peat soil. Agric. Syst. 2021, 193, 103243. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Falconer, S.J.; Abercrombie, R.; Philip, G.; Hill, J.P. Temporal, spatial, and management variability in the carbon footprint of New Zealand milk. J. Dairy Sci. 2020, 103, 1031–1046. [Google Scholar] [CrossRef] [Green Version]
- Üçtuğ, F.G. The Environmental Life Cycle Assessment of Dairy Products. Food Eng. Rev. 2019, 11, 104–121. [Google Scholar] [CrossRef]
- Houssard, C.; Maxime, D.; Benoit, S.; Pouliot, Y.; Margni, M. Comparative Life Cycle Assessment of Five Greek Yogurt Production Systems: A Perspective beyond the Plant Boundaries. Sustainability 2020, 12, 9141. [Google Scholar] [CrossRef]
- Navarrete-Molina, C.; Meza-Herrera, C.A.; Ramirez-Flores, J.J.; Herrera-Machuca, M.A.; Lopez-Villalobos, N.; Lopez-Santiago, M.A.; Veliz-Deras, F.G. Economic evaluation of the environmental impact of a dairy cattle intensive production cluster under arid lands conditions. Animal 2019, 13, 2379–2387. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Villegas, H.A.; Passos-Fonseca, T.H.; Reinemann, D.J.; Larson, R. Grazing intensity affects the environmental impact of dairy systems. J. Dairy Sci. 2017, 100, 6804–6821. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products; Unesco-IHE Institute for Water Education: Delft, The Netherlands, 2010. [Google Scholar]
- Triky, S.; Kissinger, M. An Integrated Analysis of Dairy Farming: Direct and Indirect Environmental Interactions in Challenging Bio-Physical Conditions. Agriculture 2022, 12, 480. [Google Scholar] [CrossRef]
- Canellada, F.; Laca, A.; Laca, A.; Díaz, M. Environmental impact of cheese production: A case study of a small-scale factory in southern Europe and global overview of carbon footprint. Sci. Total Environ. 2018, 635, 167–177. [Google Scholar] [CrossRef]
- Vasilaki, V.; Katsou, E.; Ponsá, S.; Colón, J. Water and carbon footprint of selected dairy products: A case study in Catalonia. J. Clean. Prod. 2016, 139, 504–516. [Google Scholar] [CrossRef]
- Capper, J.L.; Cady, R.A.; Bauman, D.E. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 2009, 87, 2160–2167. [Google Scholar] [CrossRef]
- Sandström, V.; Valin, H.; Krisztin, T.; Havlík, P.; Herrero, M.; Kastner, T. The role of trade in the greenhouse gas footprints of EU diets. Glob. Food Secur. 2018, 19, 48–55. [Google Scholar] [CrossRef]
- ViraSmartPackaging. Food Wastage. Available online: https://www.virasmart.co/en/food-wastage/ (accessed on 28 December 2022).
- Naylor, R.L.; Kishore, A.; Sumaila, U.R.; Issifu, I.; Hunter, B.P.; Belton, B.; Bush, S.R.; Cao, L.; Gelcich, S.; Gephart, J.A.; et al. Blue food demand across geographic and temporal scales. Nat. Commun. 2021, 12, 5413. [Google Scholar] [CrossRef]
- Gephart, J.A.; Henriksson, P.J.G.; Parker, R.W.R.; Shepon, A.; Gorospe, K.D.; Bergman, K.; Eshel, G.; Golden, C.D.; Halpern, B.S.; Hornborg, S.; et al. Environmental performance of blue foods. Nature 2021, 597, 360–365. [Google Scholar] [CrossRef]
- Farmery, A.K.; Gardner, C.; Jennings, S.; Green, B.S.; Watson, R.A. Assessing the inclusion of seafood in the sustainable diet literature. Fish Fish. 2017, 18, 607–618. [Google Scholar] [CrossRef]
- Halpern, B.S.; Cottrell, R.S.; Blanchard, J.L.; Bouwman, L.; Froehlich, H.E.; Gephart, J.A.; Jacobsen, N.S.; Kuempel, C.D.; McIntyre, P.B.; Metian, M.; et al. Putting all foods on the same table: Achieving sustainable food systems requires full accounting. Proc. Natl. Acad. Sci. USA 2019, 116, 18152–18156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLeod, M.J.; Hasan, M.R.; Robb, D.H.F.; Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 2020, 10, 11679. [Google Scholar] [CrossRef]
- Gephart, J.A.; Troell, M.; Henriksson, P.J.G.; Beveridge, M.C.M.; Verdegem, M.; Metian, M.; Mateos, L.D.; Deutsch, L. The ‘seafood gap’ in the food-water nexus literature—Issues surrounding freshwater use in seafood production chains. Adv. Water Resour. 2017, 110, 505–514. [Google Scholar] [CrossRef]
- Henriksson, P.J.G.; Pelletier, N.L.; Troell, M.; Tyedmers, P.H. Life Cycle Assessments and their Applications to Aquaculture Production Systemslife Cycleassessment (LCA) Aquaculture Production Systems. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2012; pp. 5893–5909. [Google Scholar] [CrossRef]
- Parker, R.W.R.; Blanchard, J.L.; Gardner, C.; Green, B.S.; Hartmann, K.; Tyedmers, P.H.; Watson, R.A. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Chang. 2018, 8, 333–337. [Google Scholar] [CrossRef]
- Gephart, J.A.; Pace, M.L.; D’Odorico, P. Freshwater savings from marine protein consumption. Environ. Res. Lett. 2014, 9, 014005. [Google Scholar] [CrossRef] [Green Version]
- Shahbandeh, M. Distribution of Soy Production End Uses Worldwide in 2018. 2022. Available online: https://www.statista.com/statistics/1254608/soy-production-end-uses-worldwide/ (accessed on 20 March 2023).
- Molnar, J.; Gamboa, R.; Revenga, C.; Spalding, M. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 2008, 6, 485–492. [Google Scholar] [CrossRef]
- Henriksson, P.J.G.; Rico, A.; Troell, M.; Klinger, D.H.; Buschmann, A.H.; Saksida, S.; Chadag, M.V.; Zhang, W. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: A review from a systems perspective. Sustain. Sci. 2018, 13, 1105–1120. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.G. Epidemiology of the spread of viral diseases under aquaculture. Curr. Opin. Virol. 2013, 3, 74–78. [Google Scholar] [CrossRef]
- Myers, H.J.; Moore, M.J. Reducing effort in the U.S. American lobster (Homarus americanus) fishery to prevent North Atlantic right whale (Eubalaena glacialis) entanglements may support higher profits and long-term sustainability. Mar. Policy 2020, 118, 104017. [Google Scholar] [CrossRef]
- Arthur, C.; Baker, J.; Bamford, H. Effects and Fate of Microplastic Marine Debris. In Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris; NOAA Technical Memorandum NOS-OR&R-30; NOAA: Washington, DC, USA, 2009. [Google Scholar]
- Thiele, C.J.; Hudson, M.D.; Russell, A.E.; Saluveer, M.; Sidaoui-Haddad, G. Microplastics in fish and fishmeal: An emerging environmental challenge? Sci. Rep. 2021, 11, 2045. [Google Scholar] [CrossRef] [PubMed]
- Carlos de Sá, L.; Luís, L.G.; Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 2015, 196, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Kurobe, T.; Flores, I.; Teh, S.J. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci. Total Environ. 2014, 493, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Hoh, E.; Kurobe, T.; Teh, S.J. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci. Rep. 2013, 3, 3263. [Google Scholar] [CrossRef] [Green Version]
- Piyawardhana, N.; Weerathunga, V.; Chen, H.-S.; Guo, L.; Huang, P.-J.; Ranatunga, R.R.M.K.P.; Hung, C.-C. Occurrence of microplastics in commercial marine dried fish in Asian countries. J. Hazard. Mater. 2022, 423, 127093. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Lopes, C.; Oliveira, P.; Bessa, F.; Otero, V.; Henriques, B.; Raimundo, J.; Caetano, M.; Vale, C.; Guilhermino, L. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 2020, 717, 134625. [Google Scholar] [CrossRef]
- Streets, D.G.; Horowitz, H.M.; Jacob, D.J.; Lu, Z.; Levin, L.; ter Schure, A.F.H.; Sunderland, E.M. Total Mercury Released to the Environment by Human Activities. Environ. Sci. Technol. 2017, 51, 5969–5977. [Google Scholar] [CrossRef]
- WHO. Mercury and Health. 2017. Available online: https://www.who.int/news-room/fact-sheets/detail/mercury-and-health (accessed on 28 December 2022).
- WHO. Mercury and Human Health. 2021. Available online: https://apps.who.int/iris/bitstream/handle/10665/345443/9789289055888-eng.pdf (accessed on 28 December 2022).
- Barni, M.F.S.; Ondarza, P.M.; Gonzalez, M.; Da Cuña, R.; Meijide, F.; Grosman, F.; Sanzano, P.; Lo Nostro, F.L.; Miglioranza, K.S.B. Persistent organic pollutants (POPs) in fish with different feeding habits inhabiting a shallow lake ecosystem. Sci. Total Environ. 2016, 550, 900–909. [Google Scholar] [CrossRef]
- Esteve-Llorens, X.; Ita-Nagy, D.; Parodi, E.; González-García, S.; Moreira, M.T.; Feijoo, G.; Vázquez-Rowe, I. Environmental footprint of critical agro-export products in the Peruvian hyper-arid coast: A case study for green asparagus and avocado. Sci. Total Environ. 2022, 818, 151686. [Google Scholar] [CrossRef]
- Macdiarmid, J.I. Seasonality and dietary requirements: Will eating seasonal food contribute to health and environmental sustainability? Proc. Nutr. Soc. 2014, 73, 368–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, M.; Foster, C.; Holmes, M.R.; Wiltshire, J.J.J.; Wynn, S. Understanding the Environmental Impacts of Consuming Foods That Are Produced Locally in Season; Defra Report FO0412; TABLE Debates: Oxford, UK, 2012. [Google Scholar]
- Parajuli, R.; Thoma, G.; Matlock, M.D. Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: A review. Sci. Total Environ. 2019, 650, 2863–2879. [Google Scholar] [CrossRef]
- Tozzini, L.; Pannunzio, A.; Texeira, P. Water Footprint of Soybean, Maize and Wheat in Pergamino, Argentina. Agric. Sci. 2021, 12, 305–323. [Google Scholar] [CrossRef]
- Sidibe, M.; Napo, A.; Dembele, A.; Goita, D.; Diallo, O.; Dembele, D.; Togo, M.; Ba Koita, K.; Coulibaly, A.; Tounkara, C.; et al. Socio-Economic Impacts of Primary Open-Angle Glaucoma in Rural Environment in Mali. Open J. Ophthalmol. 2022, 12, 430–437. [Google Scholar] [CrossRef]
- Coluccia, B.; Agnusdei, G.P.; De Leo, F.; Vecchio, Y.; La Scalia, G.; Miglietta, P.P. Assessing the carbon footprint across the supply chain: Cow milk vs. soy drink. Sci. Total Environ. 2021, 806, 151200. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Yan, M.; Nayak, D.R.; Pan, G.; Smith, P.; Zheng, J.F.; Zheng, J.-W. Carbon footprint of crop production in China: An analysis of National Statistics data. J. Agric. Sci. 2014, 153, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Raucci, G.S.; Moreira, C.S.; Alves, P.A.; Mello, F.F.C.; Frazão, L.d.A.; Cerri, C.E.P.; Cerri, C.C. Greenhouse gas assessment of Brazilian soybean production: A case study of Mato Grosso State. J. Clean. Prod. 2015, 96, 418–425. [Google Scholar] [CrossRef]
- Castanheira, É.G.; Freire, F. Greenhouse gas assessment of soybean production: Implications of land use change and different cultivation systems. J. Clean. Prod. 2013, 54, 49–60. [Google Scholar] [CrossRef]
- Polizel, S.P.; Vieira, R.M.d.S.P.; Pompeu, J.; Ferreira, Y.d.C.; Sousa-Neto, E.R.d.; Barbosa, A.A.; Ometto, J.P.H.B. Analysing the dynamics of land use in the context of current conservation policies and land tenure in the Cerrado—MATOPIBA region (Brazil). Land Use Policy 2021, 109, 105713. [Google Scholar] [CrossRef]
- Aghili, N.; Banaeian, N.; Gholamshahi, A.; Nosrati, M. Sustainability assessment and optimization of legumes production systems: Energy, greenhouse gas emission and ecological footprint analysis. Renew. Agric. Food Syst. 2021, 36, 576–586. [Google Scholar] [CrossRef]
- Tricase, C.; Lamonaca, E.; Bacenetti, J.; Giudice, A. A comparative Life Cycle Assessment between organic and conventional barley cultivation for sustainable agriculture pathways. J. Clean. Prod. 2017, 172, 3747–3759. [Google Scholar] [CrossRef]
- Ding, D.; Zhao, Y.; Guo, H.; Li, X.; Schoenau, J.; Si, B. Water Footprint for Pulse, Cereal, and Oilseed Crops in Saskatchewan, Canada. Water 2018, 10, 1609. [Google Scholar] [CrossRef] [Green Version]
- Vikram, P.K. Status of Chickpea (Cicer arietinum) Cultivation in India—An Overview. Biot. Res. Today 2021, 3, 49–51. [Google Scholar]
- Bandekar, P.A.; Putman, B.; Thoma, G.; Matlock, M. Cradle-to-grave life cycle assessment of production and consumption of pulses in the United States. J. Environ. Manag. 2022, 302, 114062. [Google Scholar] [CrossRef]
- Tidåker, P.; Karlsson Potter, H.; Carlsson, G.; Röös, E. Towards sustainable consumption of legumes: How origin, processing and transport affect the environmental impact of pulses. Sustain. Prod. Consum. 2021, 27, 496–508. [Google Scholar] [CrossRef]
- Kahramanoğlu, İ.; Usanmaz, S.; Alas, T. Water footprint and irrigation use efficiency of important crops in Northern Cyprus from an environmental, economic and dietary perspective. Saudi J. Biol. Sci. 2020, 27, 134–141. [Google Scholar] [CrossRef]
- Potter, H.K.; Lundmark, L.; Röös, E. Environmental Impact of Plant-Based Foods—Data Collection for the Development of a Consumer Guide for Plant-Based Foods; Department of Energy and Technology, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2020. [Google Scholar]
- Flores Lopez, L.I.; Bautista-Capetillo, C. Green and Blue Water Footprint Accounting for Dry Beans (Phaseolus vulgaris) in Primary Region of Mexico. Sustainability 2015, 7, 3001–3016. [Google Scholar] [CrossRef] [Green Version]
- Abrahão, R.; Carvalho, M.; Causapé, J. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain. Environ. Sci. Pollut. Res. 2017, 24, 5647–5653. [Google Scholar] [CrossRef]
- Yousefi, M.; Damghani, A.M.; Khoramivafa, M. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Sci. Total Environ. 2014, 493, 330–335. [Google Scholar] [CrossRef]
- CarbonCloud. Buckwheat. Available online: https://apps.carboncloud.com/climatehub/agricultural-reports/benchmarks/bbe50ecf-b69f-4c1e-bc95-b1a424e0671a (accessed on 6 December 2022).
- Yousefi, M.; Khoramivafa, M.; Damghani, A.M. Water footprint and carbon footprint of the energy consumption in sunflower agroecosystems. Environ. Sci. Pollut. Res. 2017, 24, 19827–19834. [Google Scholar] [CrossRef]
- Holka, M.; Bieńkowski, J. Carbon Footprint and Life-Cycle Costs of Maize Production in Conventional and Non-Inversion Tillage Systems. Agronomy 2020, 10, 1877. [Google Scholar] [CrossRef]
- Ling, L.; Shuai, Y.; Xu, Y.; Zhang, Z.; Wang, B.; You, L.; Sun, Z.; Zhang, H.; Zhan, M.; Li, C.; et al. Comparing rice production systems in China: Economic output and carbon footprint. Sci. Total Environ. 2021, 791, 147890. [Google Scholar] [CrossRef]
- Mittal, R.; Chakrabarti, B.; Jindal, T.; Tripathi, A.; Mina, U.; Dhupper, R.; Chakraborty, D.; Jatav, R.; Harit, R. Carbon footprint is an indicator of sustainability in Rice-Wheat cropping system: A Review. Chem. Sci. Rev. Lett. 2018, 7, 774–784. [Google Scholar]
- Rajaniemi, M.; Mikkola, H.; Ahokas, J. Greenhouse gas emissions from oats, barley, wheat and rye production. Agron. Res. 2011, 9, 189–195. [Google Scholar]
- Xu, Z.; Xu, W.; Peng, Z.; Yang, Q.; Zhang, Z. Effects of different functional units on carbon footprint values of different carbohydrate-rich foods in China. J. Clean. Prod. 2018, 198, 907–916. [Google Scholar] [CrossRef]
- He, S.; Chen, Y.; Xiang, W.; Chen, X.; Wang, X.; Chen, Y. Carbon and nitrogen footprints accounting of peanut and peanut oil production in China. J. Clean. Prod. 2021, 291, 125964. [Google Scholar] [CrossRef]
- McCarty, J.A.; Ramsey, S.; Sandefur, H.N. A Historical Analysis of the Environmental Footprint of Peanut Production in the United States from 1980 to 2014. Peanut Sci. 2016, 43, 157–167. [Google Scholar] [CrossRef]
- Calculator, W.F. Water Footprint of Food Guide. Available online: https://www.watercalculator.org/water-footprint-of-food-guide/ (accessed on 3 December 2022).
- Deepa, R.; Anandhi, A.; Bailey, N.O.; Grace, J.M.; Betiku, O.C.; Muchovej, J.J. Potential Environmental Impacts of Peanut Using Water Footprint Assessment: A Case Study in Georgia. Agronomy 2022, 12, 930. [Google Scholar] [CrossRef]
- Volpe, R.; Messineo, S.; Volpe, M.; Messineo, A. Carbon Footprint of Tree Nuts Based Consumer Products. Sustainability 2015, 7, 14917–14934. [Google Scholar] [CrossRef] [Green Version]
- Fulton, J.; Norton, M.; Shilling, F.M. Water-indexed benefits and impacts of California almonds. Ecol. Indic. 2019, 96, 711–717. [Google Scholar] [CrossRef]
- Kendall, A.; Marvinney, E.; Brodt, S.; Zhu, W. Life Cycle–based Assessment of Energy Use and Greenhouse Gas Emissions in Almond Production, Part I: Analytical Framework and Baseline Results. J. Ind. Ecol. 2015, 19, 1008–1018. [Google Scholar] [CrossRef]
- Agyemang, M.; Zhu, Q.; Tian, Y. Analysis of opportunities for greenhouse emission reduction in the global supply chains of cashew industry in West Africa. J. Clean. Prod. 2016, 115, 149–161. [Google Scholar] [CrossRef]
- Nayeri, M.; Firouzan, A.H.; Azarpour, E. Greenhouse gas emissions for hazelnut production in forest north of Iran. Adv. Environ. Biol. 2014, 8, 289–293. [Google Scholar]
- Levent, H.; Yükseker, D.; Sahin, O.; Erköse, H.; Sert, H. Hazelnut Barometer—Price Procurement Study; Fair Labor Association: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- FarmFundr. Pistachio Investment in California. 2020. Available online: https://www.farmfundr.com/blog/pistachio-development-in-california (accessed on 20 February 2023).
- Bartzas, G.; Vamvuka, D.; Komnitsas, K. Comparative life cycle assessment of pistachio, almond and apple production. Inf. Process. Agric. 2017, 4, 188–198. [Google Scholar] [CrossRef]
- GreenEco-Friend. How Eco-Friendly Are Nuts? 2022. Available online: https://greenecofriend.co.uk/how-eco-friendly-are-nuts/ (accessed on 27 December 2022).
- Marvinney, E.; Kendall, A.; Brodt, S. A Comparative Assessment of Greenhouse Gas Emissions in California Almond, Pistachio, and Walnut Production. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector, San Francisco, CA, USA, 8–10 October 2014; pp. 761–771. [Google Scholar]
- Mousavifazl, S.H.; Rahimian, M.H.; Koohi, N.; Riahi, H.; keramati, M.; Abbasi, F.; Baghani, J. Evaluation of Irrigation Water Application and Productivity of Pistachio in the main Producer Regions of Iran (Kerman, Khorasan Razavi, Yazd and Semnan provinces). Iran. J. Irrig. Drain. 2021, 14, 2244–2256. [Google Scholar]
- Audsley, E.; Brander, M.; Chatterton, J.; Murphy-Bokern, D.; Webster, C.; Williams, A.G. How Low Can We Go? An Assessment of Greenhouse Gas Emissions from the UK Foodsystem and the Scope Reduction by 2050; WWF and Food Climate Research Network: Gland, Switzerland, 2010. [Google Scholar]
- Nayak, M.; Paled, M. Trends in Area, Production, Yield and Export-Import of Cashew in India—An Economic Analysis. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1088–1098. [Google Scholar] [CrossRef]
- Vanham, D.; Mekonnen, M.; Hoekstra, A. Treenuts and groundnuts in the EAT-Lancet reference diet: Concerns regarding sustainable water use. Glob. Food Secur. 2020, 24, 100357. [Google Scholar] [CrossRef]
- Orchards, S.V. Current Sacramento Valley ET Report are Finished for the Season; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Rezaei kalvani, S.; Manaf, L.; Sharaai, A.H.; Hamidian, A.H. Water Footprint of Crop Production in Tehran Province. J. Malaysina Inst. Plan. 2019, 17, 123–132. [Google Scholar]
- Ji, C.; Zhai, Y.; Zhang, T.; Shen, X.; Bai, Y.; Hong, J. Carbon, energy and water footprints analysis of rapeseed oil production: A case study in China. J. Environ. Manag. 2021, 287, 112359. [Google Scholar] [CrossRef]
- Fridrihsone, A.; Romagnoli, F.; Cabulis, U. Environmental Life Cycle Assessment of Rapeseed and Rapeseed Oil Produced in Northern Europe: A Latvian Case Study. Sustainability 2020, 12, 5699. [Google Scholar] [CrossRef]
- Forleo, M.B.; Palmieri, N.; Suardi, A.; Coaloa, D.; Pari, L. The eco-efficiency of rapeseed and sunflower cultivation in Italy. Joining environmental and economic assessment. J. Clean. Prod. 2018, 172, 3138–3153. [Google Scholar] [CrossRef]
- Svanes, E.; Waalen, W.; Uhlen, A.K. Environmental Impacts of Rapeseed and Turnip Rapeseed Grown in Norway, Rape Oil and Press Cake. Sustainability 2020, 12, 10407. [Google Scholar] [CrossRef]
- Gerbens-Leenes, W.; Hoekstra, A. The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize. Proc. Natl. Acad. Sci. USA 2009, 40, 202–211. [Google Scholar]
- de Figueiredo, E.B.; Panosso, A.R.; Romão, R.; La Scala, N., Jr. Greenhouse gas emission associated with sugar production in southern Brazil. Carbon Balance Manag. 2010, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klenk, I.; Landquist, B.; de Imana, O.R. The product carbon footprint of EU beet sugar. Sugar Ind. 2012, 137, 169–177. [Google Scholar] [CrossRef]
- Jamaludin, N.F.; Muis, Z.A.; Hashim, H. An integrated carbon footprint accounting and sustainability index for palm oil mills. J. Clean. Prod. 2019, 225, 496–509. [Google Scholar] [CrossRef]
- Alcock, T.D.; Salt, D.E.; Wilson, P.; Ramsden, S.J. More sustainable vegetable oil: Balancing productivity with carbon storage opportunities. Sci. Total Environ. 2022, 829, 154539. [Google Scholar] [CrossRef]
- Edible Fats and Oils Collaboration. Breaking Down Fats and Oils—A Catalyst to Transform the Global Edible Fats and Oils System. 2021. Available online: https://www.forumforthefuture.org/Handlers/Download.ashx?IDMF=a7a50dea-f609-4a45-b4c7-9cd87ad55cdf (accessed on 28 December 2022).
- Schmidt, J.; De Rosa, M. Certified palm oil reduces greenhouse gas emissions compared to non-certified. J. Clean. Prod. 2020, 277, 124045. [Google Scholar] [CrossRef]
- Carbon Cloud. Refined Coconut Oil. Available online: https://apps.carboncloud.com/climatehub/product-reports/id/123648860199 (accessed on 6 December 2022).
- Yani, M.; Toruan, D.P.M.L.; Puspaningrum, T.; Sarfat, M.S.; Indrawanto, C. Life cycle assessment of coconut oil product. IOP Conf. Ser. Earth Environ. Sci. 2022, 1063, 012017. [Google Scholar] [CrossRef]
- Figueiredo, F.; Geraldes Castanheira, E.; Freire, F. LCA of sunflower oil addressing alternative land use change scenarios and practices. In Proceedings of the 8th International Conference on Life Cycle Assessment in the Agri-Food Sector (LCA Food 2012), Saint Malo, France, 1–4 October 2012; pp. 1–4. [Google Scholar]
- Schmidt, J.H. Life cycle assessment of five vegetable oils. J. Clean. Prod. 2015, 87, 130–138. [Google Scholar] [CrossRef]
- Pattara, C.; Salomone, R.; Cichelli, A. Carbon Footprint of extra virgin olive oil: A comparative and driver analysis of different production processes in Centre Italy. J. Clean. Prod. 2016, 127, 533–547. [Google Scholar] [CrossRef]
- El Hanandeh, A.; Gharaibeh, M.A. Environmental efficiency of olive oil production by small and micro-scale farmers in northern Jordan: Life cycle assessment. Agric. Syst. 2016, 148, 169–177. [Google Scholar] [CrossRef]
- Espadas-Aldana, G.; Vialle, C.; Belaud, J.-P.; Vaca-Garcia, C.; Sablayrolles, C. Analysis and trends for Life Cycle Assessment of olive oil production. Sustain. Prod. Consum. 2019, 19, 216–230. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, K.; van Zonneveld, M.; Holmgren, M.; Kindt, R.; Ordoñez, J.C. The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Sci. Rep. 2019, 9, 8828. [Google Scholar] [CrossRef] [Green Version]
- Boeckx, P.; Bauters, M.; Dewettinck, K. Poverty and climate change challenges for sustainable intensification of cocoa systems. Curr. Opin. Environ. Sustain. 2020, 47, 106–111. [Google Scholar] [CrossRef]
- Ortiz-Rodríguez, O.O.; Villamizar-Gallardo, R.A.; Naranjo-Merino, C.A.; García-Cáceres, R.G.; Castañeda-Galvís, M.T. Carbon footprint of the colombian cocoa production. Eng. Agrícola 2016, 36, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Vale, M.M.D.; Moura, D.J.D.; Nääs, I.D.A.; Curi, T.M.R.C.; Lima, K.A.O. Effect of a simulated heat wave in thermal and aerial environment broiler-rearing environment. J. Braz. Assoc. Agric. Eng. 2016, 36, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Rodriguez, O.O.; Naranjo, C.A.; García-Caceres, R.G.; Villamizar-Gallardo, R.A. Water footprint assessment of the Colombian cocoa production. Rev. Bras. Eng. Agric. Ambient. 2015, 19, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Naranjo-Merino, C.A.; Ortíz-Rodriguez, O.O.; Villamizar-G, R.A. Assessing Green and Blue Water Footprints in the Supply Chain of Cocoa Production: A Case Study in the Northeast of Colombia. Sustainability 2018, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Fahmid, I.; Harun, H.; Moontasir, F.; Saadah; Busthanul, N. Competitiveness, production, and productivity of cocoa in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 157, 012067. [Google Scholar] [CrossRef] [Green Version]
- Nab, C.; Maslin, M. Life cycle assessment synthesis of the carbon footprint of Arabica coffee: Case study of Brazil and Vietnam conventional and sustainable coffee production and export to the United Kingdom. Geo Geogr. Environ. 2020, 7, e00096. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. The water footprint of coffee and tea consumption in the Netherlands. Ecol. Econ. 2007, 64, 109–118. [Google Scholar] [CrossRef]
- Silva, l.; Ribeiro, M.; Ferreira, W.; Rocha Junior, P.; Fernandes, R. Water footprint of Arabica coffee from “Matas de Minas” under shade management. Rev. Ceres 2022, 69, 488–494. [Google Scholar] [CrossRef]
- Oelbermann, M. Sustainable Agroecosystems in Climate Change Mitigation; Wageningen Academic: Wageningen, The Netherlands, 2014. [Google Scholar]
- Shahbandeh, M. Consumption of Corn Worldwide in 2021/2022, by Country (in Million Bushels). 2022. Available online: https://www.statista.com/statistics/691175/consumption-corn-worldwide-by-country/ (accessed on 28 December 2022).
- Heuzé, V.; Tran, G.; Baumont, R.; Noblet, J.; Renaudeau, D.; Lessire, M.; Lebas, F. Wheat bran. Feedipedia, a Programme by INRAE, CIRAD, AFZ and FAO. 2005. Available online: https://www.feedipedia.org/node/726 (accessed on 28 December 2022).
- Shahbandeh, M. Worldwide Production of Grain in 2021/22, by Type (in Million Metric Tons). 2023. Available online: https://www.statista.com/statistics/263977/world-grain-production-by-type/ (accessed on 28 December 2022).
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F.; et al. The Global 2000–2020 Land Cover and Land Use Change Dataset Derived from the Landsat Archive: First Results. Front. Remote Sens. 2022, 3, 856903. [Google Scholar] [CrossRef]
- Pendrill, F.; Persson, U.M.; Godar, J.; Kastner, T. Deforestation displaced: Trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 2019, 14, 055003. [Google Scholar] [CrossRef]
- Fehér, A.; Gazdecki, M.; Véha, M.; Szakály, M.; Szakály, Z. A Comprehensive Review of the Benefits of and the Barriers to the Switch to a Plant-Based Diet. Sustainability 2020, 12, 4136. [Google Scholar] [CrossRef]
- Baroni, L.; Berati, M.; Candilera, M.; Tettamanti, M. Total Environmental Impact of Three Main Dietary Patterns in Relation to the Content of Animal and Plant Food. Foods 2014, 3, 443–460. [Google Scholar] [CrossRef] [PubMed]
- Blackstone, N.T.; El-Abbadi, N.H.; McCabe, M.S.; Griffin, T.S.; Nelson, M.E. Linking sustainability to the healthy eating patterns of the Dietary Guidelines for Americans: A modelling study. Lancet Planet. Health 2018, 2, e344–e352. [Google Scholar] [CrossRef] [Green Version]
- USDA. Scientific Report of the 2015 Dietary Guidelines Advisory Committee—Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Available online: https://health.gov/sites/default/files/2019-09/Scientific-Report-of-the-2015-Dietary-Guidelines-Advisory-Committee.pdf (accessed on 20 March 2023).
- Heller, M.C.; Willits-Smith, A.; Meyer, R.; Keoleian, G.A.; Rose, D. Greenhouse gas emissions and energy use associated with production of individual self-selected US diets. Environ. Res. Lett. 2018, 13, 044004. [Google Scholar] [CrossRef]
- Tso, R.; Forde, C.G. Unintended Consequences: Nutritional Impact and Potential Pitfalls of Switching from Animal- to Plant-Based Foods. Nutrients 2021, 13, 2527. [Google Scholar] [CrossRef]
- Tso, R.; Lim, A.J.; Forde, C.G. A Critical Appraisal of the Evidence Supporting Consumer Motivations for Alternative Proteins. Foods 2021, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Fresán, U.; Martínez-González, M.A.; Sabaté, J.; Bes-Rastrollo, M. Global sustainability (health, environment and monetary costs) of three dietary patterns: Results from a Spanish cohort (the SUN project). BMJ Open 2019, 9, e021541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satija, A.; Bhupathiraju, S.N.; Spiegelman, D.; Chiuve, S.E.; Manson, J.E.; Willett, W.; Rexrode, K.M.; Rimm, E.B.; Hu, F.B. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 411–422. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Nishimura, K.; Barnard, N.D.; Takegami, M.; Watanabe, M.; Sekikawa, A.; Okamura, T.; Miyamoto, Y. Vegetarian diets and blood pressure: A meta-analysis. JAMA Intern. Med. 2014, 174, 577–587. [Google Scholar] [CrossRef]
- Gehring, J.; Touvier, M.; Baudry, J.; Julia, C.; Buscail, C.; Srour, B.; Hercberg, S.; Péneau, S.; Kesse-Guyot, E.; Allès, B. Consumption of Ultra-Processed Foods by Pesco-Vegetarians, Vegetarians, and Vegans: Associations with Duration and Age at Diet Initiation. J. Nutr. 2021, 151, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Curtain, F.; Grafenauer, S. Plant-Based Meat Substitutes in the Flexitarian Age: An Audit of Products on Supermarket Shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef] [Green Version]
- Jahn, S.; Furchheim, P.; Strässner, A.-M. Plant-Based Meat Alternatives: Motivational Adoption Barriers and Solutions. Sustainability 2021, 13, 13271. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Alvi, T.; Sameen, A.; Khan, S.; Blinov, A.V.; Nagdalian, A.A.; Mehdizadeh, M.; Adli, D.N.; Onwezen, M. Consumer Acceptance of Alternative Proteins: A Systematic Review of Current Alternative Protein Sources and Interventions Adapted to Increase Their Acceptability. Sustainability 2022, 14, 15370. [Google Scholar] [CrossRef]
- Andreani, G.; Sogari, G.; Marti, A.; Froldi, F.; Dagevos, H.; Martini, D. Plant-Based Meat Alternatives: Technological, Nutritional, Environmental, Market, and Social Challenges and Opportunities. Nutrients 2023, 15, 452. [Google Scholar] [CrossRef]
Food Material | Carbon Footprint (for 1 kg of Product) | Total Land (m2/kg or m2/L) | Total Water (m3/kg) | References |
---|---|---|---|---|
Legumes | ||||
soy bean | 0.10–0.6 kg CO2eq | 3.44 m2/kg | 0.805–1.621 m3/kg | [124,125,126,127,128,129,130] |
chickpeas | 0.34 kg CO2eq | 9.276–11.9 m2/kg | 5.51–10.69 m3/kg | [51,131,132,133,134] |
peas | 0.18–0.24 kg CO2eq | 3.2–7.46 m2/kg | 0.613–0.664 m3/kg 0.595 m3/kg | [19,51,135,136,137] |
dry beans | 0.44 kg CO2eq | 1.3–5.9 m2/kg | 1.839–5.053 m3/kg 5.053 m3/kg * | [50,51,135,136,138,139] |
lentils | 0.26 kg CO2eq | 4.7 m2/kg | 5.09–7.42 m3/kg | [51,131,133,135,136] |
Grains | ||||
corn | 0.121 kg CO2eq (irrigated) 0.31–22.00 kg CO2eq | 2.94 m2/kg | 1.222 m3/kg * | [19,50,140,141,142,143,144] |
rice | 4.45 kg CO2eq | 2.80 m2/kg | 2.172 m3/kg | [19,141,142,145] |
wheat | 0.39–8.4 kg CO2eq | 3.85 m2/kg (wheat & rye) | 1.08–1.8 m3/kg (spring wheat) 0.097 m3/kg | [19,50,51,133,140,142,146,147] |
buckwheat | 0.39–8.4 kg CO2eq | no data | 3.142 m3/kg | [50,132,142,148] |
rye | 0.41–4.0 kg CO2eq | no data | 1.544 m3/kg | [50,142,147] |
oats | 0.4–13 kg CO2eq | 7.60 m2/kg (oatmeal) | 1.788 m3/kg | [50,51,142,147] |
barley | 0.34–24.00 kg CO2eq | 1.11 m2/kg | 0.90–1.38 m3/kg 1.423 m3/kg * | [19,50,51,142,147] |
Nuts | ||||
peanut | 1.38 kg CO2eq | 4.2–15.4 m2/kg | 1.446–1.919 m3/kg 4.381 m3/kg * | [19,50,51,149,150,151,152] |
almond | 1.6–1.92 kg CO2eq | 3.67–7.68 m2/kg | 10.2–10.697 m3/kg 8.047 m3/kg (with shell) * | [50,51,151,153,154,155] |
hazelnut | 0.4–1.5 kg CO2eq (raw) | 34.13–131.58 m2/kg (with shell) | 5.258 m3/kg (with shell) * | [50,51,151,153,156,157,158] |
pistachio | 1.74–3.73 kg CO2eq (raw) | 5.67 m2/kg | 3.73 m3/kg | [51,153,159,160,161,162,163] |
cashew | 1.06–1.4 kg CO2eq | 7.25–13 m2/kg | 14.218–45.914 m3/kg | [51,138,151,156,161,164,165,166] |
walnut | 0.76–0.95 kg CO2eq | 2.6–20 m2/kg | 3.932 m3/kg 4.918 m3/kg * | [51,138,161,162,167,168] |
Seeds | ||||
sunflower seed | 0.875 kg CO2eq | 3.41 m3/kg | [51,141,143] | |
rape seed | 0.203.7–1.267.9 kg CO2eq 0.768–1.24 kg CO2eq | 2.9–4.5 m2/kg | 0.994 m3/kg | [51,169,170,171,172] |
Sugar | ||||
sugar beet | 0.242–0.771 kg CO2eq | 0.7–4.5 m2/kg | 0.545–1.9 m3/kg | [19,51,141,173,174,175] |
Oils | ||||
palm oil | 3.73–7.3 kg CO2eq | 2.4–7.3 m2/L | 5 m3/kg | [19,50,176,177,178,179] |
coconut oil | 2.9271 kg CO2eq | no data | 4.490 m3/kg * | [51,151,180,181] |
sunflower oil | 0.3–20.9 kg CO2eq | 17.7 m2/L | 6.8 m3/kg | [19,51,143,177,178,179,182,183] |
olive oil | 3.34–7.74 kg CO2eq | 22.54–26.3 m2/L | 14.5 m3/kg | [51,179,184,185,186] |
rapeseed oil (canola oil) | 3.085 kg CO2eq | 10.6 m2/L | 4.3 m3/kg | [169,178,179,183] |
soybean oil | 2.2–18.8 kg CO2eq | 10.5 m2/L | 4.19 m3/kg * | [19,50,177,179,183] |
peanut oil | 7.541 kg CO2eq | no data | 2.477 m3/kg | [149,179,183] |
Others | ||||
cocoa | 8 kg CO2eq | 5.56–27.78 m2/kg | 13.475–23.239 m3/kg | [51,187,188,189,190,191,192,193] |
coffee | 3.51–15.33 kg CO2eq | 8.4–40.7 m2/kg | 13.862–16.895 m3/kg | [19,51,194,195,196,197] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyak, E.; Breitenbach, Z.; Frank, E.; Mate, O.; Figler, M.; Zsalig, D.; Simon, K.; Szijarto, M.; Szabo, Z. Food and Sustainability: Is It a Matter of Choice? Sustainability 2023, 15, 7191. https://doi.org/10.3390/su15097191
Polyak E, Breitenbach Z, Frank E, Mate O, Figler M, Zsalig D, Simon K, Szijarto M, Szabo Z. Food and Sustainability: Is It a Matter of Choice? Sustainability. 2023; 15(9):7191. https://doi.org/10.3390/su15097191
Chicago/Turabian StylePolyak, Eva, Zita Breitenbach, Eszter Frank, Olivia Mate, Maria Figler, Dorottya Zsalig, Klara Simon, Mate Szijarto, and Zoltan Szabo. 2023. "Food and Sustainability: Is It a Matter of Choice?" Sustainability 15, no. 9: 7191. https://doi.org/10.3390/su15097191
APA StylePolyak, E., Breitenbach, Z., Frank, E., Mate, O., Figler, M., Zsalig, D., Simon, K., Szijarto, M., & Szabo, Z. (2023). Food and Sustainability: Is It a Matter of Choice? Sustainability, 15(9), 7191. https://doi.org/10.3390/su15097191