Evaluation of Green Development Level of Mianyang Agriculture, Based on the Entropy Weight Method
Abstract
:1. Introduction
2. Literature Review
3. Research Methodology and Data Sources
3.1. Research Methodology
3.2. Construction of Indicator System
3.2.1. Socioeconomic Indicators
3.2.2. Science and Technology Progress Indicators
3.2.3. Resource and Environmental Indicators
3.3. Data Sources
4. Empirical Analysis
4.1. Descriptive Analysis of Sample and Variables
4.2. Data Standardization Analysis and Weighting
4.3. Comprehensive Evaluation Analysis of Indicators
5. Conclusions and Recommendations
5.1. Conclusions
- (1)
- The agricultural green development score of Mianyang exhibited an average increase of 16.11% per year, rising from 3.29 in 2016 to 4.92 in 2020. The data indicates that Mianyang has made significant progress in the realm of green agricultural development within the last five years, resulting in a more pronounced impact of said development. The assessment value of Mianyang’s green agricultural development has exhibited a linear increase trend post 2018, indicating a positive trajectory for its development;
- (2)
- Upon examining the level of agricultural green development in each county, city, and district, it becomes evident that there exists an uneven distribution in this domain. The varying factors that impact high and low scores demonstrate unequal characteristics. The overall assessment score of Fucheng District surpasses that of Santai County by a factor of 1.63. The Fucheng District has demonstrated significantly higher scores in socioeconomic, scientific, and technical growth indicators compared to Santai County, despite the latter exhibiting excellent scores for resources and the environment. The pressing issue at hand is the need to promptly address the challenge of narrowing the disparities among counties, cities, and districts, while simultaneously augmenting Mianyang’s overall capacity for the advancement of sustainable agriculture;
- (3)
- The assets of Mianyang Science and Technology City are underutilized, resulting in a lack of vitality in the development of science and technology in the field of agricultural green development. Agricultural production methods often incorporate a scientific and technological aspect that exhibits an inverse relationship with the environmentally advantageous green impact. The scientific and technical index scores of Santai County, Pingwu County, and Beichuan County were found to be lower than the average Mianyang county. This suggests that the role of agricultural science and technology in promoting sustainable agricultural development in these areas is not significant.
5.2. Recommendations
- (1)
- It is recommended to implement the “two mountains” framework and pursue the path of environmentally sustainable modern agriculture.
- (2)
- Formulate and execute tailored agricultural policies for green development based on contextual factors.
- (3)
- The strategy is to depend on advancements in science and technology, with a particular emphasis on the preservation of resources and the safeguarding of ecological environments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Tier 1 Indicators | Weights | Tier 2 Indicators | Weights | Year | Mianyang City | Fucheng District | Youxian District | Anzhou District | Santai County |
---|---|---|---|---|---|---|---|---|---|
Socioeconomic | 0.3215 | Economic Development Level | 0.1511 | 2020 | 0.3278 | 1.0000 | 0.4512 | 0.2295 | 0.1119 |
2019 | 0.3027 | 0.9577 | 0.4218 | 0.2101 | 0.0939 | ||||
2018 | 0.2175 | 0.7991 | 0.2577 | 0.1385 | 0.0291 | ||||
2017 | 0.1835 | 0.7141 | 0.2196 | 0.1136 | 0.0147 | ||||
2016 | 0.1435 | 0.6053 | 0.1593 | 0.0857 | 0.0000 | ||||
Per capita disposable income of farmers | 0.0476 | 2020 | 0.6790 | 1.0000 | 0.7778 | 0.7442 | 0.6305 | ||
2019 | 0.5620 | 0.8567 | 0.6514 | 0.6229 | 0.5185 | ||||
2018 | 0.4401 | 0.7063 | 0.5201 | 0.4971 | 0.4022 | ||||
2017 | 0.3395 | 0.5856 | 0.4154 | 0.3900 | 0.3053 | ||||
2016 | 0.2463 | 0.4749 | 0.3158 | 0.2947 | 0.2167 | ||||
Labor productivity | 0.0610 | 2020 | 0.5743 | 0.8976 | 0.3242 | 0.4997 | 0.5152 | ||
2019 | 0.3744 | 0.8703 | 0.3483 | 0.3868 | 0.3651 | ||||
2018 | 0.3852 | 0.8265 | 0.3313 | 0.4381 | 0.3811 | ||||
2017 | 0.3549 | 0.7724 | 0.3045 | 0.4054 | 0.3515 | ||||
2016 | 0.1318 | 0.3603 | 0.1042 | 0.1620 | 0.1308 | ||||
Land productivity | 0.0618 | 2020 | 0.3524 | 1.0000 | 0.3139 | 0.3558 | 0.2924 | ||
2019 | 0.2527 | 0.6726 | 0.3330 | 0.2949 | 0.2557 | ||||
2018 | 0.2694 | 0.7367 | 0.3275 | 0.3474 | 0.2739 | ||||
2017 | 0.2562 | 0.7043 | 0.3124 | 0.3314 | 0.2609 | ||||
2016 | 0.2097 | 0.5307 | 0.2634 | 0.1926 | 0.1949 | ||||
Technological Progress | 0.1711 | Effective irrigated area of arable land per capita | 0.0681 | 2020 | 0.5499 | 0.9389 | 1.0000 | 0.6815 | 0.5035 |
2019 | 0.5367 | 0.6744 | 0.9052 | 0.6723 | 0.5062 | ||||
2018 | 0.5223 | 0.6743 | 0.9006 | 0.6662 | 0.4906 | ||||
2017 | 0.5055 | 0.6409 | 0.8671 | 0.5665 | 0.4852 | ||||
2016 | 0.4847 | 0.5776 | 0.7949 | 0.6394 | 0.4663 | ||||
Area under machine cultivation per capita | 0.0342 | 2020 | 0.6078 | 0.7888 | 1.0000 | 0.7167 | 0.4694 | ||
2019 | 0.5671 | 0.5723 | 0.8429 | 0.6727 | 0.4557 | ||||
2018 | 0.5141 | 0.4853 | 0.7289 | 0.6494 | 0.4068 | ||||
2017 | 0.4451 | 0.4285 | 0.5711 | 0.5123 | 0.3653 | ||||
2016 | 0.3682 | 0.3397 | 0.4262 | 0.5780 | 0.2841 | ||||
Total power of agricultural machinery per capita | 0.0688 | 2020 | 0.3396 | 1.0000 | 0.6960 | 0.5017 | 0.1171 | ||
2019 | 0.3206 | 0.6947 | 0.5974 | 0.4862 | 0.0000 | ||||
2018 | 0.2550 | 0.6789 | 0.5282 | 0.3782 | 0.0676 | ||||
2017 | 0.2865 | 0.6472 | 0.5566 | 0.3877 | 0.0926 | ||||
2016 | 0.2605 | 0.5613 | 0.4717 | 0.4333 | 0.0763 | ||||
Resources Environment | 0.5074 | Per capita expenditure on energy conservation and environmental protection | 0.1531 | 2020 | 0.2074 | 0.3121 | 0.2610 | 0.1122 | 0.0406 |
2019 | 0.2430 | 0.0865 | 0.1608 | 0.4992 | 0.0406 | ||||
2018 | 0.1330 | 0.0000 | 0.0345 | 0.2378 | 0.0469 | ||||
2017 | 0.2127 | 0.0021 | 0.0453 | 0.2666 | 0.0889 | ||||
2016 | 0.1275 | 0.0829 | 0.0388 | 0.1025 | 0.0008 | ||||
Cultivated land replanting index | 0.0339 | 2020 | 0.7594 | 0.4708 | 0.6909 | 0.6537 | 0.6930 | ||
2019 | 0.7701 | 0.4652 | 0.6939 | 0.6606 | 0.6999 | ||||
2018 | 0.7770 | 0.4852 | 0.6963 | 0.6819 | 0.7003 | ||||
2017 | 0.7799 | 0.5052 | 0.6991 | 0.6835 | 0.7032 | ||||
2106 | 0.2412 | 0.0000 | 0.2859 | 0.3768 | 0.1656 | ||||
Agricultural diesel use intensity | 0.0617 | 2020 | 0.4875 | 0.3988 | 0.8975 | 1.0000 | 0.3776 | ||
2019 | 0.4825 | 0.4002 | 0.8982 | 0.9993 | 0.3793 | ||||
2018 | 0.4749 | 0.3710 | 0.8992 | 0.9971 | 0.3839 | ||||
2017 | 0.4765 | 0.3684 | 0.9001 | 0.9973 | 0.3851 | ||||
2016 | 0.4864 | 0.3734 | 0.8845 | 0.9986 | 0.4213 | ||||
Fertilizer application intensity | 0.0493 | 2020 | 0.6521 | 0.3487 | 0.5517 | 0.7498 | 0.7887 | ||
2019 | 0.6069 | 0.2526 | 0.4763 | 0.7266 | 0.7515 | ||||
2018 | 0.5673 | 0.1572 | 0.3930 | 0.6896 | 0.7135 | ||||
2017 | 0.5422 | 0.1214 | 0.3688 | 0.6865 | 0.6846 | ||||
2016 | 0.5179 | 0.0616 | 0.2217 | 0.7105 | 0.6766 | ||||
Pesticide application intensity | 0.0480 | 2020 | 0.5852 | 0.5587 | 0.5747 | 0.5757 | 0.7529 | ||
2019 | 0.5536 | 0.5051 | 0.4847 | 0.5363 | 0.7310 | ||||
2018 | 0.5244 | 0.4202 | 0.4113 | 0.5236 | 0.7158 | ||||
2017 | 0.5097 | 0.3806 | 0.3943 | 0.5206 | 0.7056 | ||||
2016 | 0.5041 | 0.3623 | 0.3091 | 0.5428 | 0.7018 | ||||
Agricultural film application intensity | 0.0806 | 2020 | 0.5590 | 0.0203 | 0.7087 | 0.8819 | 0.1552 | ||
2019 | 0.5123 | 0.0142 | 0.6905 | 0.8771 | 0.0840 | ||||
2018 | 0.4905 | 0.0522 | 0.7082 | 0.8707 | 0.0108 | ||||
2017 | 0.4186 | 0.0356 | 0.7189 | 0.8702 | 0.0000 | ||||
2016 | 0.4182 | 0.0339 | 0.6879 | 0.8810 | 0.0159 | ||||
Energy consumption per unit of GDP | 0.0505 | 2020 | 0.7367 | 0.8717 | 0.9694 | 0.4024 | 0.9614 | ||
2019 | 0.7493 | 0.8853 | 0.9692 | 0.4902 | 0.9530 | ||||
2018 | 0.7298 | 0.8889 | 0.9419 | 0.4296 | 0.9472 | ||||
2017 | 0.7158 | 0.9030 | 0.9239 | 0.0629 | 0.9423 | ||||
2016 | 0.6849 | 0.8812 | 0.9185 | 0.0000 | 0.9398 | ||||
Electricity consumption per unit of GDP | 0.0303 | 2020 | 0.7310 | 0.7516 | 0.8533 | 0.3289 | 0.9308 | ||
2019 | 0.7484 | 0.8056 | 0.8457 | 0.3440 | 0.9152 | ||||
2018 | 0.7465 | 0.8762 | 0.7708 | 0.3012 | 0.8900 | ||||
2017 | 0.7040 | 0.8627 | 0.7255 | 0.0000 | 0.8983 | ||||
2016 | 0.6749 | 0.8366 | 0.7421 | 0.0307 | 0.8876 | ||||
Tier 1 Indicators | Weights | Tier 2 Indicators | Weights | Year | Yanting County | Zitong County | Pingwu County | Beichuan County | Jiangyou City |
Socioeconomic | 0.3215 | Economic development level | 0.1511 | 2020 | 0.1375 | 0.1960 | 0.1478 | 0.1399 | 0.3199 |
2019 | 0.1156 | 0.1714 | 0.1290 | 0.1217 | 0.2979 | ||||
2018 | 0.0423 | 0.1143 | 0.0669 | 0.0789 | 0.2690 | ||||
2017 | 0.0267 | 0.0891 | 0.0469 | 0.0619 | 0.2288 | ||||
2016 | 0.0090 | 0.0672 | 0.0238 | 0.0404 | 0.1902 | ||||
Per capita disposable income of farmers | 0.0476 | 2020 | 0.6103 | 0.6231 | 0.4185 | 0.3658 | 0.7673 | ||
2019 | 0.5011 | 0.5128 | 0.3195 | 0.2713 | 0.6430 | ||||
2018 | 0.3859 | 0.3959 | 0.2133 | 0.1698 | 0.5126 | ||||
2017 | 0.2898 | 0.2989 | 0.1203 | 0.0803 | 0.4058 | ||||
2016 | 0.2023 | 0.2109 | 0.0354 | 0.0000 | 0.3060 | ||||
Labor productivity | 0.0610 | 2020 | 0.7185 | 1.0000 | 0.6105 | 0.3661 | 0.5239 | ||
2019 | 0.3766 | 0.4846 | 0.2611 | 0.1374 | 0.3438 | ||||
2018 | 0.4216 | 0.4922 | 0.2383 | 0.1339 | 0.3360 | ||||
2017 | 0.3892 | 0.4554 | 0.2172 | 0.1182 | 0.3072 | ||||
2016 | 0.1498 | 0.1882 | 0.0576 | 0.0000 | 0.1033 | ||||
Land productivity | 0.0618 | 2020 | 0.3522 | 0.4133 | 0.4823 | 0.0929 | 0.3592 | ||
2019 | 0.2037 | 0.1934 | 0.2651 | 0.0250 | 0.2653 | ||||
2018 | 0.2387 | 0.2020 | 0.2473 | 0.0246 | 0.2680 | ||||
2017 | 0.2271 | 0.1906 | 0.2354 | 0.0192 | 0.2541 | ||||
2016 | 0.1995 | 0.1848 | 0.1751 | 0.0000 | 0.2691 | ||||
Technological Progress | 0.171 | Effective irrigated area of arable land per capita | 0.0681 | 2020 | 0.4407 | 0.6735 | 0.0234 | 0.0797 | 0.6268 |
2019 | 0.4204 | 0.6533 | 0.0206 | 0.0761 | 0.6117 | ||||
2018 | 0.4081 | 0.6451 | 0.0195 | 0.0723 | 0.6061 | ||||
2017 | 0.4002 | 0.6388 | 0.0176 | 0.0677 | 0.5947 | ||||
2016 | 0.3538 | 0.6082 | 0.0000 | 0.0479 | 0.5757 | ||||
Area under machine cultivation per capita | 0.0342 | 2020 | 0.6154 | 0.8837 | 0.2735 | 0.4334 | 0.6482 | ||
2019 | 0.5743 | 0.8012 | 0.2391 | 0.4108 | 0.6071 | ||||
2018 | 0.4886 | 0.6752 | 0.1454 | 0.3714 | 0.6741 | ||||
2017 | 0.4642 | 0.5729 | 0.1281 | 0.3877 | 0.5549 | ||||
2016 | 0.3501 | 0.4794 | 0.0000 | 0.0384 | 0.5803 | ||||
Total power of agricultural machinery per capita | 0.0688 | 2020 | 0.3195 | 0.4789 | 0.1076 | 0.1643 | 0.5345 | ||
2019 | 0.5885 | 0.4498 | 0.0986 | 0.1699 | 0.5144 | ||||
2018 | 0.2375 | 0.3148 | 0.0887 | 0.1535 | 0.4403 | ||||
2017 | 0.2641 | 0.4116 | 0.0854 | 0.1515 | 0.4890 | ||||
2016 | 0.2313 | 0.3725 | 0.0674 | 0.1368 | 0.4506 | ||||
Resources Environment | 0.5074 | Per capita expenditure on energy conservation and environmental protection | 0.1531 | 2020 | 0.2152 | 0.1995 | 0.3693 | 0.4106 | 0.1601 |
2019 | 0.2023 | 0.0675 | 0.4023 | 0.7232 | 0.2772 | ||||
2018 | 0.0529 | 0.0641 | 0.4784 | 1.0000 | 0.0883 | ||||
2017 | 0.0172 | 0.1986 | 0.3937 | 0.8582 | 0.1543 | ||||
2016 | 0.0117 | 0.1659 | 0.6185 | 0.6211 | 0.1027 | ||||
Cultivated land replanting index | 0.0339 | 2020 | 0.8241 | 0.7037 | 0.5497 | 0.9983 | 0.9616 | ||
2019 | 0.8477 | 0.7377 | 0.5535 | 0.9993 | 0.9666 | ||||
2018 | 0.8705 | 0.7406 | 0.5585 | 1.0000 | 0.9684 | ||||
2017 | 0.8735 | 0.7522 | 0.5558 | 0.9953 | 0.9672 | ||||
2016 | 0.3134 | 0.2449 | 0.1044 | 0.2718 | 0.2906 | ||||
Agricultural diesel use intensity | 0.0617 | 2020 | 0.5904 | 0.0985 | 0.7471 | 0.7011 | 0.1610 | ||
2019 | 0.5929 | 0.0919 | 0.7109 | 0.7040 | 0.1227 | ||||
2018 | 0.5719 | 0.0960 | 0.6954 | 0.7044 | 0.0964 | ||||
2017 | 0.5715 | 0.1137 | 0.6988 | 0.7074 | 0.0823 | ||||
2016 | 0.5817 | 0.0000 | 0.6918 | 0.7787 | 0.1049 | ||||
Fertilizer application intensity | 0.0493 | 2020 | 0.1981 | 0.8616 | 0.8245 | 0.9298 | 0.5404 | ||
2019 | 0.1557 | 0.8269 | 0.7552 | 0.9092 | 0.4865 | ||||
2018 | 0.1149 | 0.8102 | 0.7258 | 0.9037 | 0.4453 | ||||
2017 | 0.0440 | 0.8084 | 0.7030 | 0.9098 | 0.4224 | ||||
2016 | 0.0000 | 0.7340 | 0.6431 | 1.0000 | 0.4012 | ||||
Pesticide application intensity | 0.0480 | 2020 | 0.3393 | 0.6256 | 0.9244 | 0.9947 | 0.1384 | ||
2019 | 0.3176 | 0.5995 | 0.9059 | 0.9947 | 0.1049 | ||||
2018 | 0.2796 | 0.5811 | 0.9008 | 0.9947 | 0.0570 | ||||
2017 | 0.2782 | 0.5840 | 0.8605 | 0.9929 | 0.0081 | ||||
2016 | 0.2933 | 0.5343 | 0.8470 | 1.0000 | 0.0000 | ||||
Agricultural film application intensity | 0.0806 | 2020 | 0.9513 | 0.8013 | 0.8718 | 0.9917 | 0.3891 | ||
2019 | 0.8132 | 0.7957 | 0.8524 | 0.9890 | 0.3670 | ||||
2018 | 0.8010 | 0.8052 | 0.8543 | 0.9864 | 0.3521 | ||||
2017 | 0.2815 | 0.8101 | 0.8320 | 0.9858 | 0.3173 | ||||
2016 | 0.3039 | 0.7834 | 0.7981 | 1.0000 | 0.3281 | ||||
Energy consumption per unit of GDP | 0.0505 | 2020 | 0.8827 | 0.9720 | 0.3863 | 0.9407 | 0.0916 | ||
2019 | 0.9094 | 0.9693 | 0.3425 | 0.9402 | 0.1155 | ||||
2018 | 0.9966 | 0.9333 | 0.3169 | 0.9345 | 0.1500 | ||||
2017 | 0.9987 | 0.9194 | 0.2238 | 0.9223 | 0.1999 | ||||
2016 | 1.0000 | 0.9139 | 0.1413 | 0.9205 | 0.1347 | ||||
Electricity consumption per unit of GDP | 0.0303 | 2020 | 0.9731 | 0.9211 | 0.4355 | 0.6463 | 0.4885 | ||
2019 | 0.9817 | 0.9130 | 0.4531 | 0.6421 | 0.4921 | ||||
2018 | 0.9957 | 0.8745 | 0.4524 | 0.6389 | 0.4816 | ||||
2017 | 1.0000 | 0.8343 | 0.4116 | 0.5789 | 0.4259 | ||||
2016 | 0.9803 | 0.8255 | 0.3181 | 0.5821 | 0.3366 |
References
- Wei, Q.; Zhang, B. Construction of China’s Agricultural Green Development Index and Regional Comparison Study. Issues Agric. Econ. 2018, 11, 11–20. [Google Scholar]
- Ma, J.; Haibo, M. Green finance, inclusive finance and green agricultural development. Financ. Forum. 2021, 26, 3–8. [Google Scholar]
- Cai, J.; Wang, D. Measuring the Level of Green Agricultural Production in China. Stat. Decis. Making 2021, 37, 101–105. [Google Scholar]
- Yu, F.W.; Wang, G.L. Key Issues and Path Choices of Green Agricultural Development in Main Grain-producing Areas. Chongqing Soc. Sci. 2022, 7, 6–18. [Google Scholar]
- Liu, B.; Xie, W. Study on the Green and Low-carbon Transformation Path of Energy in Twin Cities Economic Circle of Chengdu and Chongqing Region. Int. Pet. Econ. 2022, 30, 74–82. [Google Scholar]
- Chen, Y.; Wen, C.H. Study on the Evaluation of Green Development Efficiency and Spatial and Temporal Evolution of Twin-City Economic Circle in Chengdu-Chongqing Region. Yangtze River Basin Resour. Environ. 2022, 31, 1137–1151. [Google Scholar]
- Luo, M.; Ai, J.J. Study on the Spatial and Temporal Evolution of the Comprehensive Level of Industrial Green Transformation in the Twin Cities Economic Circle of Chengdu and Chongqing Region. J. Party Sch. Leshan Munic. Comm. Communist Party China 2022, 24, 73–82. [Google Scholar]
- Wang, W.L.; Shi, P.H. Research on Green Innovation Efficiency, Evolutionary Trends and Influencing Factors in Twin-City Economic Circle of Chengdu and Chongqing Region. J. Southwest Univ. (Nat. Sci. Ed.) 2022, 44, 172–182. [Google Scholar]
- Tian, Y.; Zhang, J.B. Research on Regional Differences and Causes of Green Agriculture Development Level in China. Agric. Mod. Res. 2013, 1, 85–89. [Google Scholar]
- Qing, C.H. Research on the Evaluation of China’s Agricultural Green Development Level in the Period of Economic Transition-Based on Entropy Value Method. China Price 2017, 11, 16–19. [Google Scholar]
- Guo, B.; Li, T.J. Construction of Evaluation Index System for Green Development of Agriculture in Beijing and Promotion Direction. Agric. Outlook 2018, 14, 39–44. [Google Scholar]
- Ye, L.N.; Gao, G.Y. Research on the Measurement of Agricultural Green Development Level and Influencing Factors in Ningxia. Agric. Sci. Res. 2018, 39, 1–5. [Google Scholar]
- Sun, W.L.; Wang, R.B. Research on the Connotation and Evaluation of Green Development in Agriculture. China Agric. Resour. Zoning 2019, 4, 14–21. [Google Scholar]
- Gong, X.; Luo, R.J. Evaluation of Agricultural Green Development Capacity in Western Region from the Perspective of Precise Poverty Alleviation. Ecol. Econ. 2018, 34, 128–132. [Google Scholar]
- Gong, Q.W.; Li, X.M. Construction and measurement of agricultural green development index: 2005–2018. Reform 2020, 1, 133–145. [Google Scholar]
- Cui, N.B.; Ba, X.Z. Evaluation of Green Development Level of Agriculture in Heilongjiang Province. North. Hortic. 2021, 8, 157–163. [Google Scholar]
- Xu, X.; Song, W. Evaluation of Agricultural Green Development in the Perspective of Rural Revitalization. Learn. Explor. 2021, 3, 130–136. [Google Scholar]
- Cui, Y.F.; Yan, L.D. Research on Comprehensive Evaluation System of Green Agriculture Development Level in China. Agric. Econ. Issues 2009, 30, 29–33. [Google Scholar]
- Li, M.; Liu, H. The Construction of a Comprehensive Evaluation System of Urban Ecological Economy Based on Entropy Value Method and the Evaluation of Jiangsu Province. Ecol. Econ. 2022, 38, 68–71. [Google Scholar]
- Zhao, H.J.; Yu, F.S. Evaluation of Agricultural Green Development Level in Main Grain-producing Areas Based on Entropy Value Method. Reform 2019, 11, 136–146. [Google Scholar]
- Yang, Y.J. Research on the Evaluation of Comprehensive Strength of Gansu Province Cities and States Based on Entropy Value Method. J. Lanzhou Vocat. Tech. Coll. 2022, 38, 20–23. [Google Scholar]
- Zhou, J. Evaluation of Agricultural Green Development in Yangtze River Economic Belt, Analysis of Regional Differences and Optimization Path. Rural. Econ. 2021, 12, 99–108. [Google Scholar]
- Bai, Y.T.; Tan, X.L. Research on Agricultural Green Productivity and Spatial Effects in Chengdu-Chongqing City Cluster. Price Theory Pract. 2021, 10, 164–167. [Google Scholar]
- Xue, L.; Xu, C.H. Agro-industrial Agglomeration and Agricultural Green Development:Coupling Degree and Synergistic Effect. Stat. Decis. Mak. 2019, 35, 125–129. [Google Scholar]
- Zhou, M.; Sun, H.; Ke, N. The Spatial and Temporal Evolution of Coordination Degree Concerning China’s Cultivated Land Green Utilization Efficiency and High-Quality Agricultural Development. Land 2023, 12, 127. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Cao, Q.; Wang, E.; Zou, B. Can Integration of Agriculture and Tourism Promote Rural Green Development?—Empirical Evidence from 152 Cities in China. Agriculture 2023, 13, 405. [Google Scholar] [CrossRef]
- Rudnicki, R.; Biczkowski, M.; Wiśniewski, Ł.; Wiśniewski, P.; Bielski, S.; Marks-Bielska, R. Towards Green Agriculture and Sustainable Development: Pro-Environmental Activity of Farms under the Common Agricultural Policy. Energies 2023, 16, 1770. [Google Scholar] [CrossRef]
- Wan, M.; Kuang, H.; Yang, Y.; He, B.; Zhao, S.; Wang, Y.; Huo, J. Evaluation of Agricultural Green Development Based on Gini Coefficient and Hesitation Fuzzy Multi-Attribute Decision-Making: The Case of China. Agriculture 2023, 13, 699. [Google Scholar] [CrossRef]
- Qiao, D.; Li, N.; Cao, L.; Zhang, D.; Zheng, Y.; Xu, T. How Agricultural Extension Services Improve Farmers’ Organic Fertilizer Use in China? The Perspective of Neighborhood Effect and Ecological Cognition. Sustainability 2022, 14, 7166. [Google Scholar] [CrossRef]
- Song, R.; Liu, J.; Niu, K. Agricultural Carbon Emissions Embodied in China’s Foreign Trade and Its Driving Factors. Sustainability 2023, 15, 787. [Google Scholar] [CrossRef]
- Xiao, C.; Zhou, J.; Shen, X.; Cullen, J.; Dobson, S.; Meng, F.; Wang, X. Rural Living Environment Governance: A Survey and Comparison between Two Villages in Henan Province of China. Sustainability 2022, 14, 14136. [Google Scholar] [CrossRef]
- Yao, W.; Sun, Z. The Impact of the Digital Economy on High-Quality Development of Agriculture: A China Case Study. Sustainability 2023, 15, 5745. [Google Scholar] [CrossRef]
- Ge, P.; Liu, T.; Wu, X.; Huang, X. Heterogenous Urbanization and Agricultural Green Development Efficiency: Evidence from China. Sustainability 2023, 15, 5682. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Haq, S.u.; Shahbaz, P. Adoption of Renewable Energy Technology on Farms for Sustainable and Efficient Production: Exploring the Role of Entrepreneurial Orientation, Farmer Perception and Government Policies. Sustainability 2023, 15, 5611. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Wu, Z.; Ye, Q.; Cao, X. Evaluation of Agricultural Eco-Efficiency and Its Spatiotemporal Differentiation in China, Considering Green Water Consumption and Carbon Emissions Based on Undesired Dynamic SBM-DEA. Sustainability 2023, 15, 3361. [Google Scholar] [CrossRef]
- Gao, Q.; Chen, H.; Zhao, M.; Zeng, M. Research on the Impact and Spillover Effect of Green Agricultural Reform Policy Pilot on Governmental Environmental Protection Behaviors Based on Quasi-Natural Experiments of China’s Two Provinces from 2012 to 2020. Sustainability 2023, 15, 2665. [Google Scholar] [CrossRef]
- Qing, Y.; Zhao, B.; Wen, C. The Coupling and Coordination of Agricultural Carbon Emissions Efficiency and Economic Growth in the Yellow River Basin, China. Sustainability 2023, 15, 971. [Google Scholar] [CrossRef]
Tier 1 Indicators | Tier 2 Indicators | Unit | Indicator Meaning | Direction of Action |
---|---|---|---|---|
Socioeconomic | Economic development level | ten-thousand CNY CNY/person | Gross regional product/total population | Positive |
Per capita disposable income of farmers | ten-thousand CNY CNY/person | Disposable income of farmers/number of rural population | Positive | |
Labor productivity | ten-thousand CNY CNY/person | Total output value of agriculture, forestry, animal husbandry and fishery industry/employees in primary industry | Positive | |
Land productivity | ten-thousand CNY CNY/hm2 | Total output value of agriculture, forestry, animal husbandry and fishery/area of agricultural land | Positive | |
Technological Progress | Effective irrigated area of arable land per capita | hm2/person | Effective irrigated area of arable land/number of rural population | Positive |
Machine cultivation area per capita | hm2/person | Area of mechanized farming/number of rural population | Positive | |
Total power of agricultural machinery per capita | kW/person | Total power of agricultural machinery/rural population | Positive | |
Resource Environment | Energy saving and environmental protection expenditure per capita | ten-thousand CNY CNY/person | Energy saving and environmental protection expenditure/total population | Positive |
Cultivated land replanting index | -- | Crop sowing area/cultivated land area | Negative | |
Agricultural diesel use intensity | ton/hm2 | Amount of agricultural diesel used/crop sown area | Negative | |
Fertilizer application intensity | ton/hm2 | Fertilizer application amount/crop sowing area | Negative | |
Pesticide application intensity | ton/hm2 | Pesticide application amount/crop sowing area | Negative | |
Intensity of agricultural film application | ton/hm2 | Amount of agricultural film applied/crop sown area | Negative | |
Energy consumption per unit of GDP | ton of standard coal/ten-thousands CNY CNY | Total energy consumption/regional GDP | Negative | |
Electricity consumption per unit GDP | ten-thousands CNY kWh/RMB | Total electricity consumption/regional GDP | Negative |
Tier 1 Indicators | Weights | Tier 2 Indicators | Weights |
---|---|---|---|
Socioeconomic | 0.3215 | Economic development level | 0.1511 |
Per capita disposable income of farmers | 0.0476 | ||
Labor productivity | 0.0610 | ||
Land productivity | 0.0618 | ||
Technological Progress | 0.1711 | Effective irrigated area of arable land per capita | 0.0681 |
Area under machine cultivation per capita | 0.0342 | ||
Total power of agricultural machinery per capita | 0.0688 | ||
Resources Environment | 0.5074 | Per capita expenditure on energy conservation and environmental protection | 0.1531 |
Cultivated land replanting index | 0.0339 | ||
Agricultural diesel use intensity | 0.0617 | ||
Fertilizer application intensity | 0.0493 | ||
Pesticide application intensity | 0.0480 | ||
Agricultural film application intensity | 0.0806 | ||
Energy consumption per unit of GDP | 0.0505 | ||
Electricity consumption per unit of GDP | 0.0303 |
Year | Socioeconomic | Technology Progress | Resources Environment | Comprehensive Evaluation Value | Order |
---|---|---|---|---|---|
2016 | 0.5320 | 0.6382 | 2.1241 | 3.2943 | 5 |
2017 | 0.8077 | 0.7039 | 2.4008 | 3.9178 | 4 |
2018 | 0.9311 | 0.7328 | 2.4972 | 4.1610 | 3 |
2019 | 1.0982 | 0.8118 | 2.6347 | 4.5447 | 2 |
2020 | 1.3939 | 0.8889 | 2.6327 | 4.9155 | 1 |
Tier 1 Indicators | Tier 2 Indicators | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|
Socioeconomic | Economic development level | 0.2003 | 0.2569 | 0.3044 | 0.4266 | 0.4628 |
Per capita disposable income of farmers | 0.1097 | 0.1538 | 0.2020 | 0.2599 | 0.3150 | |
Labor productivity | 0.0847 | 0.2242 | 0.2430 | 0.2409 | 0.3678 | |
Land productivity | 0.1373 | 0.1727 | 0.1816 | 0.1708 | 0.2483 | |
Technological Progress | Effective irrigated area of arable land per capita | 0.3098 | 0.3258 | 0.3409 | 0.3458 | 0.3758 |
Machine cultivation area per capita | 0.1177 | 0.1514 | 0.1756 | 0.1963 | 0.2200 | |
Total power of agricultural machinery per capita | 0.2107 | 0.2321 | 0.2163 | 0.2698 | 0.2931 | |
Resource Environment | Energy saving and environmental protection expenditure per capita | 0.2868 | 0.3428 | 0.3272 | 0.4140 | 0.3505 |
Cultivated land replanting index | 0.0778 | 0.2547 | 0.2535 | 0.2506 | 0.2476 | |
Agricultural diesel use intensity | 0.3284 | 0.3271 | 0.3264 | 0.3321 | 0.3369 | |
Fertilizer application intensity | 0.2447 | 0.2607 | 0.2720 | 0.2930 | 0.3175 | |
Pesticide application intensity | 0.2447 | 0.2514 | 0.2597 | 0.2753 | 0.2915 | |
Intensity of agricultural film application | 0.4233 | 0.4249 | 0.4782 | 0.4834 | 0.5104 | |
Energy consumption per unit of GDP | 0.3303 | 0.3443 | 0.3674 | 0.3701 | 0.3646 | |
Electricity consumption per unit GDP | 0.1881 | 0.1950 | 0.2127 | 0.2161 | 0.2137 | |
Comprehensive evaluation value | 3.2943 | 3.9178 | 4.1610 | 4.5447 | 4.9155 |
Tier 1 Indicators | Tier 2 Indicators | Mianyang | Peicheng District | Youxian District | Anzhou District | Santai County |
---|---|---|---|---|---|---|
Socioeconomic | Economic development level | 0.1776 | 0.6161 | 0.2282 | 0.1176 | 0.0378 |
Per capita disposable income of farmers | 0.1079 | 0.1725 | 0.1276 | 0.1213 | 0.0987 | |
Labor productivity | 0.1111 | 0.2273 | 0.0862 | 0.1154 | 0.1064 | |
Land productivity | 0.0829 | 0.2254 | 0.0959 | 0.0942 | 0.0791 | |
Socioeconomic indicators score | 0.4795 | 1.2413 | 0.5379 | 0.4485 | 0.3219 | |
Technological Progress | Effective irrigated area of arable land per capita | 0.1770 | 0.2388 | 0.3043 | 0.2197 | 0.1670 |
Machine cultivation area per capita | 0.0855 | 0.0894 | 0.1220 | 0.1069 | 0.0677 | |
Total power of agricultural machinery per capita | 0.1006 | 0.2465 | 0.1961 | 0.1505 | 0.0244 | |
Science and technology progress index score | 0.3632 | 0.5746 | 0.6223 | 0.4771 | 0.2591 | |
Resource Environment | Per capita expenditure on energy conservation and environmental protection | 0.1415 | 0.0741 | 0.0828 | 0.1866 | 0.0334 |
Cultivated land replanting index | 0.1128 | 0.0653 | 0.1039 | 0.1036 | 0.1004 | |
Agricultural diesel use intensity | 0.1486 | 0.1180 | 0.2764 | 0.3080 | 0.1202 | |
Fertilizer application intensity | 0.1422 | 0.0464 | 0.0991 | 0.1755 | 0.1781 | |
Pesticide application intensity | 0.1286 | 0.1069 | 0.1044 | 0.1296 | 0.1732 | |
Intensity of agricultural film application | 0.1934 | 0.0126 | 0.2833 | 0.3532 | 0.0215 | |
Energy consumption per unit of gdp | 0.1828 | 0.2239 | 0.2387 | 0.0700 | 0.2397 | |
Electricity consumption per unit gdp | 0.1091 | 0.1251 | 0.1192 | 0.0304 | 0.1369 | |
Resource and environment index score | 1.1589 | 0.7724 | 1.3079 | 1.3571 | 1.0034 | |
Overall score | 2.0016 | 2.5883 | 2.4681 | 2.2827 | 1.5844 | |
Order | 6 | 1 | 2 | 4 | 10 | |
Tier 1 Indicators | Tier 2 Indicators | Yanting County | Zitong County | Beichuan County | Pingwu County | Jiangyou City |
Socioeconomic | Economic development level | 0.0501 | 0.0965 | 0.0627 | 0.0670 | 0.1974 |
Per capita disposable income of farmers | 0.0947 | 0.0972 | 0.0527 | 0.0423 | 0.1254 | |
Labor productivity | 0.1254 | 0.1598 | 0.0845 | 0.0461 | 0.0985 | |
Land productivity | 0.0755 | 0.0733 | 0.0869 | 0.0100 | 0.0876 | |
Socioeconomic indicators score | 0.3458 | 0.4268 | 0.2868 | 0.1654 | 0.5089 | |
Technological Progress | Effective irrigated area of arable land per capita | 0.1378 | 0.2192 | 0.0056 | 0.0234 | 0.2053 |
Machine cultivation area per capita | 0.0852 | 0.1166 | 0.0269 | 0.0561 | 0.1047 | |
Total power of agricultural machinery per capita | 0.1129 | 0.1395 | 0.0308 | 0.0534 | 0.1672 | |
Science and technology progress index score | 0.3359 | 0.4754 | 0.0633 | 0.1330 | 0.4772 | |
Resource Environment | Per capita expenditure on energy conservation and environmental protection | 0.0765 | 0.1066 | 0.3464 | 0.5533 | 0.1199 |
Cultivated land replanting index | 0.1264 | 0.1078 | 0.0787 | 0.1445 | 0.1408 | |
Agricultural diesel use intensity | 0.1795 | 0.0247 | 0.2187 | 0.2219 | 0.0350 | |
Fertilizer application intensity | 0.0253 | 0.1991 | 0.1799 | 0.2292 | 0.1131 | |
Pesticide application intensity | 0.0724 | 0.1404 | 0.2131 | 0.2390 | 0.0148 | |
Intensity of agricultural film application | 0.2540 | 0.3221 | 0.3393 | 0.3993 | 0.1414 | |
Energy consumption per unit of gdp | 0.2419 | 0.2379 | 0.0713 | 0.2354 | 0.0350 | |
Electricity consumption per unit gdp | 0.1492 | 0.1322 | 0.0627 | 0.0935 | 0.0673 | |
Resource and environment index score | 1.1254 | 1.2709 | 1.5102 | 2.1161 | 0.6674 | |
Overall score | 1.8070 | 2.1730 | 1.8603 | 2.4145 | 1.6535 | |
Order | 8 | 5 | 7 | 3 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Zhang, H. Evaluation of Green Development Level of Mianyang Agriculture, Based on the Entropy Weight Method. Sustainability 2023, 15, 7589. https://doi.org/10.3390/su15097589
Chen C, Zhang H. Evaluation of Green Development Level of Mianyang Agriculture, Based on the Entropy Weight Method. Sustainability. 2023; 15(9):7589. https://doi.org/10.3390/su15097589
Chicago/Turabian StyleChen, Changhong, and Huijie Zhang. 2023. "Evaluation of Green Development Level of Mianyang Agriculture, Based on the Entropy Weight Method" Sustainability 15, no. 9: 7589. https://doi.org/10.3390/su15097589
APA StyleChen, C., & Zhang, H. (2023). Evaluation of Green Development Level of Mianyang Agriculture, Based on the Entropy Weight Method. Sustainability, 15(9), 7589. https://doi.org/10.3390/su15097589