Evaluating Environmental Impact of Natural and Synthetic Fibers: A Life Cycle Assessment Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Life Cycle Assessment (LCA)
2.2. Environmental Impact of Each LCA stage
2.2.1. Raw Materials Extraction
2.2.2. Textile Manufacturing
2.2.3. Transportation
2.2.4. Consumer Use
2.2.5. End of Life
2.3. Different Fibers’ Environmental Impacts
2.3.1. Conventional Cotton
2.3.2. Organic Cotton
2.3.3. Jute
2.3.4. Flax
2.3.5. Silk
2.3.6. Polyester
3. Methodology
4. Results and Discussion
4.1. Agricultural Production
4.2. Yarn Preparation and Spinning
4.3. Weaving
4.4. Dyeing
5. Conclusions
5.1. Implications
5.2. Limitations and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mu, D.; Xin, C.; Zhou, W. Life Cycle Assessment and Techno-Economic Analysis of Algal Biofuel Production. In Microalgae Cultivation for Biofuels Production; Yousuf, A., Ed.; Woodhead Publishing Series in Energy: Sawston, UK, 2020; p. 281. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Islam, M.M. Materials and manufacturing environmental sustainability evaluation of apparel product: Knitted T-shirt case study. Text. Cloth. Sustain. 2015, 1, 8. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Grammatikos, S.A. Comparative Life Cycle Assessment of Cotton and Other Natural Fibers for Textile Applications. Fibers 2019, 7, 101. [Google Scholar] [CrossRef]
- Baydar, G.; Ciliz, N.; Mammadov, A. Life cycle assessment of cotton textile products in Turkey. Resour. Conserv. Recycl. 2015, 104, 213–223. [Google Scholar] [CrossRef]
- Hackett, T. A Comparative Life Cycle Assessment of Denim Jeans and a Cotton T-Shirt: The Production of Fast Fashion Essential Items From Cradle to Gate. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2015. [Google Scholar]
- Gomez-Campos, A.; Vialle, C.; Rouilly, A.; Sablayrolles, C.; Hamelin, L. Flax fiber for technical textile: A life cycle inventory. J. Clean. Prod. 2021, 281, 125177. [Google Scholar] [CrossRef]
- Dissanayake, N.P.J.; Summerscales, J.; Grove, S.M.; Singh, M.M. Energy Use in the Production of Flax Fiber for the Reinforcement of Composites. J. Nat. Fibers 2009, 6, 331–346. [Google Scholar] [CrossRef]
- Moazzem, S.; Crossin, E.; Daver, F.; Wang, L. Life Cycle Assessment of Apparel Consumption in Australia. Environ. Clim. Technol. 2021, 25, 71–111. [Google Scholar] [CrossRef]
- Lou, X.; Cao, H. A comparison between consumer and industry perspectives on sustainable practices throughout the apparel product lifecycle. Int. J. Fash. Des. Technol. Educ. 2018, 12, 149–157. [Google Scholar] [CrossRef]
- Wiedemann, S.; Biggs, L.; Nebel, B.; Bauch, K.; Laitala, K.; Klepp, I.; Swan, P.; Watson, K. Environmental impacts associated with the production, use, and end-of-life of a woollen garment. Int. J. Life Cycle Assess. 2020, 25, 1486–1499. [Google Scholar] [CrossRef]
- Fashion Industry Environmental, Waste, and Recycle Statistics. Available online: https://edgexpo.com/fashion-industry-waste-statistics/ (accessed on 12 March 2023).
- Moazzem, S.; Crossin, E.; Daver, F.; Wang, L. Assessing environmental impact reduction opportunities through life cycle assessment of apparel products. Sustain. Prod. Consum. 2021, 28, 663–674. [Google Scholar] [CrossRef]
- Statista, & Fernandez. Textile Fiber Market Share Worldwide 2021, by Type. Available online: https://www.statista.com/statistics/1250812/global-fiber-production-share-type/ (accessed on 12 March 2023).
- Deng, Y.; Tian, Y. Assessing the Environmental Impact of Flax Fibre Reinforced Polymer Composite from a Consequential Life Cycle Assessment Perspective. Sustainability 2015, 7, 11462–11483. [Google Scholar] [CrossRef]
- Todor, M.P.; Bulei, C.; Kiss, I.; Alexa, V. Recycling of textile wastes into textile composites based on natural fibres: The valorisation potential. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Banja Luke, Bosnia and Herzegovina, 9–11 May 2018. [Google Scholar] [CrossRef]
- Discover Natural Fibres Initiative. Available online: https://dnfi.org/ (accessed on 12 March 2023).
- Organic Cotton Market—Global Industry Trends and Forecast to 2029. Available online: https://www.databridgemarketresearch.com/reports/global-organic-cotton-market (accessed on 12 March 2023).
- Textile Exchange. Preferred Fiber and Materials Market Report—Textile Exchange. Available online: https://textileexchange.org/knowledge-center/reports/preferred-fiber-and-materials/?psafe_param=1&gclid=Cj0KCQiAjbagBhD3ARIsANRrqEvsI7MFiFvhFXlKKGmRr4pjphaMzYOyadHe-gbJyMgzrsRUwWANzgUaAjt4EALw_wcB (accessed on 12 March 2023).
- Ellis, J.L.; McCracken, V.A.; Skuza, N. Insights into willingness to pay for organic cotton apparel. J. Fash. Mark. Manag. Int. J. 2012, 16, 290–305. [Google Scholar] [CrossRef]
- Nellström, M.; Saric, M. A Comparative Life Cycle Assessment of Nudie Jeans’ Repair and Reuse Concept. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2019. [Google Scholar]
- Munasinghe, P.; Druckman, A.; Dissanayake, D. A systematic review of the life cycle inventory of clothing. J. Clean. Prod. 2021, 320, 128852. [Google Scholar] [CrossRef]
- Gerbin, E.; Frapart, Y.M.; Marcuello, C.; Cottyn, B.; Foulon, L.; Pernes, M.; Crônier, D.; Molinari, M.; Chabbert, B.; Ducrot, P.H.; et al. Dual Antioxidant Properties and Organic Stabilization in Cellulose Nanocomposite Films functionalized by In Situ Polymerization of Coniferyl Alcohol. Biomacromolecules 2020, 21, 3163–3175. [Google Scholar] [CrossRef]
- Moretti, C.; Corona, B.; Hoefnagels, R.; Vural-Gürsel, I.; Gosselink, R.; Junginger, M. Review of life cycle assessments of lignin and derived products: Lessons learned. Sci. Total Environ. 2021, 20, 144656. [Google Scholar] [CrossRef] [PubMed]
- van der Velden, N.M.; Patel, M.K.; Vogtländer, J.G. LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane. Int. J. Life Cycle Assess. 2014, 19, 331–356. [Google Scholar] [CrossRef]
- Peters, G.; Svanström, M.; Roos, S.; Sandin, G.; Zamani, B. Handbook of Life Cycle Assessment (LCA) of Textiles and Clothing, 1st ed.; Muthu, S.S., Ed.; Woodhead Publishing Series in Textiles; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Muthukumarana, T.; Karunathilake, H.; Punchihewa, H.; Manthilake, M.; Hewage, K. Life cycle environmental impacts of the apparel industry in Sri Lanka: Analysis of the energy sources. J. Clean. Prod. 2018, 172, 1346–1357. [Google Scholar] [CrossRef]
- Vink, E.T.; Rábago, K.R.; Glassner, D.A.; Gruber, P. Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production. Polym. Degrad. Stab. 2003, 80, 403–419. [Google Scholar] [CrossRef]
- DOE Advanced Manufacturing Office (AMO). Defining Functional Units for LCA and TEA. Available online: https://www.energy.gov/sites/default/files/2022-06/2022-05-03%20-%20Functional%20Unit%20PDF_compliant.pdf (accessed on 12 March 2023).
- What Is Included in a LCA? Available online: http://qpc.adm.slu.se/7_LCA/page_13.htm (accessed on 12 March 2023).
- Lee, K.M.; Inaba, A. Life Cycle Assessment Best Practices of ISO 14040 Series. Available online: https://www.apec.org/docs/default-source/Publications/2004/2/Life-Cycle-Assessment-Best-Practices-of-International-Organization-for-Standardization-ISO-14040-Ser/04_cti_scsc_lca_rev.pdf (accessed on 12 March 2023).
- Wu, Y.; Su, D. Review of Life Cycle Impact Assessment (LCIA) Methods and Inventory Databases. In Sustainable Product Development; Springer: Cham, Swizerland, 2020; pp. 39–55. [Google Scholar] [CrossRef]
- Nayak, R.; Panwar, T.; Nguyen, L.V.T. Sustainability in fashion and textiles. In Sustainable Technologies for Fashion and Textiles; Nayak, R., Ed.; Woodhead Publishing: Sawston, UK, 2020; pp. 3–30. ISBN 9780081028674. [Google Scholar]
- Palacios-Mateo, C.; van der Meer, Y.; Seide, G. Analysis of the polyester clothing value chain to identify key intervention points for sustainability. Environ. Sci. Eur. 2021, 33, 2. [Google Scholar] [CrossRef]
- Mandal, S.; Dey, A. PET Chemistry. In Recycling of Polyethylene Terephthalate Bottles, 1st ed.; Thomas, S., Rane, A.V., Kanny, K., Abitha, V.K., Thomas, M.G., Eds.; William Andrew: Norwich, NY, USA, 2018; ISBN 9780323509671. [Google Scholar]
- Liu, Y.; Huang, H.; Zhu, L.; Zhang, C.; Ren, F.; Liu, Z. Could the recycled yarns substitute for the virgin cotton yarns: A comparative LCA. Int. J. Life Cycle Assess. 2020, 25, 2050–2062. [Google Scholar] [CrossRef]
- Cotton Incorporated. LCA Update of Cotton Fiber and Fabric Life Cycle Inventory. Available online: https://resource.cottoninc.com/LCA/2016-LCA-Full-Report-Update.pdf (accessed on 12 March 2023).
- Zhang, Y.; Liu, X.; Xiao, R.; Yuan, Z. Life cycle assessment of cotton T-shirts in China. Int. J. Life Cycle Assess. 2015, 20, 994–1004. [Google Scholar] [CrossRef]
- Pakula, C.; Stamminger, R. Electricity and water consumption for laundry washing by washing machine worldwide. Energy Effic. 2010, 3, 365–382. [Google Scholar] [CrossRef]
- EnergyStar (2020) Laundry Best Practices. Available online: https://www.energystar.gov/products/laundry_best_practices (accessed on 12 March 2023).
- Cotton Incorporated. The Life Cycle Inventory and Life Cycle Assessment of Cotton Fiber and Fabric. Available online: https://cottontoday.cottoninc.com/wp-content/uploads/2016/08/LCI-LCA-Handout.pdf (accessed on 12 March 2023).
- Laitala, K. Clothing Consumption an Interdisciplinary Approach to Design for Environmental Improvement. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2014. [Google Scholar]
- Caulfield, K. Sources of Textile Waste in Australia. Available online: https://studylib.net/doc/18791293/%20sources-of-textile-waste-in-australia (accessed on 12 March 2023).
- Research and Markets. Global Cotton Market Report 2021–2027: $46.56 Billion Industry—Consumption, Production, Export, Imports. Available online: https://www.prnewswire.com/news-releases/global-cotton-market-report-2021-2027-46-56-billion-industry---consumption-production-export-imports-301241610.html (accessed on 12 March 2023).
- Jin, S.Q.; Du, M.; Wei, X.; Sun, Y. Environmental impact assessment of cotton planting and suggestions for its sustainable development. Rev. China Agric. Sci. Technol. 2011, 13, 110–117. [Google Scholar]
- Kazan, H.; Akgul, D.; Kerc, A. Life cycle assessment of cotton woven shirts and alternative manufacturing techniques. Clean Technol. Environ. Policy 2020, 22, 849–864. [Google Scholar] [CrossRef]
- Textile Exchange. Organic Cotton Market Report. Available online: https://textileexchange.org/app/uploads/2022/10/Textile-Exchange_OCMR_2022.pdf (accessed on 12 March 2023).
- Ingram, M. Producing the natural fiber naturally: Technological change and the US organic cotton industry. Agric. Hum. Values 2002, 19, 325–336. [Google Scholar] [CrossRef]
- Fidan, F.S.; Aydoğan1, E.K.; Uzal, N. A Comparative Life Cycle Assessment of Conventional and Organic Cotton in Denim Fabric. Available online: http://uest.ntua.gr/thessaloniki2021/pdfs/THESSALONIKI_2021_Fidan_et_al.pdf (accessed on 12 March 2023).
- Şener Fidan, F.; Kızılkaya Aydoğan, E.; Uzal, N. The impact of organic cotton use and consumer habits in the sustainability of jean production using the LCA approach. Environ. Sci. Pollut. Res. 2022, 30, 8853–8867. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.T.M.F.; Islam, M.Z.; Mahmud, M.S.; Sarker, M.E.; Islam, M.R. Hemp as a potential raw material toward a sustainable world: A review. Heliyon 2022, 8, e08753. [Google Scholar] [CrossRef] [PubMed]
- Zampori, G.; Dotelli, V. Vernelli. Life cycle assessment of hemp cultivation and use of hemp- based thermal insulator materials in buildings. Environ. Sci. Technol. 2013, 47, 7413–7420. [Google Scholar] [CrossRef]
- Marcuello, C.; Chabbert, B.; Berzin, F.; Bercu, N.B.; Molinari, M.; Aguié-Béghin, V. Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale. Materials 2023, 16, 2440. [Google Scholar] [CrossRef]
- Garel, J. Will Linen Conquer the Fashion Industry? Available online: https://fashionunited.com/news/fashion/will-linen-conquer-the-fashion-industry/2021012237617 (accessed on 12 March 2023).
- van der Werf, H.M.G. Life Cycle Analysis of field production of fibre hemp, the effect of production practices on environmental impacts. Euphytica 2004, 140, 13–23. [Google Scholar] [CrossRef]
- Bhalla, K.; Kumar, T.; Rangaswamy, J. An Integrated Rural Development Model based on Comprehensive Life-Cycle Assessment (LCA) of Khadi -Handloom Industry in Rural India. Procedia CIRP 2018, 69, 493–498. [Google Scholar] [CrossRef]
- Schumacher, A.G.D.; Pequito, S.; Pazour, J. Industrial hemp fiber: A sustainable and economical alternative to cotton. J. Clean. Prod. 2020, 268, 122180. [Google Scholar] [CrossRef]
- Barcelos, S.M.B.D.; Salvador, R.; Guedes, M.D.G.; de Francisco, A.C. Opportunities for Improving the Environmental Profile of Silk Cocoon Production under Brazilian Conditions. Sustainability 2020, 12, 3214. [Google Scholar] [CrossRef]
- Astudillo, M.F.; Thalwitz, G.; Vollrath, F. Life cycle assessment of Indian silk. J. Clean. Prod. 2014, 81, 158–167. [Google Scholar] [CrossRef]
- Bhalla, K.; Kumar, T.; Rangaswamy, J.; Siva, R.; Mishra, V. Life Cycle Assessment of Traditional Handloom Silk as Against Power-loom Silks: A Comparison of Socio-economic and Environmental Impacts. In Green Buildings and Sustainable Engineering; Drück, H., Mathur, J., Panthalookaran, V., Sreekumar, V.M., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Ramchandani, M.; Coste-Maniere, I. Leather in the Age of Sustainability: A Norm or Merely a Cherry on Top? In Leather and Footwear Sustainability; Muthu, S., Ed.; Springer: Singapore, 2020; pp. 11–22. [Google Scholar] [CrossRef]
- Grandview Research. Synthetic Fibers Market Growth Analysis Report, 2021–2028. Available online: https://www.grandviewresearch.com/industry-analysis/synthetic-fibers-market (accessed on 12 March 2023).
- Muthu, S. Assessing the Environmental Impact of Textiles and Clothing Supply Chain, 2nd ed.; Woodhead Publishing: Sawston, UK, 2020; Chapter 10; pp. 181–186. ISBN 9780128197837. [Google Scholar]
- Geographies. Available online: https://ecoinvent.org/the-ecoinventdatabase/geographies/#:~:text=RoW%20represents%20the%20world%20minus,or%20removed%20from%20the%20database (accessed on 12 March 2023).
- Goedkoop, M.; Oele, M.; De Schryver, A.; Vieira, M. SimaPro 7: Database Manual. Available online: https://simapro.com/wp-content/uploads/2022/07/DatabaseManualMethods.pdf (accessed on 12 March 2023).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe 2016 v1.1 A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization. Available online: https://pre-sustainability.com/legacy/download/Report_ReCiPe_2017.pdf (accessed on 12 March 2023).
- Bare, J.C.; Hofstetter, P.; Pennington, D.W.; de Haes, H.A.U. Midpoints versus endpoints: The sacrifices and benefits. Int. J. Life Cycle Assess. 2000, 5, 319–326. [Google Scholar] [CrossRef]
- Papadakis, E.N.; Rodríguez-Rodríguez, C.E.; Kotopoulou, A.; Kintzikoglou, K.; Makris, K.C.; Papadopoulou-Mourkidou, E. A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Ecotoxicol. Environ. Saf. 2015, 116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Avadi, A.; Marcin, M.; Biard, Y.; Renou, A.; Gourlot, J.P.; Basset-Mens, C. Life cycle assessment of organic and conventional non-Bt cotton products from Mali. J. Life Cycle Assess. 2020, 25, 678–697. [Google Scholar] [CrossRef]
- Bain, M.; Your Organic Cotton t-Shirt Might Be Worse for the Environment than Regular Cotton. Quartz. Available online: https://qz.com/990178/your-organic-cotton-t-shirt-might-be-worse-for-the-environment-than-regular-cotton (accessed on 12 March 2023).
- Sewport. What Is Jute Fabric: Properties, How Its Made and Where. Available online: https://sewport.com/fabrics-directory/jute-fabric (accessed on 12 March 2023).
- Borrion, A.; Khraisheh, M.; Benyahia, F. Environmental life cycle impact assessment of Gas-to-Liquid processes. In Proceedings of the 3rd International Gas Processing Symposium, Doha, Qatar, 5–7 March 2012; Aroussi, A., Benyahia, F., Eds.; Elsevier EBooks: Amsterdam, The Netherlands, 2012; Volume 3, pp. 71–77. [Google Scholar] [CrossRef]
- Veolia. How Sulfuric Acid Regeneration Lowers Refinery Costs and Environmental Impact. Available online: https://blog.veolianorthamerica.com/how-sulfuric-acid-regeneration-lowers-refinery-costs-environmental-impact#:~:text=Sulfuric%20acid%20%E2%80%93%20In%20acid%20form,requires%20concentrated%2C%20pure%20sulfuric%20acid (accessed on 12 March 2023).
- Khabbaz, B.G. Life Cycle Energy Use and Greenhouse Gas Emissions of Australian Cotton: Impact of Farming Systems. Master’s Thesis, University of Southern Queensland, Toowoomba, Queensland, Australia, 2010. [Google Scholar]
- Bevilacqua, M.; Ciarapica, F.E.; Mazzuto, G. Environmental analysis of a cotton yarn supply chain. J. Clean. Prod. 2014, 82, 154–165. [Google Scholar] [CrossRef]
- Krifa, M.; Ethridge, M.D. Compact Spinning Effect on Cotton Yarn Quality: Interactions with Fiber Characteristics. Text. Res. J. 2006, 76, 388–399. [Google Scholar] [CrossRef]
- Babu, K. Natural Textile Fibres. In Textiles and Fashion Materials, Design and Technology, 1st ed.; Sinclair, R., Ed.; Woodhead Publishing: Swaston, UK, 2015; ISBN 9781845699314. [Google Scholar]
- Basu, G.; De, S.; Samanta, A. Effect of bio-friendly conditioning agents on jute fibre spinning. Ind. Crops Prod. 2009, 29, 281–288. [Google Scholar] [CrossRef]
- Laursen, S.E.; Hansen, J.; Knudsen, H.H.; Wenzel, H.; Larsen, H.F.; Kristensen, F.M. EDIPTEX—Environmental Assessment of Textiles. Available online: https://mdpi-res.com/data/mdpi_references_guide_v5.pdf (accessed on 12 March 2023).
- Alves, C.; Ferrão, P.; Silva, A.M.; Reis, L.; Freitas, M.D.C.D.; Rodrigues, L.R.; Alves, D. Ecodesign of automotive components making use of natural jute fiber composites. Clean. Prod. 2010, 18, 313–327. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, X.; Ding, X. Carbon and water footprints assessment of cotton jeans using the method based on modularity: A full life cycle perspective. J. Clean. Prod. 2021, 332, 130042. [Google Scholar] [CrossRef]
- Yacout, D.M.M.; El-Kawi, M.A.A.; Hassouna, M.S. Cradle to gate environmental impact assessment of acrylic fiber manufacturing. Int. J. Life Cycle Assess. 2016, 21, 326–336. [Google Scholar] [CrossRef]
Impact Category | Silk | Conventional Cotton | Organic Cotton | Flax | Jute |
---|---|---|---|---|---|
Fine particulate matter formation (kg PM2.5 eq) | 0.01216 | 0.00068 | 4.69950 × 10−5 | 0.00015 | 0.00014 |
Fossil resource scarcity (kg oil eq) | 2.59640 | 0.21201 | 0.01708 | 0.02071 | 0.00943 |
Freshwater ecotoxicity (kg 1,4-DCB) | 0.77849 | 0.17624 | 0.03973 | 0.00743 | 0.00491 |
Freshwater eutrophication (kg P eq) | 0.00676 | 0.00097 | 0.00611 | 3.00837 × 10−5 | 0.00013 |
Global warming (kg CO2 eq) | 18.66263 | 1.35726 | 0.46731 | 0.17942 | 0.14672 |
Human carcinogenic toxicity (kg 1,4-DCB) | 0.05845 | 0.00028 | 0.00019 | 0.00051 | 0.00056 |
Human non-carcinogenic toxicity (kg 1,4-DCB) | 0.38301 | 1.98380 | 0.00892 | 0.00341 | 0.00421 |
Ionizing radiation (kBq Co-60 eq) | 0.57408 | 0.02449 | 0.02011 | 0.00253 | 0.00146 |
Land use (m2a crop eq) | 12.30352 | 1.91413 | 7.39269 | 0.09064 | 0.18001 |
Marine ecotoxicity (kg 1,4-DCB) | 0.22382 | 0.04104 | 0.01228 | 0.00182 | 0.00120 |
Marine eutrophication (kg N eq) | 0.01411 | 0.00582 | 0.01194 | 0.00068 | 0.00034 |
Mineral resource scarcity (kg Cu eq) | 0.05903 | 0.00464 | 0.00035 | 0.00068 | 0.00027 |
Ozone formation, Human health (kg NOx eq) | 0.06708 | 0.00563 | 0.00304 | 0.00070 | 0.00031 |
Ozone formation, Terrestrial ecosystem (kg NOx eq) | 0.06816 | 0.00570 | 0.00361 | 0.00071 | 0.00031 |
Stratospheric ozone depletion (kg CFC11 eq) | 6.87856 × 10−5 | 7.21148 × 10−6 | 8.28099 × 10−6 | 1.27404 × 10−6 | 4.93978 × 10−7 |
Terrestrial acidification (kg SO2 eq) | 0.18559 | 0.01514 | 0.01048 | 0.00275 | 0.00105 |
Terrestrial ecotoxicity (kg 1,4-DCB) | 26.47910 | 2.57065 | 0.20721 | 0.20165 | 0.10487 |
Water consumption (m3) | 3.90515 | 0.36277 | 0.00668 | 0.06240 | 0.05661 |
Impact Category | Polyester |
---|---|
Fine particulate matter formation (kg PM2.5 eq) | 0.00232 |
Fossil resource scarcity (kg oil eq) | 1.91054 |
Freshwater ecotoxicity kg 1,4-DCB) | 0.12778 |
Freshwater eutrophication (kg P eq) | 0.00109 |
Global warming (kg CO2 eq) | 5.08799 |
Human carcinogenic toxicity (kg 1,4-DCB) | 0.00133 |
Human non-carcinogenic toxicity (kg 1,4-DCB) | 0.11459 |
Ionizing radiation (kBq Co-60 eq) | 0.21618 |
Land use (m2a crop eq) | 0.04253 |
Marine ecotoxicity (kg 1,4-DCB) | 0.03775 |
Marine eutrophication (kg N eq) | 0.00035 |
Mineral resource scarcity (kg Cu eq) | 0.00983 |
Ozone formation, Human health (kg NOx eq) | 0.00994 |
Ozone formation, Terrestrial ecosystems (kg NOx eq) | 0.01099 |
Stratospheric ozone depletion (kg CFC11 eq) | 4.48697× 10−5 |
Terrestrial acidification (kg SO2 eq) | 0.01253 |
Terrestrial ecotoxicity (kg 1,4-DCB) | 6.28966 |
Water consumption (m3) | 0.05444 |
Impact Category | Silk | Conventional Cotton | Jute |
---|---|---|---|
Fine particulate matter formation (kg PM2.5 eq) | 0.04508 | 0.00390 | 0.00219 |
Fossil resource scarcity (kg oil eq) | 8.35746 | 1.06841 | 0.27824 |
Freshwater ecotoxicity (kg 1,4-DCB) | 2.45208 | 0.50770 | 0.06128 |
Freshwater eutrophication (kg P eq) | 0.02071 | 0.00493 | 0.00337 |
Global warming (kg CO2 eq) | 58.73085 | 6.10840 | 1.43662 |
Human carcinogenic toxicity (kg 1,4-DCB) | 0.16822 | 0.00172 | 0.00841 |
Human non-carcinogenic toxicity (kg 1,4-DCB) | 1.20376 | 3.29710 | 0.04166 |
ionizing radiation (kBq Co-60 eq) | 1.92351 | 0.31969 | 0.07269 |
Land use (m2a crop eq) | 39.19282 | 6.14138 | 1.23939 |
Marine ecotoxicity (kg 1,4-DCB) | 0.71172 | 0.12500 | 0.01758 |
Marine eutrophication (kg N eq) | 0.04029 | 0.04535 | 0.00264 |
Mineral resource scarcity (kg Cu eq) | 0.19043 | 0.01542 | 0.00354 |
Ozone formation, Human health (kg NOx eq) | 0.21466 | 0.02178 | 0.00591 |
Ozone formation, Terrestrial ecosystems (kg NOx eq) | 0.21871 | 0.02236 | 0.00614 |
Stratospheric ozone depletion (kg CFC11 eq) | 0.00021 | 3.47452 × 10−5 | 4.78876 × 10−6 |
Terrestrial acidification (kg SO2 eq) | 0.54505 | 0.06535 | 0.01284 |
Terrestrial ecotoxicity (kg 1,4-DCB) | 85.33574 | 8.00630 | 1.86305 |
Water consumption (m3) | 10.92839 | 4.68017 | 0.26624 |
Impact Category | Silk | Conventional Cotton | Jute |
---|---|---|---|
Fine particulate matter formation (kg PM2.5 eq) | 0.05115 | 0.00892 | 0.00267 |
Fossil resource scarcity (kg oil eq) | 9.77103 | 2.30443 | 0.41688 |
Freshwater ecotoxicity (kg 1,4-DCB) | 2.84419 | 0.69504 | 0.07891 |
Freshwater eutrophication (kg P eq) | 0.02384 | 0.00744 | 0.00354 |
Global warming (kg CO2 eq) | 65.92711 | 12.43288 | 1.92720 |
Human carcinogenic toxicity (kg 1,4-DCB) | 0.17942 | 0.00325 | 0.00878 |
Human non-carcinogenic toxicity (kg 1,4-DCB) | 1.36387 | 3.96103 | 0.05134 |
Ionizing radiation (kBq Co60 eq) | 2.72661 | 0.59590 | 0.09226 |
Land use (m2a crop eq) | 41.39808 | 7.34410 | 1.24967 |
Marine ecotoxicity (kg 1,4-DCB) | 0.82466 | 0.17629 | 0.02278 |
Marine eutrophication(kg N eq) | 0.04259 | 0.05371 | 0.00266 |
Mineral resource scarcity (kg Cu eq) | 0.21933 | 0.02043 | 0.00424 |
Ozone formation, Human health (kg NOx eq) | 0.23444 | 0.03490 | 0.00738 |
Ozone formation, Terrestrial ecosystems (kg NOx eq) | 0.23891 | 0.03569 | 0.00763 |
Stratospheric ozone depletion (kg CFC11 eq) | 0.00022 | 4.21589 × 10−5 | 4.92586 × 10−6 |
Terrestrial acidification (kg SO2 eq) | 0.59007 | 0.9110 | 0.01465 |
Terrestrial ecotoxicity (kg 1,4-DCB) | 94.59827 | 11.70685 | 2.59627 |
Water consumption (m3) | 11.52624 | 5.54420 | 0.26847 |
Impact Categories | Result |
---|---|
Fine particulate matter formation (kg PM2.5 eq) | 0.00127 |
Fossil resource scarcity (kg oil eq) | 1.18711 |
Freshwater ecotoxicity (kg 1,4-DCB) | 0.11466 |
Freshwater eutrophication (kg P eq) | 0.00090 |
Global warming (kg CO2 eq) | 4.53564 |
Human carcinogenic toxicity (kg 1,4-DCB) | 0.00156 |
Human non-carcinogenic toxicity (kg 1,4-DCB) | 0.07088 |
Ionizing radiation (kBq Co60 eq) | 0.16172 |
Land use (m2a crop eq) | 0.02878 |
Marine ecotoxicity (kg 1,4-DCB) | 0.03497 |
Marine eutrophication(kg N eq) | 0.00051 |
Mineral resource scarcity (kg Cu eq) | 0.00404 |
Ozone formation, Human health (kg NOx eq) | 0.00566 |
Ozone formation, Terrestrial ecosystems (kg NOx eq) | 0.00581 |
Stratospheric ozone depletion (kg CFC11 eq) | 9.61629 × 10−7 |
Terrestrial acidification (kg SO2 eq) | 0.01037 |
Terrestrial ecotoxicity (kg 1,4-DCB) | 5.13493 |
Water consumption (m3) | 0.11402 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, V.; Lou, X.; Chi, T. Evaluating Environmental Impact of Natural and Synthetic Fibers: A Life Cycle Assessment Approach. Sustainability 2023, 15, 7670. https://doi.org/10.3390/su15097670
Gonzalez V, Lou X, Chi T. Evaluating Environmental Impact of Natural and Synthetic Fibers: A Life Cycle Assessment Approach. Sustainability. 2023; 15(9):7670. https://doi.org/10.3390/su15097670
Chicago/Turabian StyleGonzalez, Victoria, Xingqiu Lou, and Ting Chi. 2023. "Evaluating Environmental Impact of Natural and Synthetic Fibers: A Life Cycle Assessment Approach" Sustainability 15, no. 9: 7670. https://doi.org/10.3390/su15097670
APA StyleGonzalez, V., Lou, X., & Chi, T. (2023). Evaluating Environmental Impact of Natural and Synthetic Fibers: A Life Cycle Assessment Approach. Sustainability, 15(9), 7670. https://doi.org/10.3390/su15097670