Study on the Spatial and Temporal Evolution of the Ecological Environmental Quality in Linghekou Wetland
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Processing
2.3. PSR Model
2.4. The Analytic Hierarchy Process (AHP)
2.5. Landscape Index
2.5.1. Diversity Index (H)
2.5.2. Mean Patch Area (MPS)
2.5.3. Shape Index (LSI)
2.5.4. Evenness Index (SHEI)
2.5.5. Maximum Patch Index (LPI)
2.5.6. Fragmentation Index (PD)
2.6. InVEST Model
2.6.1. Habitat Quality Index
2.6.2. Habitat Degradation Index
2.7. ANN-CA-Markov Model
3. Results
3.1. Analysis of Landscape Area Change
3.2. Analysis of Evaluation Indicator Values
3.3. Analysis of Ecological Environmental Quality
3.4. Habitat Quality Assessment of Linghekou Wetland
3.5. Early Warning on the Habitat Quality and Habitat Degradation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finlayson, C.M.; Davis, J.A.; Gell, P.A.; Kingsford, R.T.; Parton, K.A. The status of wetlands and the predicted effects of global climate change: The situation in Australia. Aquat. Sci. 2013, 75, 73–93. [Google Scholar] [CrossRef]
- Kayastha, N.; Thomas, V.; Galbraith, J.; Banskota, A. Monitoring wetland change using inter-annual landsat time-series data. Wetlands 2012, 32, 1149–1162. [Google Scholar] [CrossRef]
- Bayesteh, M.; Azari, A. Stochastic optimization of reservoir operation by applying hedging rules. J. Water Resour. Plan. Manag. 2021, 147, 04020099. [Google Scholar] [CrossRef]
- Perring, M.P.; Frenne, P.D.; Baeten, L.; Maes, S.; Depauw, L.; Blondeel, H.; Caron, M.M.; Verheyen, K. Global environmental change effects on ecosystems: The importance of land-use legacies. Glob. Chang. Biol. 2016, 22, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Agboola, J.L.; Ndimele, P.E.; Odunuga, S.; Akanni, A.; Kosemani, B.; Ahove, M.A. Ecological health status of the Lagos wetland ecosystems: Implications for coastal risk reduction. Estuar. Coast. Shelf Sci. 2016, 183, 73–81. [Google Scholar] [CrossRef]
- Boumansr, R.; Costanza, R.; Farley, J.; Wilson, M.; Grasso, M. Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model. Ecol. Econ. 2002, 41, 529–560. [Google Scholar] [CrossRef]
- Fleskens, L.; Duarte, F.; Eicher, I. A conceptual framework for the assessment of multiple functions of agro-ecosystems:a case study of Trás-os-Montes olive grocers. J. Rural Stud. 2009, 25, 141–155. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.Y.; Li, Y.F. Recognition of spatial expansion patterns of invasive Spartina alterniflora and simulation of the resulting landscape-changes. Acta Ecol. Sin. 2019, 38, 5413–5422. [Google Scholar] [CrossRef]
- Wang, H.N.; Zhang, M.Y.; Cui, L.J.; Guo, Z.L.; Wang, D.A. Evaluation of Ecological Environment Quality of Hengshui Lake Wetlands based on DPSIR Model. Wetl. Sci. 2019, 17, 194–198. [Google Scholar] [CrossRef]
- Song, W.D.; Yang, D.; Li, E.B.; Zhao, Q.H.; Zhang, Y.N. Wetland information extraction and dynamic monitoring of Panjin. Sci. Surv. Mapp. 2016, 41, 60–65+79. [Google Scholar] [CrossRef]
- Walz, R. Development of environmental indicator systems:experience from Germany. Environ. Manag. 2000, 25, 613–623. [Google Scholar] [CrossRef]
- Huang, B.; Shao, J.B.; Meng, W.J.; Zhou, B. Assessment on Environmental Quality of Estuary Ecosystem of Jiaojiang River based on Press-state-response Model. Wetl. Sci. 2016, 14, 825–831. [Google Scholar] [CrossRef]
- Homyack, J.A.; Vashon, J.H.; Libby, C.; Lindquist, E.L.; Loch, S.; McAlpine, D.F.; Pilgrim, K.L. Canada lynx-bobcat (Lynx canadensis × L. rufus) hybrids at the southern periphery of lynx range in Maine, Minnesota and new Brunswick. Am. Midl. Nat. 2008, 2, 504–508. [Google Scholar] [CrossRef]
- Christian, F.; Wolfgang, B. Monitoring of environment changes caused by hard coal mining. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology; SPIE: Bellingham, WA, USA, 2002; Volume 4545, pp. 67–72. [Google Scholar]
- Rojas, C.; Pino j Basno, C.; Vivanco, M. Assessing land use and land cover changes in relation to geographic factors and urban planning in the metropolitan area of Conception(Chile). Implications for biodiversity conservation. Appl. Geogr. 2013, 39, 93–103. [Google Scholar] [CrossRef]
- He, J.H.; Huang, J.L.; Li, C. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecol. Model. 2017, 366, 58–67. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [PubMed]
- Sherrouse, B.C.; Semmens, D.J.; Clement, J.M. An application of Social Values for Ecosystem Services (Sol VES) to three national forests in Colorado and Wyoming. Ecol. Indic. 2014, 36, 68–79. [Google Scholar] [CrossRef]
- Lorenzo, S.; Andrea, D.T.; Andrea, S.; Mirko, D.F.; Elena, G.; Laura, C.; Davide, G.; Michele, M.; Matteo, V.; Marco, M. Assessing habitat quality in relation to the spatial distrbution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Chen, G.D.; Wang, H. Evaluation for Ecological Environment Quality in Wetland Park Based on BIB-LCJ Model. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2020, 51, 64–68. [Google Scholar] [CrossRef]
- Kenneth, B.R.; Scott, L.; Craig, C.; John, F.; Nina, G.; Christopher, P.; Robin, L.J.W.; Gregg, M.; David, B.; Michelle, D. Evaluating tidal wetland restoration performance using national estuarine research reserve system reference sites and the restoration performance index(RPI). Estuaries Coasts 2018, 41, 36–51. [Google Scholar] [CrossRef]
- Abreham, B.A.; Tomasz, N.; Teshome, S.; Eyasu, E. The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Lin, W.P.; Li, Y.; Xu, D.; Zeng, Y. Changes in landscape pattern of wetland around Hangzhou bay. ISPRS Annals of Photogrammetry. Remote Sens. Spat. Inf. Sci. 2018, IV-3, 153–159. [Google Scholar] [CrossRef]
- Brown, G.; Brabyn, L. The extrapolation of social landscape values to a national level in New Zealand using landscape character classification. Appl. Geogr. 2012, 35, 84–94. [Google Scholar] [CrossRef]
- Del Castillo, E.M.; Garcia-Martin, A.; Aladren, L.A.L.; De Luis, M. Evaluation of forest cover change using remote sensing techniques and landscape metrics in Moncayo Natural Park (Spain). Appl. Geogr. 2015, 62, 247–255. [Google Scholar] [CrossRef]
- Liu, C.F.; Wang, C.; Liu, L.C. Spatio-temporal variation on habitat quality and its mechanism within the transitional area of the Three Natural Zones: A case study in Yuzhong county. Geogr. Res. 2018, 37, 419–432. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhou, Y.; Guo, Z.R.; Dai, L.J.; Wang, C.; Wang, G.; Li, Y.F. A conceptual ecological model for large–scale salt marsh restoration:A case study of Yancheng. Chin. J. Ecol. 2021, 40, 278–291. [Google Scholar] [CrossRef]
- Zhou, L.F.; Xu, H.T.; Zhang, J. Landscape Pattern Change and Division of Function Zones in Linghekou Wetland Nature Reserve. Wetl. Sci. 2016, 14, 403–407. [Google Scholar] [CrossRef]
- Ana IR, C.; Costa, F.L. Land cover changes and landscape pattern dynamics in Senegal and Guinea Bissau brderland. Appl. Geogr. 2017, 82, 115–128. [Google Scholar] [CrossRef]
- Bhagawat, R.; Roshan, S.; Ripu, K.; Hamidreza, K.; Nigel, E.S.; Sushila, R.; Syed, A.R.; Himlal, B. Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosyst. Serv. 2019, 38, 100963. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuna, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef]
- Qin, Q.; Huang, Y.; Cui, X.P. Ecosystem Health Assessment of the Yunnan-Guizhou Plateau Wetland Based on the Pressure-State-Response Model. J. Hydroecol. 2019, 40, 26–31. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.P.; Cao, M.; Zhang, Y. A multi-scale approach to investigating the wintering habitat selection of Red-crowned Cranes in the Yancheng nature reserve, China. Pak. J. Zool. 2016, 48, 349–357. [Google Scholar]
- Wang, J.; Zhang, H.B.; Li, Y.F.; Liu, H.Y. Assessment on Overwintering Habitat Quality of Red-crowned Cranes in Yellow Sea Wetlands in Yancheng and Its Management Strategies. Wetl. Sci. 2022, 20, 334–340. [Google Scholar] [CrossRef]
- Cao, M.C.; Xu, H.G.; Le, Z.F.; Zhu, M.C.; Cao, Y. A Multi-Scale Approach to Investigating the Red-Crowned Crane-Habitat Relationship in the Yellow River Delta Nature Reserve, China: Implications for Conservation. PLoS ONE 2015, 11, e0129833. [Google Scholar] [CrossRef]
- Liu, Z.F.; Tang, L.N.; Qiu, Q.Y. Temporal and spatial changes in habitat quality based on land use change in Fujian province. Acta Ecol. Sin. 2017, 37, 4538. [Google Scholar]
- Heath, M.H.; Christopher, S.H.; Michelle, M.H.; Aaron, P. Waterbird response indicates floodplain wetland restoration. Hydrobiologia 2017, 804, 119–137. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, F.; Jiang, L. Effects of land use pattern change on regional scale habitat quality based on In VEST model: A case study in Beijing. Acta Sci. Nat. Univ. Peki-Nensis 2016, 52, 553–562. [Google Scholar] [CrossRef]
- Wang, H.; Tang, L.; Qiu, Q.; Chen, H.X. Assessing the impacts of urban expansion on habitat quality by combining the concepts of land use, landscape, and habitat in two urban agglomerations in China. Sustainability 2020, 12, 4346. [Google Scholar] [CrossRef]
- Liu, S.L.; Yin, Y.J.; Yang, J.J.; An, N.N.; Wang, C.; Dong, S.K. Assessment of the influences of landscape fragmentation on regional habitat quality in the Manwan Basin. Acta Ecol. Sin. 2017, 37, 619–627. [Google Scholar] [CrossRef]
- Rong, Y.J.; Zhang, H.; Wang, Y.S. Assessment on land use and biodiversity in Nanjing City based on Logistic-CA-Markov and In VEST model. Res. Soil Water Conserv. 2016, 23, 82–89. [Google Scholar] [CrossRef]
- Chu, L.; Zhang, X.R.; Wang, T.W.; Li, Z.X.; Cai, C.F. Spatial-temporal evolution and prediction of urban landscape pattern and habitat quality based on CA-Markov and In VEST model. Chin. J. Appl. Ecol. 2018, 29, 4106–4118. [Google Scholar] [CrossRef]
No | Acquisition Date | Sensors | Path/Row | Cloud (%) |
---|---|---|---|---|
1 | 2005-4-14 | Landsat7 ETM+ | 120/31 | 0 |
2 | 2010-3-27 | Landsat7 ETM+ | 120/31 | 0.05 |
3 | 2015-3-11 | Landsat8 OLI-TIRS | 120/31 | 0.03 |
4 | 2020-5-10 | Landsat8 OLI-TIRS | 120/31 | 0.04 |
Pressure Indicator | Status Indicator | Response Indicator |
---|---|---|
Population density | Diversity index | Degradation index |
Human interference index | Mean patch area | Fragmentation index |
Hydrological regulation index | ||
Shape index | ||
Uniformity index | ||
Maximum plaque index |
Guide Layer | Program Layer | Year | |||
---|---|---|---|---|---|
2005 | 2010 | 2015 | 2020 | ||
Pressure Indicator | Population density | 675.301 | 637.888 | 616.422 | 599.045 |
Human interference index | 0.489 | 0.516 | 0.551 | 0.561 | |
Status Indicator | Diversity index | 1.567 | 1.555 | 1.548 | 1.575 |
Mean patch area | 0.823 | 0.957 | 0.884 | 0.823 | |
Hydrological regulation index | 0.039 | 0.036 | 0.033 | 0.038 | |
Shape index | 13.974 | 13.68 | 14.823 | 15.773 | |
Evenness index | 0.713 | 0.702 | 0.705 | 0.719 | |
Maximum plaque index | 20.754 | 21.391 | 22.363 | 20.21 | |
Response Indicator | Degradation index | 419.61 | 397.16 | 368.64 | 355.43 |
Fragmentation index | 0.689 | 0.598 | 0.643 | 0.688 |
Target Layer | Guide Layer | Program Layer | Indicator Weight |
---|---|---|---|
Eco-environmental quality of Linghekou wetland | Pressure 0.261 | Population density | 0.075 |
Human interference index | 0.186 | ||
Status 0.504 | Diversity index | 0.046 | |
Mean patch area | 0.027 | ||
Hydrological regulation index | 0.179 | ||
Shape index | 0.052 | ||
Evenness index | 0.131 | ||
Maximum patch index | 0.069 | ||
Response 0.235 | Degradation index | 0.171 | |
Fragmentation index | 0.064 |
Individual Indicators | Indicator Measurements | Indicator Values | Indicator Weight | Overall Assessment Value |
---|---|---|---|---|
Population density | 0.11 | 0.97 | 0.075 | 0.378 |
Human interference index | 0.15 | 0.96 | 0.186 | |
Diversity index | 0.01 | 0.01 | 0.046 | |
Average patch area index | 0.01 | 0.01 | 0.027 | |
Hydrological regulation index | 0.03 | 0.01 | 0.179 | |
Shape index | 0.13 | 0.97 | 0.052 | |
Evenness index | 0.01 | 0.01 | 0.131 | |
Maximum patch index | 0.03 | 0.01 | 0.069 | |
Degradation index | 0.15 | 0.04 | 0.171 | |
Fragmentation index | 0.00 | 0.99 | 0.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Q.; Wang, T.; Chen, F. Study on the Spatial and Temporal Evolution of the Ecological Environmental Quality in Linghekou Wetland. Sustainability 2023, 15, 7672. https://doi.org/10.3390/su15097672
Cheng Q, Wang T, Chen F. Study on the Spatial and Temporal Evolution of the Ecological Environmental Quality in Linghekou Wetland. Sustainability. 2023; 15(9):7672. https://doi.org/10.3390/su15097672
Chicago/Turabian StyleCheng, Qian, Tieliang Wang, and Fujiang Chen. 2023. "Study on the Spatial and Temporal Evolution of the Ecological Environmental Quality in Linghekou Wetland" Sustainability 15, no. 9: 7672. https://doi.org/10.3390/su15097672
APA StyleCheng, Q., Wang, T., & Chen, F. (2023). Study on the Spatial and Temporal Evolution of the Ecological Environmental Quality in Linghekou Wetland. Sustainability, 15(9), 7672. https://doi.org/10.3390/su15097672