Comparison of Climate Change Effects on Wheat Production under Different Representative Concentration Pathway Scenarios in North Kazakhstan
Abstract
:1. Introduction
- DSSAT (Decision Support System for Agrotechnology Transfer) 4.7.5 is a widely used program that simulates the growth of crops and their response to various management practices, including temperature changes. It includes a suite of crop models that can affect the impact of temperature, rainfall, and other factors on crop yields. Xiang et al. [25] used the DSSAT model in combination with the MODFLOW groundwater flow model to facilitate assessments of irrigation technology changes, crop choices, and strategies for adapting to climate change in various regions. Mubeen et al. [26] adapted the DSSAT model to determine the impact of climate change through the elevated CO2 condition. The authors suggest that cultivating wheat and cotton varieties with high water use efficiency could be pivotal in sustaining crop production. Attia et al. [27], following the DSSAT calibration and evaluation algorithms for maize cultivation, believe that compost application with retained crop residues is a promising strategy for enhancing agronomic outcomes and environmental sustainability in maize cultivation on arid soils.
- APSIM (Agricultural Production Systems sIMulator) is another comprehensive software tool that models various aspects of agricultural systems, including crop growth, soil processes, and climate interactions. It can be used to assess the impact of temperature changes on crop yields and inform adaptation strategies. Vogeler et al. [28] found that for well-drained soils in regions with high precipitation and no water limitations, the APSIM model displays low sensitivity to soil hydraulic parameters and suggests that general data from databases may be justifiable instead of relying solely on site-specific measurements of hydraulic properties. Research by Wimalasiri et al. [29] highlights the potential of selecting specific cultivars and adjusting planting dates as climate change adaptation strategies based on APSIM crop model simulation results.
- STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) is a crop model for simulating various crops and cropping systems. It considers temperature, precipitation, and other environmental factors to predict crop growth and yield [30]. Fraga et al. [31] adapted the STICS model to suit the unique conditions of Portuguese wine growing and its diverse grapevine varieties. The authors assume that the STICS model holds potential as a decision-support tool for both short- and long-term strategic planning in the Portuguese viticulture sector.
- Global Yield Gap Atlas (GYGA): While not a standalone piece of software, the Global Yield Gap Atlas provides an online platform where users can access global and regional data on actual and potential crop yields. It offers insights into the yield gaps that exist and how they might change under different scenarios, including temperature changes. In the research of Grassini et al. [32], the authors followed the idea of achieving maximum yield potential under sustainable usage of water resources and natural ecosystem protection. It was found that GYGA successfully estimated yield potential, yield gaps, and water productivity for 13 crops across 70 countries around the world [33].
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Weather Data
2.2.2. Soil Data
2.2.3. Wheat Variety
2.2.4. Planting Methods
2.3. Methodology
3. Results
3.1. Wheat Yield Predictions
Predicted Wheat Yield Difference between RCPs 2.6, 4.5, and 8.5
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mirzabaev, A.; Bezner Kerr, R.; Hasegawa, T.; Pradhan, P.; Wreford, A.; Cristina Tirado von der Pahlen, M.; Gurney-Smith, H. Severe Climate Change Risks to Food Security and Nutrition. Clim. Risk Manag. 2023, 39, 100473. [Google Scholar] [CrossRef]
- Murken, L.; Gornott, C. The Importance of Different Land Tenure Systems for Farmers’ Response to Climate Change: A Systematic Review. Clim. Risk Manag. 2022, 35, 100419. [Google Scholar] [CrossRef]
- Nunes, L.J.R. The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Hadley, K.; Talbott, J.; Reddy, S.; Wheat, S. Impacts of Climate Change on Food Security and Resulting Perinatal Health Impacts. Semin. Perinatol. 2023, 47, 151842. [Google Scholar] [CrossRef]
- Ejaz Qureshi, M.; Hanjra, M.A.; Ward, J. Impact of Water Scarcity in Australia on Global Food Security in an Era of Climate Change. Food Policy 2013, 38, 136–145. [Google Scholar] [CrossRef]
- Chauhan, B.; Kaur, P.; Mahajan, G.; Kaur, D.; Singh, H.; Kang, M. Global Warming and Its Possible Impact on Agriculture in India. Adv. Agron. 2014, 123, 65–121. [Google Scholar]
- Alkolibi, F. Possible Effects of Global Warming on Agriculture and Water Resources in Saudi Arabia: Impacts and Responses. Clim. Chang. 2002, 54, 225–245. [Google Scholar] [CrossRef]
- Sugiura, T.; Sumida, H.; Yokoyama, S.; Ono, H. Overview of Recent Effects of Global Warming on Agricultural Production in Japan. Jpn. Agric. Res. Q. JARQ 2012, 46, 7–13. [Google Scholar] [CrossRef]
- Schlenker, W.; Hanemann, W.M.; Fisher, A.C. The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions. Rev. Econ. Stat. 2006, 88, 113–125. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Kabir, M.; Habiba, U.E.; Khan, W.; Shah, A.; Rahim, S.; los Rios-Escalante, P.R.D.; Farooqi, Z.-U.-R.; Ali, L.; Shafiq, M. Climate Change Due to Increasing Concentration of Carbon Dioxide and Its Impacts on Environment in 21st Century; a Mini Review. J. King Saud Univ.-Sci. 2023, 35, 102693. [Google Scholar] [CrossRef]
- Arisco, N.J.; Sewe, M.O.; Bärnighausen, T.; Sié, A.; Zabre, P.; Bunker, A. The Effect of Extreme Temperature and Precipitation on Cause-Specific Deaths in Rural Burkina Faso: A Longitudinal Study. Lancet Planet. Health 2023, 7, e478–e489. [Google Scholar] [CrossRef] [PubMed]
- Ngaba, M.J.Y.; Uwiragiye, Y.; Bol, R.; de Vries, W.; Jian, J.; Zhou, J. Global Cross-Biome Patterns of Soil Respiration Responses to Individual and Interactive Effects of Nitrogen Addition, Altered Precipitation, and Warming. Sci. Total Environ. 2023, 858, 159808. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Ma, H.; Ulucak, R. Sustainable Development and Pollution: The Effects of CO2 Emission on Population Growth, Food Production, Economic Development, and Energy Consumption in Pakistan. Environ. Sci. Pollut. Res. 2021, 29, 17319–17330. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Offermann, F.; Söder, M.; Frühauf, C.; Finger, R. Extreme Weather Events Cause Significant Crop Yield Losses at the Farm Level in German Agriculture. Food Policy 2022, 112, 102359. [Google Scholar] [CrossRef]
- Furtak, K.; Wolińska, A. The Impact of Extreme Weather Events as a Consequence of Climate Change on the Soil Moisture and on the Quality of the Soil Environment and Agriculture—A Review. CATENA 2023, 231, 107378. [Google Scholar] [CrossRef]
- Pangapanga-Phiri, I.; Mungatana, E.D. Adoption of Climate-Smart Agricultural Practices and Their Influence on the Technical Efficiency of Maize Production under Extreme Weather Events. Int. J. Disaster Risk Reduct. 2021, 61, 102322. [Google Scholar] [CrossRef]
- Perondi, D.; de Souza Nóia Júnior, R.; Zotarelli, L.; Mulvaney, M.J.; Fraisse, C.W. Soybean Maturity Groups and Sowing Dates to Minimize ENSO and Extreme Weather Events Effects on Yield Variability in the Southeastern US. Agric. For. Meteorol. 2022, 324, 109104. [Google Scholar] [CrossRef]
- Gömann, H. How Much Did Extreme Weather Events Impact Wheat Yields in Germany?—A Regionally Differentiated Analysis on the Farm Level. Procedia Environ. Sci. 2015, 29, 119–120. [Google Scholar] [CrossRef]
- Powell, J.P.; Reinhard, S. Measuring the Effects of Extreme Weather Events on Yields. Weather Clim. Extrem. 2016, 12, 69–79. [Google Scholar] [CrossRef]
- Weber, L.; Bartek, L.; Brancoli, P.; Sjölund, A.; Eriksson, M. Climate Change Impact of Food Distribution: The Case of Reverse Logistics for Bread in Sweden. Sustain. Prod. Consum. 2023, 36, 386–396. [Google Scholar] [CrossRef]
- Nugroho, A.D.; Prasada, I.Y.; Lakner, Z. Comparing the Effect of Climate Change on Agricultural Competitiveness in Developing and Developed Countries. J. Clean. Prod. 2023, 406, 137139. [Google Scholar] [CrossRef]
- Saboori, B.; Radmehr, R.; Zhang, Y.Y.; Zekri, S. A New Face of Food Security: A Global Perspective of the COVID-19 Pandemic. Prog. Disaster Sci. 2022, 16, 100252. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, S. The Russia–Ukraine War and Global Trade Reallocations. Econ. Lett. 2023, 226, 111075. [Google Scholar] [CrossRef]
- Xiang, Z.; Bailey, R.T.; Nozari, S.; Husain, Z.; Kisekka, I.; Sharda, V.; Gowda, P. DSSAT-MODFLOW: A New Modeling Framework for Exploring Groundwater Conservation Strategies in Irrigated Areas. Agric. Water Manag. 2020, 232, 106033. [Google Scholar] [CrossRef]
- Mubeen, M.; Ahmad, A.; Hammad, H.M.; Awais, M.; Farid, H.U.; Saleem, M.; Din, M.S.U.; Amin, A.; Ali, A.; Fahad, S.; et al. Evaluating the Climate Change Impact on Water Use Efficiency of Cotton-Wheat in Semi-Arid Conditions Using DSSAT Model. J. Water Clim. Chang. 2020, 11, 1661–1675. [Google Scholar] [CrossRef]
- Attia, A.; El-Hendawy, S.; Al-Suhaibani, N.; Tahir, M.U.; Mubushar, M.; Vianna, M.d.S.; Ullah, H.; Mansour, E.; Datta, A. Sensitivity of the DSSAT Model in Simulating Maize Yield and Soil Carbon Dynamics in Arid Mediterranean Climate: Effect of Soil, Genotype and Crop Management. Field Crops Res. 2021, 260, 107981. [Google Scholar] [CrossRef]
- Vogeler, I.; Cichota, R.; Langer, S.; Thomas, S.; Ekanayake, D.; Werner, A. Simulating Water and Nitrogen Runoff with APSIM. Soil Tillage Res. 2023, 227, 105593. [Google Scholar] [CrossRef]
- Wimalasiri, E.; Ampitiyawatta, A.; Dissanayake, P.; Karunaratne, A. Impact of Climate Change Adaptation on Paddy Yield in Dry Zone Sri Lanka: A Case Study Using Agricultural Production Systems Simulator (APSIM) Model. IOP Conf. Ser. Earth Environ. Sci. 2022, 1016, 12036. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An Overview of the Crop Model Stics. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Fraga, H.; Costa, R.; Moutinho Pereira, J.; Correia, C.; Lia-Tânia, D.; Gonçalves, I.; Silvestre, J.; Eiras-Dias, J.; Malheiro, A.; Santos, J. Modeling Phenology, Water Status and Yield Components of Three Portuguese Grapevines Using the STICS Crop Model. Am. J. Enol. Vitic. 2015, 66, 482–491. [Google Scholar] [CrossRef]
- Grassini, P.; Cassman, K.G.; van Ittersum, M. Exploring Maize Intensification with the Global Yield Gap Atlas. Better Crop. Plant Food 2017, 101, 7–9. [Google Scholar]
- Wageningen University & Research, University of Nebraska-Lincoln. Global Yield Gap Atlas. Available online: https://www.yieldgap.org/ (accessed on 7 November 2023).
- Long, X.-X.; Ju, H.; Wang, J.-D.; Gong, S.-H.; Li, G.-Y. Impact of Climate Change on Wheat Yield and Quality in the Yellow River Basin under RCP8.5 during 2020–2050. Adv. Clim. Chang. Res. 2022, 13, 397–407. [Google Scholar] [CrossRef]
- Tan, M.L.; Ficklin, D.L.; Ibrahim, A.L.; Yusop, Z. Impacts and Uncertainties of Climate Change on Streamflow of the Johor River Basin, Malaysia Using a CMIP5 General Circulation Model Ensemble. J. Water Clim. Chang. 2014, 5, 676–695. [Google Scholar] [CrossRef]
- IPCC. IPCC 5th Assessment Synthesis Report “Future Changes, Risks and Impacts”. Available online: http://ar5-syr.ipcc.ch/topic_futurechanges.php (accessed on 7 November 2023).
- Shelia, V.; Hansen, J.; Sharda, V.; Porter, C.; Aggarwal, P.; Wilkerson, C.; Hoogenboom, G. A multi-scale and multi-model gridded framework for forecasting crop production, risk analysis, and climate change impact studies. Environ. Model. Softw. 2019, 115, 144–154. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The Representative Concentration Pathways: An Overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives. Genet. Res. Int. 2015, 2015, 431487. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Dynamic Impacts of Economic Growth, Energy Use, Urbanization, Agricultural Productivity, and Forested Area on Carbon Emissions: New Insights from Kazakhstan. World Dev. Sustain. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Wang, D.; Li, R.; Gao, G.; Jiakula, N.; Toktarbek, S.; Li, S.; Ma, P.; Feng, Y. Impact of Climate Change on Food Security in Kazakhstan. Agriculture 2022, 12, 1087. [Google Scholar] [CrossRef]
- Shmelev, S.E.; Salnikov, V.; Turulina, G.; Polyakova, S.; Tazhibayeva, T.; Schnitzler, T.; Shmeleva, I.A. Climate Change and Food Security: The Impact of Some Key Variables on Wheat Yield in Kazakhstan. Sustainability 2021, 13, 8583. [Google Scholar] [CrossRef]
- Kazakhstan: Grain and Feed Update. Available online: https://www.fas.usda.gov/data/kazakhstan-grain-and-feed-update-25 (accessed on 10 October 2023).
- Bureau of National Statistics, Agency for Strategic Planning and Reforms of The Republic of Kazakhstan. Gross Harvest of Agricultural Crops in the Republic of Kazakhstan (2022). Available online: https://stat.gov.kz/ru/industries/business-statistics/stat-forrest-village-hunt-fish/publications/5099/ (accessed on 19 October 2023).
- North Kazakhstan Agricultural Experimental Station. Features of Cultivation of Agricultural Crops in the North Kazakhstan Region” for 2022. Available online: https://sk-shos.kz/ (accessed on 19 October 2023).
- Gutjahr, O.; Putrasahan, D.; Lohmann, K.; Jungclaus, J.H.; von Storch, J.-S.; Brüggemann, N.; Haak, H.; Stössel, A. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 2019, 12, 3241–3281. [Google Scholar] [CrossRef]
- The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): Overall Coupled Model Description and Simulation Characteristics—Dunne—2020—Journal of Advances in Modeling Earth Systems—Wiley Online Library. Available online: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019MS002015 (accessed on 19 October 2023).
- Bakhshandeh, E.; Zeraatpisheh, M.; Soleimani, A.; Francaviglia, R. Land Use Conversion, Climate Change and Soil Organic Carbon: Modeling a Citrus Garden Chronosequence in Northern Iran. Geoderma Reg. 2022, 30, e00559. [Google Scholar] [CrossRef]
- Xu, T.; Shi, Z.; An, Z. Responses of ENSO and NAO to the External Radiative Forcing during the Last Millennium: Results from CCSM4 and MPI-ESM-P Simulations. Quat. Int. 2018, 487, 99–111. [Google Scholar] [CrossRef]
- Batjes, N.H.; Ribeiro, E.; van Oostrum, A. Standardised Soil Profile Data to Support Global Mapping and Modelling (WoSIS Snapshot 2019). Earth Syst. Sci. Data 2020, 12, 299–320. [Google Scholar] [CrossRef]
- State Commission for Variety Testing of Agricultural Crops of the Ministry of Agriculture of the Republic of Kazakhstan Improved Shortandy 95 Wheat Variety 2006. Available online: https://sortcom.kz/ (accessed on 11 November 2023).
- van der Velde, M.; van Diepen, C.A.; Baruth, B. The European Crop Monitoring and Yield Forecasting System: Celebrating 25 years of JRC MARS Bulletins. Agric. Syst. 2019, 168, 56–57. [Google Scholar] [CrossRef]
- Lal, H.; Calixte, J.-P.; Jones, J.; Beinroth, F. Using Crop Simulation Models and GIS for Regional Productivity Analysis. Trans. ASAE 1993, 36, 175–184. [Google Scholar] [CrossRef]
- Donatelli, M.; Cerrani, I.; Fanchini, D.; Fumagalli, D.; Rizzoli, A. Enhancing Model Reuse via Component-Centered Modeling Frameworks: The Vision and Example Realizations. iEMS 2012, 140. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC71522 (accessed on 11 November 2023).
- Liu, J.; Williams, J.R.; Zehnder, A.J.B.; Yang, H. GEPIC—Modelling Wheat Yield and Crop Water Productivity with High Resolution on a Global Scale. Agric. Syst. 2007, 94, 478–493. [Google Scholar] [CrossRef]
- Hansen, J.W.; Potgieter, A.; Tippett, M.K. Using a General Circulation Model to Forecast Regional Wheat Yields in Northeast Australia. Agric. For. Meteorol. 2004, 127, 77–92. [Google Scholar] [CrossRef]
- Mishra, A.; Hansen, J.W.; Dingkuhn, M.; Baron, C.; Traoré, S.B.; Ndiaye, O.; Ward, M.N. Sorghum Yield Prediction from Seasonal Rainfall Forecasts in Burkina Faso. Agric. For. Meteorol. 2008, 148, 1798–1814. [Google Scholar] [CrossRef]
- de Jager, J.M.; Potgieter, A.B.; van den Berg, W.J. Framework for Forecasting the Extent and Severity of Drought in Maize in the Free State Province of South Africa. Agric. Syst. 1998, 57, 351–365. [Google Scholar] [CrossRef]
- Hammer, G.L.; Hansen, J.W.; Phillips, J.G.; Mjelde, J.W.; Hill, H.; Love, A.; Potgieter, A. Advances in Application of Climate Prediction in Agriculture. Agric. Syst. 2001, 70, 515–553. [Google Scholar] [CrossRef]
- Engel, T.; Hoogenboom, G.; Jones, J.W.; Wilkens, P.W. AEGIS/WIN: A Computer Program for the Application of Crop Simulation Models Across Geographic Areas. Agron. J. 1997, 89, 919–928. [Google Scholar] [CrossRef]
- Supit, I. Predicting National Wheat Yields Using a Crop Simulation and Trend Models. Agric. For. Meteorol. 1997, 88, 199–214. [Google Scholar] [CrossRef]
- Broberg, M.C.; Högy, P.; Feng, Z.; Pleijel, H. Effects of Elevated CO2 on Wheat Yield: Non-Linear Response and Relation to Site Productivity. Agronomy 2019, 9, 243. [Google Scholar] [CrossRef]
- Shaheen, H.; Mustafa, A.; Ulfat, A. Chapter 6—Crop Production in Response to Elevated CO2: Grain Yield and Quality. In Sustainable Crop Productivity and Quality Under Climate Change; Liu, F., Li, X., Hogy, P., Jiang, D., Brestic, M., Liu, B., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 91–101. ISBN 978-0-323-85449-8. [Google Scholar]
- Pandey, V.; Sharma, M.; Deeba, F.; Maurya, V.K.; Gupta, S.K.; Singh, S.P.; Mishra, A.; Nautiyal, C.S. Impact of Elevated CO2 on Wheat Growth and Yield under Free Air CO2 Enrichment. Am. J. Clim. Chang. 2017, 6, 573–596. [Google Scholar] [CrossRef]
- Amthor, J.S. Effects of Atmospheric CO2 Concentration on Wheat Yield: Review of Results from Experiments Using Various Approaches to Control CO2 Concentration. Field Crops Res. 2001, 73, 1–34. [Google Scholar] [CrossRef]
- Shoukat, M.R.; Cai, D.; Shafeeque, M.; Habib-ur-Rahman, M.; Yan, H. Warming Climate and Elevated CO2 Will Enhance Future Winter Wheat Yields in North China Region. Atmosphere 2022, 13, 1275. [Google Scholar] [CrossRef]
- Zhang, T.; He, Y.; DePauw, R.; Jin, Z.; Garvin, D.; Yue, X.; Anderson, W.; Li, T.; Dong, X.; Zhang, T.; et al. Climate Change May Outpace Current Wheat Breeding Yield Improvements in North America. Nat. Commun. 2022, 13, 5591. [Google Scholar] [CrossRef]
- Daloz, A.S.; Rydsaa, J.H.; Hodnebrog, Ø.; Sillmann, J.; van Oort, B.; Mohr, C.W.; Agrawal, M.; Emberson, L.; Stordal, F.; Zhang, T. Direct and Indirect Impacts of Climate Change on Wheat Yield in the Indo-Gangetic Plain in India. J. Agric. Food Res. 2021, 4, 100132. [Google Scholar] [CrossRef]
- Abdelhakim, L.O.A.; Mendanha, T.; Palma, C.F.F.; Vrobel, O.; Štefelová, N.; Ćavar Zeljković, S.; Tarkowski, P.; De Diego, N.; Wollenweber, B.; Rosenqvist, E.; et al. Elevated CO2 Improves the Physiology but Not the Final Yield in Spring Wheat Genotypes Subjected to Heat and Drought Stress During Anthesis. Front. Plant Sci. 2022, 13, 824476. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhu, X.; Guo, W.; Feng, C. Effects of Climate Change on Wheat Yield and Nitrogen Losses per Unit of Yield in the Middle and Lower Reaches of the Yangtze River in China. Atmosphere 2023, 14, 824. [Google Scholar] [CrossRef]
- Alsafadi, K.; Bi, S.; Abdo, H.G.; Almohamad, H.; Alatrach, B.; Srivastava, A.K.; Al-Mutiry, M.; Bal, S.K.; Chandran, M.A.S.; Mohammed, S. Modeling the Impacts of Projected Climate Change on Wheat Crop Suitability in Semi-Arid Regions Using the AHP-Based Weighted Climatic Suitability Index and CMIP6. Geosci. Lett. 2023, 10, 20. [Google Scholar] [CrossRef]
- Pielke, R., Jr.; Burgess, M.G.; Ritchie, J. Most Plausible 2005–2040 Emissions Scenarios Project Less than 2.5 Degrees C of Warming by 2100. SocArXiv 2021. [Google Scholar] [CrossRef]
- Höök, M.; Sivertsson, A.; Aleklett, K. Validity of the Fossil Fuel Production Outlooks in the IPCC Emission Scenarios. Nat. Resour. Res. 2010, 19, 63–81. [Google Scholar] [CrossRef]
Soil and Farming Zone | Plant Population at Seeding (PPOP), Seeds per sq. Meter | Planting Method (PLME) | Planting Distribution (PLDS) | Planting Row Spacing (PLRS), cm | Planting Depth (PLDP), cm |
---|---|---|---|---|---|
Forest steppe | 400 | Dry seeds | Row | 17 | 5 |
Colo steppe | 350 | Dry seeds | Row | 17 | 5 |
Arid steppe | 300 | Dry seeds | Row | 17 | 6 |
Small hilly | 250 | Dry seeds | Row | 17 | 7 |
Soil and Farming Zone | Average Yield RCP 2.6, kg/ha | Average Yield RCP 4.5, kg/ha | Average Yield RCP 8.5, kg/ha | Difference RCPs 2.6–4.5, kg/ha | Difference RCPs 4.5–8.5, kg/ha | Difference RCPs 2.6–8.5, kg/ha | Difference RCPs 2.6–4.5, % | Difference RCPs 4.5–8.5, % | Difference RCPs 2.6–8.5, % |
---|---|---|---|---|---|---|---|---|---|
Forest steppe | 847.6 | 829.7 | 766.9 | −17.8 | −62.8 | −80.7 | 2.1 | 7.5 | 10.5 |
Colo steppe | 856.3 | 830.2 | 780.0 | −26.1 | −50.1 | −76.3 | 3.0 | 6.0 | 9.7 |
Arid steppe | 767.7 | 736.1 | 659.0 | −31.5 | −77.1 | −108.7 | 4.1 | 10.4 | 16.4 |
Small hilly | 798.0 | 766.4 | 707.8 | −31.6 | −58.5 | −90.1 | 3.9 | 7.6 | 12.7 |
Total | 831.1 | 805.8 | 746.3 | −25.2 | −59.5 | −84.7 | 3.0 | 7.3 | 11.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teleubay, Z.; Yermekov, F.; Rustembayev, A.; Topayev, S.; Zhabayev, A.; Tokbergenov, I.; Garkushina, V.; Igilmanov, A.; Shelia, V.; Hoogenboom, G. Comparison of Climate Change Effects on Wheat Production under Different Representative Concentration Pathway Scenarios in North Kazakhstan. Sustainability 2024, 16, 293. https://doi.org/10.3390/su16010293
Teleubay Z, Yermekov F, Rustembayev A, Topayev S, Zhabayev A, Tokbergenov I, Garkushina V, Igilmanov A, Shelia V, Hoogenboom G. Comparison of Climate Change Effects on Wheat Production under Different Representative Concentration Pathway Scenarios in North Kazakhstan. Sustainability. 2024; 16(1):293. https://doi.org/10.3390/su16010293
Chicago/Turabian StyleTeleubay, Zhanassyl, Farabi Yermekov, Arman Rustembayev, Sultan Topayev, Askar Zhabayev, Ismail Tokbergenov, Valentina Garkushina, Amangeldy Igilmanov, Vakhtang Shelia, and Gerrit Hoogenboom. 2024. "Comparison of Climate Change Effects on Wheat Production under Different Representative Concentration Pathway Scenarios in North Kazakhstan" Sustainability 16, no. 1: 293. https://doi.org/10.3390/su16010293
APA StyleTeleubay, Z., Yermekov, F., Rustembayev, A., Topayev, S., Zhabayev, A., Tokbergenov, I., Garkushina, V., Igilmanov, A., Shelia, V., & Hoogenboom, G. (2024). Comparison of Climate Change Effects on Wheat Production under Different Representative Concentration Pathway Scenarios in North Kazakhstan. Sustainability, 16(1), 293. https://doi.org/10.3390/su16010293