Modified Social Group Optimization to Solve the Problem of Economic Emission Dispatch with the Incorporation of Wind Power
Abstract
:1. Introduction
- We propose a modified version of SGO (called MSGO) in which the way of updating and adapting the individuals in the social group is changed by inserting chaos and an HDP operator (in the original SGO only uniformly randomly generated number sequences are used). The operators associated with chaos and HDP aim at increasing the efficiency of the MSGO algorithm by reducing the number of close solutions and overcoming some drawbacks related to slow convergence. To the best of the authors’ knowledge the HDP operator has never been used to improve the performance of the SGO algorithm.
- Implementation of MSGO to solve EcD, EmD, and EED problems with or without consideration of wind units.
- Conducting experiments to evaluate and statistically compare the effectiveness of MSGO with SGO and other well-known algorithms (or their varieties) for thermal or wind-thermal power systems of different sizes and characteristics.
2. Statement of the EcD, EmD, and EED Problems
2.1. Statement of the EcD Problem
- The thermal units i must be operated between the minimum capacity (PTmin,i) and the maximum capacity (PTmax,i):
- 2.
- The wind units j must be operated between the minimum (PWmin,j) and maximum (PWmax,j) capacity:
- 3.
- The actual powers generated by the thermal and wind units must cover the power consumed in the system:
2.2. Statement of the EmD Problem
2.3. Statement of the EED Problem
3. The Modified SGO Algorithm
3.1. Classic SGO
3.2. Modified SGO (MSGO)
- The improving phase of MSGO is similar to that of SGO but the sequences of numbers r2 randomly generated in SGO by (23) are replaced by sequences of numbers generated by the attenuated DHP operator δa by relation (27) in the form:
- b.
- The acquiring phase of MSGO is similar to that of SGO, except for the following three modifications:
- b1.
- The sequences of numbers r3 randomly generated in SGO by (24a) are replaced by sequences of numbers generated by the attenuated DHP operator δa by relation (27).
- b2.
- The sequences of numbers r3 randomly generated in SGO by (24b) are replaced by chaotic sequences (cx) generated by the Logistic map with relation (25).
- b3.
- In SGO, switching between relations (24a) and (24b) is performed by considering the fitness of the competitive solutions Xi and Xr, based on the condition f(Xi) < f(Xr). In MSGO, this condition is replaced by a random one, having the form rnd(1) < β, where rnd(1) is a uniformly generated random number in the range (0, 1); β is a value determined by experimental trials.
Algorithm 1: MSGO algorithm |
{Initialization phase} Initialize the iterations (t = 0), t is counter of iterations; Initialize the solutions Xi, i = 1, 2,…, N using relation (22); Evaluate the initial solutions and identify the best Xbest solution; repeat t = t + 1 For i = 1 To N Do {improving phase} For j = 1 To n Do Generate a value δ of the HDP operator using (26); Determine δa using relation (27); Update the components xj,i using relation (28), obtaining the new solution Xinew; End For j If the new solution Xinew is better, then it is retained; otherwise, the old solution is maintained; Find the best Xbest solution from the population; End For i For i = 1 To N Do {acquiring phase} Randomly select a solution Xr, rϵ{1, 2,…, N}, r ≠ i; If rnd(1) < β Then For j = 1 To n Do Generate a value δ of the HDP operator using (26); Determine δa using relation (27); Update xj,i using (29a), obtaining Xinew; End For j; End If Else For j = 1 To n Do Generate a chaotic value cx using (25); Update xj,i using (29b), obtaining Xinew; End For j; End Else If the new solution Xinew is better, then it is retained; otherwise, the old solution is maintained; Find the best Xbest solution from the population; End For i Until t ≥ tmax {stopping criterion} The best solution Xbest and the fitness f(Xbest) are retained. |
4. Implementing the MSGO for the EcD, EmD, or EED Problems
4.1. Stages of MSGO Implementation for the EcD, EmD, or EED Problem
- Step 1: Specify test system input data for the EcD, EmD, or EED problem: the number of thermal (Nt) and wind (Nw) units; cost coefficients for the thermal units (a, b, c, e, f); parameters (c, k) to the Weibull distribution; the characteristic values of the wind speed (vin, vr, vout); the rated output power of the wind units (PWr); active power limits for thermal and wind units (PTmin, PTmax; PWmin, PWmax); the cost coefficients (cd, co, cu) and emissions coefficients (eo, eu) to the wind units; the B-loss coefficients (Bij, B0i, B00); load demand (PD) and accuracy ε.
- Step 2: Set the parameters of the MSGO algorithm: N and tmax;
- Step 3: Random initialization of a population of N solutions, represented by the vectors PTWi|i = 1, 2,… N
- 3.1: t = 0;
- 3.2: Chaotic sequence cx are initialized using the logistic map;
- 3.3: Randomly generate an initial population with N solutions (PTWi(0)|i = 1,2,…, N) using relation (22). Each solution respects the constraints defined by relations (12)–(14); The constraint (14) is handled by a heuristic procedure CHM presented in Section 4.2;
- 3.4: Evaluate the initial solutions PTWi(0)|i = 1,2,…, N using relation (1), (16) or (20) associated with the EcD, EmD, or EED problems;
- 3.5: Find the best initial solution PTWbest(0) and the objective function associated with the addressed problem (EcD, EmD, or EED).
- Step 4: Update solutions PTWi(t)|i = 1,2,…, N in the improving phase.
- 4.1: For i = 1 To N Do
- 4.2: For j = 1 to n Do
- 4.3: Generate a value δ of the HDP operator using (26);
- 4.4: Determine δa using relation (27);
- 4.5: Updating the components PTWj,i(t) using relation (28), obtaining the new components PTWj,inew(t), at iteration t;
- 4.6: Checking the inequality constraints (12) and (13): if the PTWj,inew(t) power is outside the limits, then CHM from Section 4.2 is applied; End For j;
- 4.7: Checking the equality constraint (14): the new solution PTWinew(t) is adjusted using the equality constraint handling mechanism from Section 4.2;
- 4.8: Evaluate the new solution PTWinew(t) using relation (1), (16) or (20) depending on the addressed problem (EcD, EmD or EED): If the new solution PTWinew(t) is better, then it is retained; otherwise, the old solution is maintained;
- 4.9: Update the best solution PTWbest(t); End For i;
- Step 5: Update solutions PTWi(t)|i = 1,2,…, N in the acquiring phase.
- 5.1: For i = 1 To N Do
- 5.2: Randomly select a solution PTWr(t), rϵ{1, 2,…, N }, r ≠ i;
- 5.3: If rnd(1) < β Then
- 5.4: For j = 1 to n Do
- 5.5: Generate a δ value of the HDP operator using (26);
- 5.6: Determine δa using relation (27);
- 5.7: Updating PTWj,i(t) using (29a), getting the new components PTWj,inew(t) of the new solutions PTWinew(t);
- 5.8: Apply the procedure for handling inequality constraints (12) and (13) from Section 4.2; End For j; End If
- 5.9: Else
- 5.10: For j = 1 to n Do
- 5.11: Generate a chaotic value cx by (25);
- 5.12: Updating PTWj,i(t) by (29b), obtaining PTWj,inew(t);
- 5.13: Apply CHM from Section 4.2 for constraints (12) and (13); End For j; End Else
- 5.14: Checking the equality constraint (14): the new solution PTWinew(t) is adjusted using the equality constraint handling mechanism from Section 4.2;
- 5.15: Evaluate the new solution PTWinew(t) using relation (1), (16) or (20) depending on the addressed problem (EcD, EmD, or EED): if the new solution PTWinew(t) is better, then it is retained; otherwise the old solution is maintained;
- 5.16: Update the best solution PTWnew(t); End For i;
- Step 6: Stop the process: the calculation process is stopped when the maximum number of iterations (tmax) is reached. {End For t}
- Step 7: Memorize the best solution: The best solution PTWbest and the objective function associated with the problem addressed (EcD, EmD, or EED).
4.2. Constraints Handling Mechanism (CHM)
5. Case Studies
- Case 1 (C1): This case analyses a 10-unit system taking into account the transmission line losses. The power demand is 2000 MW. The cost coefficients (ai, bi, ci, ei, fi, i = 1, 2,…, 10), B-loss coefficients (Bij), and emission coefficients (αi, βi, γi, ηi, δi) are taken from [42].
- Case 4 (C4): A 40-unit system derived from case C3 by replacing the first two thermal units (PT1 and PT2) with the two wind units (PW1 and PW2). Each wind unit has a nominal power of 550 MW, and the minimum and maximum capacities are PWmin,1 = PWmin,2 = 0, PWmax,1 = PWmax,2 = 550 MW. The power demand is PD = 10,500 MW. We consider that the wind speed has a Weibull distribution. The shape and scale parameters (k, c) corresponding to the sites of the two wind units have the values [13]: k1 = 1.5; c1 = 15; k2 = 1.5; c2 = 15. Other wind-related characteristics have the following values [13]: cut-in wind speed (vin = 5 m/s), rated wind speed (vr = 15 m/s), cut-out wind speed (vout = 45 m/s), the cost coefficients associated with underestimation () and overestimation (). The cost and emission coefficients for the thermal units (P3–P40) and the B-loss coefficients are identical to those mentioned in C3 case, being taken from [44]. The characteristics of the thermal units and the B-loss coefficients for the 10-unit and 40-unit systems are presented in Appendix A, Table A2, Table A3, Table A4 and Table A5.
5.1. Setting the Parameters
Cases | Type of Problem | SGO and MSGO | MSGO Parameters | PL | VPE | Wind | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | N | tmax | NE | α | β | δmax | |||||
C1a | EcD | 10 | 15 | 30 | 900 | 0.75 | 0.25 | 1.2 | √ | √ | - |
C1b | EmD | 10 | 15 | 30 | 900 | 0.75 | 0.25 | 1.2 | √ | √ | - |
C1c | EED | 10 | 15 | 30 | 900 | 0.75 | 0.25 | 1.2 | - | √ | - |
C2a | EcD | 40 | 50 | 350 | 35,000 | 0.05 | 0.5 | 1.2 | - | √ | - |
C2b | EmD | 40 | 50 | 350 | 35,000 | 0.05 | 0.5 | 1.2 | - | √ | - |
C2c | EED | 40 | 50 | 350 | 35,000 | 0.05 | 0.5 | 1.2 | √ | √ | - |
C3a | EcD | 40 | 50 | 350 | 35,000 | 0.05 | 0.5 | 1.5 | √ | √ | - |
C3b | EmD | 40 | 50 | 200 | 20,000 | 0.05 | 0.5 | 1.5 | √ | √ | - |
C3c | EED | 40 | 50 | 350 | 35,000 | 0.05 | 0.5 | 1.5 | √ | √ | - |
C4a | EcD-Wind | 40 | 50 | 350 | 35,000 | 0.05 | 0.5 | 1.5 | √ | √ | √ |
C4b | EmD-Wind | 40 | 50 | 200 | 20,000 | 0.05 | 0.25 | 1.5 | √ | √ | √ |
C4c | EED-Wind | 40 | 50 | 350 | 35,000 | 0.05 | 0.5 | 1.5 | √ | √ | √ |
5.2. Results for EcD (Cases C1a–C4a) and EmD (Cases C1b–C4b) Problems
Algorithm | Best Cost ($/h) | Average Cost ($/h) | Worst Cost ($/h) | SD ($/h) | Cost Saving * ($/h) |
---|---|---|---|---|---|
DE [49] | 111,500 | - | - | - | - |
TLBO [26] | 111,500 | - | - | - | - |
QOTLBO [26] | 111,498 | - | - | - | - |
QPSO [59] | 119,005.3030 | 121,621.7556 | 122,144.8454 | 372 | 10,124.12 |
GQPSO [59] | 112,429.7444 | 113,102.4627 | 113,327.0680 | 256 | 1604.83 |
RCCRO [35] | 111,497.6319 | - | - | - | - |
BSA [56] | 111,497.6308 | - | - | - | - |
CSCA [27] | 111,497.6307 | - | - | - | - |
QOPO [19] | 111,892.4096 | - | - | - | - |
SGO | 111,497.6302 | 111,497.7362 | 111,502.7703 | 7.27 × 10−1 | 0.10 |
MSGO | 111,497.6301 | 111,497.6302 | 111,497.6304 | 6.25 × 10−5 | 0 |
Algorithm | Best Cost ($/h) | Average Cost ($/h) | Worst Cost ($/h) | SD ($/h) | Cost Saving ($/h) |
---|---|---|---|---|---|
MIMO [58] | 122,758.7 | 124,621.8 | 126,059.2 | 866.20 | 2964.84 |
FSS-IPSO2 [64] | 122,535.56 | 125,025.86 | 127,401.23 | 1134.43 | 3368.90 |
GA [50] | 121,996.4 | 122,919.77 | 123,807.97 | 320.31 | 1262.81 |
HSCA [60] | 121,983.5 | - | - | - | - |
NGWO [65] | 121,881.81 | 122,787.77 | - | - | 1130.81 |
DE [42] | 121,840 | - | - | - | - |
PSO [52] | 122,588.5093 | 123,544.88 | 124,733.67 | - | 1887.92 |
TLBO [53] | 124,517.27 | 126,581.56 | 128,207.06 | 1060 | 4924.60 |
CTLBO [53] | 121,553.83 | 121,790.23 | 122,116.18 | 150 | 133.27 |
SMA [66] | 121,658.6656 | - | - | - | - |
L-SHADE [67] | 121,543.43 | 122,105.39 | 122,983.68 | - | 448.43 |
S-Jaya [68] | 121,517.6513 | 121,948.42 | 122,283.83 | 193.57 | 291.46 |
SCA [54] | 121,506.58 | 121,857.90 | 122,056.15 | 347.26 | 200.94 |
ABC [51] | 121,479.6467 | 121,984.24 | 122,137.42 | − | 327.28 |
Jaya-SML [46] | 121,476.3977 | 121,689.07 | 122,039.87 | 147.89 | 32.11 |
TLABC [61] | 121,468.3847 | 121,739.4406 | 122,192.3263 | 160.88 | 82.48 |
CSO [55] | 121,465.99 | 121,988.48 | 122,781.75 | 275.92 | 331.52 |
IJaya [68] | 121,454.3785 | 121,770.32 | 122,109.01 | 173.70 | 113.36 |
ESCSDO10 [69] | 121,626.97 | 122,351.7 | 123,128.9 | 412.2976 | 694.74 |
SDO [69] | 121,750.2 | 122,460.1 | 123,222.7 | 405.019 | 803.14 |
SGO | 121,509.8209 | 122,025.1179 | 123,527.6187 | 380 | 368.16 |
MSGO | 121,426.7039 | 121,656.9571 | 122,048.2807 | 143 | 0 |
Algorithm | Best Cost ($/h) | Average Cost ($/h) | Worst Cost ($/h) | SD ($/h) | Cost Saving ($/h) |
---|---|---|---|---|---|
GAAPI [44] | 139,864.96 | - | - | - | - |
SDE [62] | 138,157.46 | - | - | - | |
ACS [57] | 137,413.73 | - | - | - | - |
BBO [47] | 137,026.82 | 137,116.58 | 137,587.8200 | - | 382.64 |
ORCCRO [47] | 136,855.1900 | 136,855.1900 | 136,855.1900 | - | 121.25 |
HPSO-DE [63] | 136,835.0021 | - | - | - | - |
CSS [48] | 136,679.0228 | 136,993.6115 | 137,447.4131 | 171.26 | 259.67 |
MIMO [58] | 137,034.2000 | 138,472.9000 | 140,124.3000 | 752.74 | 1738.96 |
IMO [58] | 138,789.6000 | 140,486.3000 | 142,106.7000 | 765.71 | 3752.36 |
SGO | 136,510.7626 | 137,150.7361 | 138,082.7271 | 415 | 416.80 |
MSGO | 136,454.6072 | 136,733.9409 | 137,185.4625 | 174 | 0 |
Algorithm | Best Cost ($/h) | Average Cost ($/h) | Worst Cost ($/h) | SD ($/h) | Cost Saving ($/h) |
---|---|---|---|---|---|
PSO | 123,607.9479 | 124,438.1644 | 125,509.7725 | 463.89 | 877.02 |
DE | 123,804.0394 | 123,962.8486 | 124,160.1466 | 78.42 | 401.70 |
SCA | 125,895.2706 | 126,196.7393 | 126,479.6091 | 132.44 | 2635.60 |
SGO | 123,289.7874 | 124,086.1871 | 125,789.8060 | 532.90 | 525.04 |
MSGO | 123,161.8867 | 123,561.1438 | 124,239.9876 | 212.44 | 0 |
Algorithm | Best Emission (lb/h) | Average Emission (lb/h) | Worst Emission (lb/h) | SD (lb/h) | Emission Reduction * (lb/h) |
---|---|---|---|---|---|
DE [49] | 3923.40 ** | - | - | - | - |
QPSO [59] | 4032.3875 | 4041.9171 | 4058.3615 | 8.06 | 109.6 |
GQPSO [59] | 4011.9244 | 4032.9320 | 4042.1878 | 7.55 | 100.6 |
RCCRO [35] | 3932.243269 | - | - | - | - |
BSA [56] | 3932.243269 | - | - | - | - |
NSGA-III [25] | 3932.5 | - | - | - | - |
SGO | 3932.243252 | 3932.2484 | 3932.2821 | 9.05 × 10−3 | ≈0 |
MSGO | 3932.243240 | 3932.2432 | 3932.2433 | 2.16 × 10−5 | 0 |
Algorithm | Best Emission (t/h) | Average Emission (t/h) | Worst Emission (t/h) | SD (t/h) | Emission Reduction (t/h) |
---|---|---|---|---|---|
MBFA [43] | 176,682.269 | - | - | - | - |
DE [26] | 176,683.3 | - | - | - | - |
TLBO [26] | 176,683.5 | - | - | - | - |
QOTLBO [26] | 176,682.5 | - | - | - | - |
BSA [56] | 176,682.2646 | - | - | - | - |
SGO | 176,682.26364 | 176,682.26380 | 176,682.2646 | 2.04 × 10−4 | ≈0 |
MSGO | 176,682.26363 | 176,682.26376 | 176,682.2641 | 9.80 × 10−5 | 0 |
Algorithm | Best Emission (t/h) | Average Emission (t/h) | Worst Emission (t/h) | SD (t/h) | Emission Reduction (t/h) |
---|---|---|---|---|---|
PSO | 347,578.65776 | 347,581.8140 | 347,594.6001 | 3.39 | 3.3 |
DE | 347,877.89873 | 348,120.8380 | 348,591.0764 | 135 | 542.3 |
SCA | 364,849.12062 | 372,931.5027 | 380,287.1626 | 3880 | 25,353.0 |
SGO | 347,578.49061 | 347,578.4912 | 347,578.4922 | 3.57 × 10−4 | ≈0 |
MSGO | 347,578.49057 | 347,578.4910 | 347,578.4919 | 2.88 × 10−4 | 0 |
Algorithm | Best Emission (t/h) | Average Emission (t/h) | Worst Emission (t/h) | SD (t/h) | Emission Reduction (t/h) |
---|---|---|---|---|---|
PSO | 193,313.7047 | 193,331.5342 | 193,373.1017 | 13.59 | 19.9 |
DE | 193,953.9668 | 194,532.0465 | 195,040.0923 | 246.50 | 1220.5 |
SCA | 210,484.9674 | 218,736.9094 | 227,559.3490 | 3971.80 | 25,425.3 |
SGO | 193,311.54075 | 193,311.5414 | 193,311.5437 | 4.88 × 10−4 | ≈0 |
MSGO | 193,311.54071 | 193,311.5410 | 193,311.5415 | 2.02 × 10−4 | 0 |
- For the PSO algorithm (N = 50, tmax = 400, c1 = c2 = 2, wmin = 0.3, wmax = 0.9 in cases C3b and C4b, respectively, N = 50, tmax = 700, c1 = c2 = 2, wmin = 0.3, wmax = 0.9 in the case of C4a; where c1 and c2 are acceleration coefficients, wmin and wmax are the initial and final inertial weights).
- For the DE algorithm (N = 50, tmax = 400, CR = 0.2, F = 0.4 in cases C3b and C4b, respectively, N = 50, tmax = 700, CR = 0.1, F = 0.8 in the case of C4a; where, CR is the crossover rate, and F is the scaling factor).
- For the SCA algorithm (N = 50, tmax = 400, a = 1 in cases C3b and C4b, respectively, N = 50, tmax = 700, a = 1 in the case of C4a).
5.3. Results for EED Problem (Cases C1c–C4c)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ai, bi, ci, ei, and fi | Fuel cost coefficients of thermal unit i; |
Bij, B0i, B00 | Loss coefficients; |
c | Self-introspection parameter from SGO; |
Direct, reserve, and penalty cost coefficient for unit j; | |
C(PT,PW) | Total fuel cost; |
Reserve, and penalty emission coefficient for unit j; | |
, | Mean powers associated with over and underestimation Wj for unit j; |
E(PT,PW) | Total emission; |
f(Xbest) | Objective function associated to Xbest; |
fi = f(Xi), f(Xr) | Objective function associated to Xi and Xr solutions; |
k, c | Shape, and scale parameters of Weibull distribution; |
n | Problem dimension; |
N | Population size; |
Nt, Nw | The number of thermal and wind units; |
o, u | Superscript symbols attached to some quantities reflecting overestimation, and underestimation of the available wind power; |
PD | The total power demand; |
PL | Transmission line losses; |
PT, PW | The output power vectors of the thermal and wind units; |
PTi | Power of the thermal unit i; |
PTmin,i, PTmax,i | Real minimum and maximum power of the thermal unit i; |
PWj | Scheduled wind power of the wind unit j; |
PWr | Rated power of the wind unit; |
ru, δ | Parameters specific to the HDP operator; |
t | Current iteration; |
tmax | Maximum number of iterations |
vin, vr, vout | Cut-in, rated, and cut-out wind speeds of the wind unit; |
Wj | Random variable that represents available wind power for unit j; |
Xi, Xr | n-dimensional vectors associated with solutions i and r; |
New solution vector Xi; | |
Xbest | The vector of the best solution; |
xj,i | jth component of solution Xi; |
jth component of solution | |
jth component of solution Xbest | |
α, β, δmax | Specific parameters of the MSGO algorithm; |
αj, βj, γj, δj, and λj | Emission coefficients of the thermal unit i; |
ω | Weighting factor; |
{cxp} | Chaotic sequence; |
exp(•) | exponential function; |
fW(•) | Probability density function (pdf) of random variable W; |
Prob(•) | The probability of the event; |
min, max | Indicate the minimum and maximum limits of some variables/functions; |
Min, Max | Mathematical functions that determine the minimum and maximum value in a set. |
Abbreviations
Appendix A
Step | Description and Exemplification |
---|---|
To Evaluate the Cost Related to the Wind Power, the Main Steps That Have to Be Done Are Presented, as Well as How Each of Them Is Applied for a Specific Case of a Wind Unit: | |
1 | Set the input data for a wind unit: the shape (k = 1.5) and scale (c = 15) parameters; rated output power of the wind unit (PWr = 550 MW); cut-in wind speed (vin = 5 m/s), rated wind speed (vr = 15 m/s), cut-out wind speed (vout = 45 m/s); direct cost coefficient (cd = 0), reserve cost coefficient (co = 5), penalty cost coefficient (cu = 5). Because during the MSGO optimization process, the variable “scheduled wind power” (PW) vary between the limits (PWmin = 0, PWmax = 550) MW, the calculation is performed for an arbitrarily chosen value, for example PW = 400 MW |
2 | Set the expression of the pdf fW(w) related to the wind power (W) using relation (7): |
3 | Calculate the discrete probabilities Prob(W = 0), and Prob(W = PWr), using relations (8) and (9): Prob(W = 0) = 1 − exp[−(vin/c)k] + exp[−(vout/c)k] = 1 − exp[(−(5/15)1.5] + exp[−(45/15)1.5] = 0.180602 Prob(W = PWr) = Prob(W = 550) = exp[−(vr/c)k] − exp[−(vout/c)k] = exp[−(15/15)1.5] − exp[−(45/15)1.5] = 0.362342 |
4 | Calculate the average power (PW = 400) and (PW = 400) according to (10) and (11): where fW(w) is presented in Step 2 and the integrals may by directly calculated in mathcad. |
5 | Calculate the cost CW(PW) related to the wind power PW, using (3): |
Unit | Power Limits | Fuel Cost Coefficients | Emission Coefficients | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pmin,i | Pmax,i | ai | bi | ci | ei | fi | αi | βi | γi | δi | λi | |
MW | MW | $/MW2h | $/MWh | $/h | $/h | rad/MW | lb/MW2h | lb/MWh | lb/h | lb/h | 1/MW | |
1 | 10 | 55 | 0.12951 | 40.5407 | 1000.403 | 33 | 0.0174 | 0.04702 | −3.9864 | 360.0012 | 0.25475 | 0.01234 |
2 | 20 | 80 | 0.10908 | 39.5804 | 950.606 | 25 | 0.0178 | 0.04652 | −3.9524 | 350.0056 | 0.25475 | 0.01234 |
3 | 47 | 120 | 0.12511 | 36.5104 | 900.705 | 32 | 0.0162 | 0.04652 | −3.9023 | 330.0056 | 0.25163 | 0.01215 |
4 | 20 | 130 | 0.12111 | 39.5104 | 800.705 | 30 | 0.0168 | 0.04652 | −3.9023 | 330.0056 | 0.25163 | 0.01215 |
5 | 50 | 160 | 0.15247 | 38.5390 | 756.799 | 30 | 0.0148 | 0.00420 | 0.3277 | 13.8593 | 0.24970 | 0.01200 |
6 | 70 | 240 | 0.10587 | 46.1592 | 451.325 | 20 | 0.0163 | 0.00420 | 0.3277 | 13.8593 | 0.24970 | 0.01200 |
7 | 60 | 300 | 0.03546 | 38.3055 | 1243.531 | 20 | 0.0152 | 0.00680 | −0.5455 | 40.2669 | 0.24800 | 0.01290 |
8 | 70 | 340 | 0.02803 | 40.3965 | 1049.998 | 30 | 0.0128 | 0.00680 | −0.5455 | 40.2669 | 0.24990 | 0.01203 |
9 | 135 | 470 | 0.02111 | 36.3278 | 1658.569 | 60 | 0.0136 | 0.00460 | −0.5112 | 42.8955 | 0.25470 | 0.01234 |
10 | 150 | 470 | 0.01799 | 38.2704 | 1356.659 | 40 | 0.0141 | 0.00460 | −0.5112 | 42.8955 | 0.25470 | 0.01234 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.9 × 10−5 | 1.4 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.6 × 10−5 | 1.7 × 10−5 | 1.7 × 10−5 | 1.8 × 10−5 | 1.9 × 10−5 | 2.0 × 10−5 | |
2 | 1.4 × 10−5 | 4.5 × 10−5 | 1.6 × 10−5 | 1.6 × 10−5 | 1.7 × 10−5 | 1.5 × 10−5 | 1.5 × 10−5 | 1.6 × 10−5 | 1.8 × 10−5 | 1.8 × 10−5 | |
3 | 1.5 × 10−5 | 1.6 × 10−5 | 3.9 × 10−5 | 1.0 × 10−5 | 1.2 × 10−5 | 1.2 × 10−5 | 1.4 × 10−5 | 1.4 × 10−5 | 1.6 × 10−5 | 1.6 × 10−5 | |
4 | 1.5 × 10−5 | 1.6 × 10−5 | 1.0 × 10−5 | 4.0 × 10−5 | 1.4 × 10−5 | 1.0 × 10−5 | 1.1 × 10−5 | 1.2 × 10−5 | 1.4 × 10−5 | 1.5 × 10−5 | |
[Bij]10×10= | 5 | 1.6 × 10−5 | 1.7 × 10−5 | 1.2 × 10−5 | 1.4 × 10−5 | 3.5 × 10−5 | 1.1 × 10−5 | 1.3 × 10−5 | 1.3 × 10−5 | 1.5 × 10−5 | 1.6 × 10−5 |
6 | 1.7 × 10−5 | 1.5 × 10−5 | 1.2 × 10−5 | 1.0 × 10−5 | 1.1 × 10−5 | 3.6 × 10−5 | 1.2 × 10−5 | 1.2 × 10−5 | 1.4 × 10−5 | 1.5 × 10−5 | |
7 | 1.7 × 10−5 | 1.5 × 10−5 | 1.4 × 10−5 | 1.1 × 10−5 | 1.3 × 10−5 | 1.2 × 10−5 | 3.8 × 10−5 | 1.6 × 10−5 | 1.6 × 10−5 | 1.8 × 10−5 | |
8 | 1.8 × 10−5 | 1.6 × 10−5 | 1.4 × 10−5 | 1.2 × 10−5 | 1.3 × 10−5 | 1.2 × 10−5 | 1.6 × 10−5 | 4.0 × 10−5 | 1.5 × 10−5 | 1.6 × 10−5 | |
9 | 1.9 × 10−5 | 1.8 × 10−5 | 1.6 × 10−5 | 1.4 × 10−5 | 1.5 × 10−5 | 1.4 × 10−5 | 1.6 × 10−5 | 1.5 × 10−5 | 4.2 × 10−5 | 1.9 × 10−5 | |
10 | 2.0 × 10−5 | 1.8 × 10−5 | 1.6 × 10−5 | 1.5 × 10−5 | 1.6 × 10−5 | 1.5 × 10−5 | 1.8 × 10−5 | 1.6 × 10−5 | 1.9 × 10−5 | 4.4 × 10−5 | |
[B0i]1×10= | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
B00= | 0 |
Unit | Power Limits | Fuel Cost Coefficients | Emission Coefficients | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pmin,i | Pmax,i | ai | bi | ci | ei | fi | αi | βi | γi | δi | λi | |
MW | MW | $/MW2h | $/MWh | $/h | $/h | rad/MW | t/MW2h | t/MWh | t/h | t/h | 1/MW | |
1 | 36 | 114 | 0.0069 | 6.73 | 94.705 | 100 | 0.084 | 0.048 | −2.22 | 60 | 1.31 | 0.0569 |
2 | 36 | 114 | 0.0069 | 6.73 | 94.705 | 100 | 0.084 | 0.048 | −2.22 | 60 | 1.31 | 0.0569 |
3 | 60 | 120 | 0.02028 | 7.07 | 309.54 | 100 | 0.084 | 0.0762 | −2.36 | 100 | 1.31 | 0.0569 |
4 | 80 | 190 | 0.00942 | 8.18 | 369.03 | 150 | 0.063 | 0.054 | −3.14 | 120 | 0.9142 | 0.0454 |
5 | 47 | 97 | 0.0114 | 5.35 | 148.89 | 120 | 0.077 | 0.085 | −1.89 | 50 | 0.9936 | 0.0406 |
6 | 68 | 140 | 0.01142 | 8.05 | 222.33 | 100 | 0.084 | 0.0854 | −3.08 | 80 | 1.31 | 0.0569 |
7 | 110 | 300 | 0.00357 | 8.03 | 287.71 | 200 | 0.042 | 0.0242 | −3.06 | 100 | 0.6550 | 0.02846 |
8 | 135 | 300 | 0.00492 | 6.99 | 391.98 | 200 | 0.042 | 0.031 | −2.32 | 130 | 0.6550 | 0.02846 |
9 | 135 | 300 | 0.00573 | 6.6 | 455.76 | 200 | 0.042 | 0.0335 | −2.11 | 150 | 0.6550 | 0.02846 |
10 | 130 | 300 | 0.00605 | 12.9 | 722.82 | 200 | 0.042 | 0.425 | −4.34 | 280 | 0.6550 | 0.02846 |
11 | 94 | 375 | 0.00515 | 12.9 | 635.2 | 200 | 0.042 | 0.0322 | −4.34 | 220 | 0.6550 | 0.02846 |
12 | 94 | 375 | 0.00569 | 12.8 | 654.69 | 200 | 0.042 | 0.0338 | −4.28 | 225 | 0.6550 | 0.02846 |
13 | 125 | 500 | 0.00421 | 12.5 | 913.4 | 300 | 0.035 | 0.0296 | −4.18 | 300 | 0.5035 | 0.02075 |
14 | 125 | 500 | 0.00752 | 8.84 | 1760.4 | 300 | 0.035 | 0.0512 | −3.34 | 520 | 0.5035 | 0.02075 |
15 | 125 | 500 | 0.00708 | 9.15 | 1728.3 | 300 | 0.035 | 0.0496 | −3.55 | 510 | 0.5035 | 0.02075 |
16 | 125 | 500 | 0.00708 | 9.15 | 1728.3 | 300 | 0.035 | 0.0496 | −3.55 | 510 | 0.5035 | 0.02075 |
17 | 220 | 500 | 0.00313 | 7.97 | 647.85 | 300 | 0.035 | 0.0151 | −2.68 | 220 | 0.5035 | 0.02075 |
18 | 220 | 500 | 0.00313 | 7.95 | 649.69 | 300 | 0.035 | 0.0151 | −2.66 | 222 | 0.5035 | 0.02075 |
19 | 242 | 550 | 0.00313 | 7.97 | 647.83 | 300 | 0.035 | 0.0151 | −2.68 | 220 | 0.5035 | 0.02075 |
20 | 242 | 550 | 0.00313 | 7.97 | 647.81 | 300 | 0.035 | 0.0151 | −2.68 | 220 | 0.5035 | 0.02075 |
21 | 254 | 550 | 0.00298 | 6.63 | 785.96 | 300 | 0.035 | 0.0145 | −2.22 | 290 | 0.5035 | 0.02075 |
22 | 254 | 550 | 0.00298 | 6.63 | 785.96 | 300 | 0.035 | 0.0145 | −2.22 | 285 | 0.5035 | 0.02075 |
23 | 254 | 550 | 0.00284 | 6.66 | 794.53 | 300 | 0.035 | 0.0138 | −2.26 | 295 | 0.5035 | 0.02075 |
24 | 254 | 550 | 0.00284 | 6.66 | 794.53 | 300 | 0.035 | 0.0138 | −2.26 | 295 | 0.5035 | 0.02075 |
25 | 254 | 550 | 0.00277 | 7.1 | 801.32 | 300 | 0.035 | 0.0132 | −2.42 | 310 | 0.5035 | 0.02075 |
26 | 254 | 550 | 0.00277 | 7.1 | 801.32 | 300 | 0.035 | 0.0132 | −2.42 | 310 | 0.5035 | 0.02075 |
27 | 10 | 150 | 0.52124 | 3.33 | 1055.1 | 120 | 0.077 | 1.842 | −1.11 | 360 | 0.9936 | 0.0406 |
28 | 10 | 150 | 0.52124 | 3.33 | 1055.1 | 120 | 0.077 | 1.842 | −1.11 | 360 | 0.9936 | 0.0406 |
29 | 10 | 150 | 0.52124 | 3.33 | 1055.1 | 120 | 0.077 | 1.842 | −1.11 | 360 | 0.9936 | 0.0406 |
30 | 47 | 97 | 0.0114 | 5.35 | 148.89 | 120 | 0.077 | 0.085 | −1.89 | 50 | 0.9936 | 0.0406 |
31 | 60 | 190 | 0.0016 | 6.43 | 222.92 | 150 | 0.063 | 0.0121 | −2.08 | 80 | 0.9142 | 0.0454 |
32 | 60 | 190 | 0.0016 | 6.43 | 222.92 | 150 | 0.063 | 0.0121 | −2.08 | 80 | 0.9142 | 0.0454 |
33 | 60 | 190 | 0.0016 | 6.43 | 222.92 | 150 | 0.063 | 0.0121 | −2.08 | 80 | 0.9142 | 0.0454 |
34 | 90 | 200 | 0.0001 | 8.95 | 107.87 | 200 | 0.042 | 0.0012 | −3.48 | 65 | 0.6550 | 0.02846 |
35 | 90 | 200 | 0.0001 | 8.62 | 116.58 | 200 | 0.042 | 0.0012 | −3.24 | 70 | 0.6550 | 0.02846 |
36 | 90 | 200 | 0.0001 | 8.62 | 116.58 | 200 | 0.042 | 0.0012 | −3.24 | 70 | 0.6550 | 0.02846 |
37 | 25 | 110 | 0.0161 | 5.88 | 307.45 | 80 | 0.098 | 0.095 | −1.98 | 100 | 1.42 | 0.0677 |
38 | 25 | 110 | 0.0161 | 5.88 | 307.45 | 80 | 0.098 | 0.095 | −1.98 | 100 | 1.42 | 0.0677 |
39 | 25 | 110 | 0.0161 | 5.88 | 307.45 | 80 | 0.098 | 0.095 | −1.98 | 100 | 1.42 | 0.0677 |
40 | 242 | 550 | 0.00313 | 7.97 | 647.83 | 300 | 0.035 | 0.0151 | −2.68 | 220 | 0.5035 | 0.02075 |
([Bij]40×40) × 10−6 = | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | |
1 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | |
2 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | |
3 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | |
4 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | |
5 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | |
6 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | |
7 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | |
8 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | |
9 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | |
10 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | |
11 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | |
12 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | |
13 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | |
14 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | |
15 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | |
16 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | |
17 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | |
18 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | |
19 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | |
20 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | |
21 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | |
22 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | |
23 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | |
24 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | |
25 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | |
26 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | |
27 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | |
28 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | |
29 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | |
30 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | |
31 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | |
32 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | |
33 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | |
34 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | |
35 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | 129 | −2 | −5 | −6 | −10 | −6 | |
36 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | −2 | 150 | −2 | −1 | −6 | −8 | |
37 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | −5 | −2 | 17 | 12 | 7 | −1 | |
38 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | −6 | −1 | 12 | 14 | 9 | 1 | |
39 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | −10 | −6 | 7 | 9 | 31 | 0 | |
40 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | −6 | −8 | −1 | 1 | 0 | 24 | |
(B0i) × 10−4 = | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |||||||||||||||||||||
−3.908 | −1.297 | 7.047 | 0.591 | 2.161 | −6.635 | −3.908 | −1.297 | 7.047 | 0.591 | 2.161 | −6.635 | −3.908 | −1.297 | 7.047 | 0.591 | 2.161 | −6.635 | −3.908 | −1.297 | ||||||||||||||||||||||
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | ||||||||||||||||||||||
7.047 | 0.591 | 2.161 | −6.635 | −3.908 | −1.297 | 7.047 | 0.591 | 2.161 | −6.635 | −3.908 | −1.297 | 7.047 | 0.591 | 2.161 | −6.635 | −3.908 | −1.297 | 7.047 | 0.591 | ||||||||||||||||||||||
B00 = | 0.56 |
References
- Jin, J.; Wen, Q.; Qiu, Y.; Cheng, S.; Guo, X. Distributed robust optimization for low-carbon dispatch of wind-thermal power under uncertainties. Environ. Sci. Pollut. Res. 2023, 30, 20980–20994. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Zhou, D.; Zhou, P.; Miao, Z. Environmental/economic power dispatch with wind power. Renew. Energy 2014, 71, 234–242. [Google Scholar] [CrossRef]
- Nanda, J.; Kothari, D.P.; Linga Murthy, K.S. Economic emission load dispatch through goal programming techniques. IEEE Trans. Energy Convers. 1988, 3, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Hetzer, J.; Yu, D.C.; Bhattarai, K. An economic dispatch model incorporating wind power. IEEE Trans. Energy Convers. 2008, 23, 603–611. [Google Scholar] [CrossRef]
- Dhillon, J.S.; Parti, S.C. Stochastic economic emission load dispatch. Electr. Power Syst. Res. 1993, 26, 179–186. [Google Scholar] [CrossRef]
- Martins, A.C.S.; Balbo, A.R.; Jones, D.; Nepomuceno, L.; Soler, E.M.; Baptista, E.C. A Hybrid Multi-Criteria Methodology for Solving the Sustainable Dispatch Problem. Sustainability 2020, 12, 6780. [Google Scholar] [CrossRef]
- Mahdy, A.; El-Sehiemy, R.; Shaheen, A.; Ginidi, A.; Elbarbary, Z.M.S. An improved artificial ecosystem algorithm for economic dispatch with combined heat and power units. Appl. Sci. 2022, 12, 11773. [Google Scholar] [CrossRef]
- El-Sehiemy, R.; Shaheen, A.; Ginidi, A.; Elhosseini, M. A honey badger optimization for minimizing the pollutant environmental emissions-based economic dispatch model integrating combined heat and power units. Energies 2022, 15, 7603. [Google Scholar] [CrossRef]
- Ginidi, A.; Elsayed, A.; Shaheen, A.; Elattar, E.; El-Sehiemy, R. An innovative hybrid heap-based and jellyfish search algorithm for combined heat and power economic dispatch in electrical grids. Mathematics 2021, 9, 2053. [Google Scholar] [CrossRef]
- Shaheen, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Ghoneim, S.S.M. Economic power and heat dispatch in cogeneration energy systems using manta ray foraging optimizer. IEEE Access 2020, 8, 208281–208295. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W. Minimum emission dispatch constrained by stochastic wind power availability and cost. IEEE Trans. Power Syst. 2010, 25, 1705–1713. [Google Scholar]
- Jadhav, H.T.; Roy, R. Gbest guided artificial bee colony algorithm for environmental/economic dispatch considering wind power. Expert Syst. Appl. 2013, 40, 6385–6399. [Google Scholar] [CrossRef]
- Dubey, H.M.; Pandit, M.; Panigrahi, B.K. An overview and comparative analysis of recent bio-inspired optimization techniques for wind integrated multi-objective power dispatch. Swarm Evol. Comput. 2018, 38, 12–34. [Google Scholar] [CrossRef]
- Tsvetkova, O.; Ouarda, T.B.M.J. Use of the Halphen distribution family for mean wind speed estimation with application to Eastern Canada. Energy Convers. Manag. 2023, 276, 116502. [Google Scholar] [CrossRef]
- Ghasemi, A.; Gheydi, M.; Golkar, M.J.; Eslami, M. Modeling of Wind/Environment/Economic Dispatch in power systemand solving via an online learning meta-heuristic method. Appl. Soft Comput. 2016, 43, 454–468. [Google Scholar] [CrossRef]
- Kheshti, M.; Kang, X.; Li, J.; Regulski, P.; Terzija, V. Lightning Flash Algorithm for Solving Nonconvex Combined Emission Economic Dispatch with Generator Constraints. IET Gener. Transm. Distrib. 2018, 12, 104–116. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, P.; He, Y.; Wang, X.; Zhang, X. Scenario-oriented hybrid particle swarm optimization algorithm for robust economic dispatch of power system with wind power. J. Syst. Eng. Electron. 2022, 33, 1143–1150. [Google Scholar] [CrossRef]
- Srivastava, A.; Das, D.K. An adaptive chaotic class topper optimization technique to solve economic load dispatch and emission economic dispatch problem in power system. Soft Comput. 2022, 26, 2913–2934. [Google Scholar] [CrossRef]
- Basetti, V.; Rangarajan, S.S.; Shiva, C.K.; Pulluri, H.; Kumar, R.; Collins, R.E.; Senjyu, T. Economic Emission Load Dispatch Problem with Valve-Point Loading Using a Novel Quasi-Oppositional-Based Political Optimizer. Electronics 2021, 10, 2596. [Google Scholar] [CrossRef]
- Srivastava, A.; Das, D.K. Criminal Search Optimization Algorithm: A Population-Based Meta-Heuristic Optimization Technique to Solve Real-World Optimization Problems. Arab. J. Sci. Eng. 2022, 47, 3551–3571. [Google Scholar] [CrossRef]
- Srivastava, A.; Das, D.K. A new Kho-Kho optimization algorithm: An application to solve combined emission economic dispatch and combined heat and power economic dispatch problem. Eng. Appl. Artif. Intell. 2020, 94, 103763. [Google Scholar] [CrossRef]
- Nourianfar, H.; Abdi, H. Environmental/Economic dispatch using a new hybridizing algorithm integrated with an effective constraint handling technique. Sustainability 2022, 14, 3173. [Google Scholar] [CrossRef]
- Sakthivel, V.P.; Suman, M.; Sathya, P.D. Combined economic and emission power dispatch problems through multi-objective squirrel search algorithm. Appl. Soft Comput. J. 2021, 100, 106950. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, J.; Moa, L.; Ouyang, S.; Liao, X. Economic environmental dispatch using an enhanced multi-objective cultural algorithm. Electr. Power Syst. Res. 2013, 99, 18–29. [Google Scholar] [CrossRef]
- Bhesdadiya, R.H.; Trivedi, I.N.; Jangir, P.; Jangir, N.; Kumar, A. An NSGA-III algorithm for solving multi-objective economic/environmental dispatch problem. Cogent Eng. 2016, 3, 1269383. [Google Scholar] [CrossRef]
- Roy, P.K.; Bhui, S. Multi-objective quasi-oppositional teaching learning based optimization for economic emission load dispatch problem. Electr. Power Energy Syst. 2013, 53, 937–948. [Google Scholar] [CrossRef]
- Guesmi, T.; Farah, A.; Marouani, I.; Alshammari, B.; Abdallah, H.H. Chaotic sine–cosine algorithm for chance-constrained economic emission dispatch problem including wind energy. IET Renew. Power Gener. 2020, 14, 1808–1821. [Google Scholar] [CrossRef]
- Das, D.; Bhattacharya, A.; Ray, R.N. Dragonfly Algorithm for solving probabilistic Economic Load Dispatch problems. Neural Comput. Appl. 2020, 32, 3029–3045. [Google Scholar] [CrossRef]
- Satapathy, S.C.; Naik, A. Social group optimization (SGO): A new population evolutionary optimization technique. Complex Intell. Syst. 2016, 2, 173–203. [Google Scholar] [CrossRef]
- Naik, A.; Satapathy, S.C.; Abraham, A. Modified social group optimization—A meta-heuristic algorithm to solve short-term hydrothermal scheduling. Appl. Soft Comput. 2020, 95, 106524. [Google Scholar] [CrossRef]
- Reddy, A.K.V.K.; Narayana, K.V.L. A combinatorial social group whale optimization algorithm for numerical and engineering optimization problems. Appl. Soft Comput. 2021, 99, 106903. [Google Scholar]
- Jena, J.J.; Satapathy, S.C. A new adaptive tuned social group optimization (SGO) algorithm with sigmoid-adaptive inertia weight for solving engineering design problems. In Multimedia Tools and Applications; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Sinha, N.; Chakrabarti, R.; Chattopadhyay, P.K. Evolutionary programming techniques for economic load dispatch. IEEE Trans Evol. Comput. 2003, 7, 83–94. [Google Scholar] [CrossRef]
- Rajasomashekar, S.; Aravindhababu, P. Biogeography based optimization technique for best compromise solution of economic emission dispatch. Swarm Evol. Comput. 2012, 7, 47–57. [Google Scholar] [CrossRef]
- Bhattacharjee, K.; Bhattacharya, A.; Halder, S. Solution of economic emission load dispatch problems of power systems by real coded chemical reaction algorithm. Int. J. Electr. Power Energy Syst. 2014, 59, 176–187. [Google Scholar] [CrossRef]
- Geng, J.Q.; Sun, X.M.; Wang, H.H.; Bu, X.H.; Liu, D.H.; Li, F.; Zhao, Z.W. A modified adaptive sparrow search algorithm based on chaotic reverse learning and spiral search for global optimization. In Neural Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Gupta, A.; Tiwari, D.; Kumar, V.; Rana, K.P.S.; Mirjalili, S. A chaos–infused moth–flame optimizer. Arab. J. Sci. Eng. 2022, 47, 10769–10809. [Google Scholar] [CrossRef]
- Abed-alguni, B.H.; Paul, D.; Hammad, R. Improved salp swarm algorithm for solving single-objective continuous optimization problems. Appl. Intell. 2022, 52, 17217–17236. [Google Scholar] [CrossRef]
- Alawad, N.A.; Abed-alguni, B.H. Discrete island-based cuckoo search with highly disruptive polynomial mutation and opposition-based learning strategy for scheduling of workflow applications in cloud environments. Arab. J. Sci. Eng. 2021, 46, 3213–3233. [Google Scholar] [CrossRef]
- Gaing, Z.-L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Power Syst. 2003, 18, 1187–1195. [Google Scholar] [CrossRef]
- Park, J.-B.; Jeong, Y.-W.; Shin, J.-R.; Lee, K.Y. An improved particle swarm optimization for nonconvex economic dispatch problems. IEEE Trans. Power Syst. 2010, 25, 155–166. [Google Scholar]
- Basu, M. Economic environmental dispatch using multi-objective differential evolution. Appl. Soft Comput. 2011, 11, 2845–2853. [Google Scholar] [CrossRef]
- Hota, P.K.; Barisal, A.K.; Chakrabarti, R. Economic emission load dispatch through fuzzy based bacterial foraging algorithm. Electr. Power Energy Syst. 2010, 32, 794–803. [Google Scholar] [CrossRef]
- Ciornei, I.; Kyriakides, E. A GA–API solution for the economic dispatch of generation in power system operation. IEEE Trans. Power Syst. 2012, 27, 233–242. [Google Scholar] [CrossRef]
- Lam, A.Y.S.; Li, V.O.K.; Yu, J.J.Q. Real-coded chemical reaction optimization. IEEE Trans. Evol. Comput. 2012, 16, 339–353. [Google Scholar] [CrossRef]
- Yu, J.T.; Kim, C.H.; Wadood, A.; Khurshaid, T.; Rhee, S.B. Jaya algorithm with self-adaptive multi-population and Lévy flights for solving economic load dispatch problems. IEEE Access 2019, 7, 21372–21384. [Google Scholar] [CrossRef]
- Bhattacharjee, K.; Bhattacharya, A.; Dey, S.H.N. Oppositional real coded chemical reaction optimization for different economic dispatch problems. Int. J. Electr. Power Energy Syst. 2014, 55, 378–391. [Google Scholar] [CrossRef]
- Zakian, P.; Kaveh, A. Economic dispatch of power systems using an adaptive charged system search algorithm. Appl. Soft Comput. J. 2018, 73, 607–622. [Google Scholar] [CrossRef]
- Afzalan, E.; Joorabian, M. Emission, reserve and economic load dispatch problem with non-smooth and non-convex cost functions using epsilon-multi-objective genetic algorithm variable. Electr. Power Energy Syst. 2013, 52, 55–67. [Google Scholar] [CrossRef]
- Pothiya, S.; Ngamroo, I.; Kongprawechnon, W. Ant colony optimisation for economic dispatch problem with non-smooth cost functions. Int. J. Electr. Power Energy Syst. 2010, 32, 478–487. [Google Scholar] [CrossRef]
- Labbi, Y.; Attous, D.; Mahdad, B. Artificial bee colony optimization for economic dispatch with valve point effect. Front. Energy 2014, 8, 449–458. [Google Scholar] [CrossRef]
- Selvakumar, A.I.; Thanushkodi, K. Optimization using civilized swarm: Solution to economic dispatch with multiple minima. Electr. Power Syst. Res. 2009, 79, 8–16. [Google Scholar] [CrossRef]
- He, X.; Rao, Y.; Huang, J. A novel algorithm for economic load dispatch of power Systems. Neurocomputing 2016, 171, 1454–1461. [Google Scholar] [CrossRef]
- Alghamdi, A.S. Greedy sine-cosine non-hierarchical grey wolf optimizer for solving non-convex economic load dispatch problems. Energies 2022, 15, 3904. [Google Scholar] [CrossRef]
- Yu, J.-T.; Kim, C.-H.; Rhee, S.-B. Clustering cuckoo search optimization for economic load dispatch problem. Neural Comput. Appl. 2020, 32, 16951–16969. [Google Scholar] [CrossRef]
- Bhattacharjee, K.; Bhattacharya, A.; Dey, S.H. Backtracking search optimization based economic environmental power dispatch problems. Int. J. Electr. Power Energy Syst. 2015, 73, 830–842. [Google Scholar] [CrossRef]
- Kaboli, S.H.A.; Alqallaf, A.K. Solving non-convex economic load dispatch problem via artificial cooperative search algorithm. Expert Syst. Appl. 2019, 128, 14–27. [Google Scholar] [CrossRef]
- Kumar, M.; Dhillon, J.S. A conglomerated ion-motion and crisscross search optimizer for electric power load dispatch. Appl. Soft Comput. 2019, 83, 105641. [Google Scholar] [CrossRef]
- Coelho, L.S. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst. Appl. 2010, 37, 1676–1683. [Google Scholar] [CrossRef]
- Babar, M.I.; Ahmad, A.; Fayyaz, S. A hybrid sine cosine algorithm with SQP for solving convex and nonconvex economic dispatch problem. Mehran Univ. Res. J. Eng. Technol. 2020, 39, 31–46. [Google Scholar] [CrossRef]
- Xu, S.; Xiong, G.; Mohamed, A.W.; Bouchekara, H.R.E.H. Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options. Energy 2022, 256, 124511. [Google Scholar] [CrossRef]
- Reddy, A.S.; Vaisakh, K. Shuffled differential evolution for large scale economic dispatch. Electr. Power Syst. Res. 2013, 96, 237–245. [Google Scholar] [CrossRef]
- Naderi, E.; Azizivahed, A.; Narimani, H.; Fathi, M.; Narimani, M.R. A comprehensive study of practical economic dispatch problems by a new hybrid evolutionary algorithm. Appl. Soft Comput. 2017, 61, 1186–1206. [Google Scholar] [CrossRef]
- Amiri, M.; Khanmohammadi, S.; Badamchizadeh, M.A. Floating search space: A new idea for efficient solving the economic and emission dispatch problem. Energy 2018, 158, 564–579. [Google Scholar] [CrossRef]
- Xu, J.; Yan, F.; Yun, K.; Su, L.; Li, F.; Guan, J. Noninferior solution grey wolf optimizer with an independent local search mechanism for solving economic load dispatch problems. Energies 2019, 12, 2274. [Google Scholar] [CrossRef]
- Kamboj, V.K.; Kumari, C.L.; Bath, S.K.; Prashar, D.; Rashid, M.; Alshamrani, S.S.; AlGhamdi, A.S. A cost-effective solution for non-convex economic load dispatch problems in power systems using slime mould algorithm. Sustainability 2022, 14, 2586. [Google Scholar] [CrossRef]
- Hamdi, M.; Idomghar, L.; Chaoui, M.; Kachouri, A. An improved adaptive differential evolution optimizer for non-convex economic dispatch problems. Appl. Soft Comput. 2019, 85, 105868. [Google Scholar] [CrossRef]
- Chen, C.; Zou, D.; Li, C. Improved Jaya algorithm for economic dispatch considering valve-point effect and multi-fuel options. IEEE Access 2020, 8, 84981–84995. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Eid, A.; Nasrat, L.; Jurado, F.; Elnaggar, M.F. A developed eagle-strategy supply-demand optimizer for solving economic load dispatch problems. Ain Shams Eng. J. 2023, 14, 102083. [Google Scholar] [CrossRef]
- Güvenç, U.; Sonmez, Y.; Duman, S. Combined economic and emission dispatch solution using gravitational search algorithm. Sci. Iran. D Comput. Sci. Eng. Electr. Eng. 2012, 19, 1754–1762. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Ebeed, M.; Refai, A.; Kamel, S. Solving combined economic and emission dispatch problem using the slime mould algorithm. Sohag Eng. J. 2021, 1, 62–70. [Google Scholar] [CrossRef]
- Dong, R.; Chen, H.; Heidari, A.A.; Turabieh, H.; Mafarja, M.; Wang, S. Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. Knowl. Based Syst. 2021, 233, 107529. [Google Scholar] [CrossRef]
- Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [Google Scholar] [CrossRef]
- Cao, Y.; Smucker, B.J.; Robinson, T.J. On using the hypervolume indicator to compare Pareto fronts: Applications to multi-criteria optimal experimental design. J. Stat. Plan. Inference 2015, 160, 60–74. [Google Scholar] [CrossRef]
Outputs Algorithms | Best Cost (C1a) | Best Emission (C1b) | BCS (C1c) | |||
---|---|---|---|---|---|---|
SGO | MSGO | SGO | MSGO | SGO | MSGO | |
PT1 (MW) | 55 | 55 | 55 | 55 | 55 | 55 |
PT2 (MW) | 80 | 80 | 80 | 80 | 79.9919138 | 80 |
PT3 (MW) | 106.9541594 | 106.9339816 | 81.1395049 | 81.13389758 | 84.9307435 | 86.1178873 |
PT4 (MW) | 100.5724243 | 100.5785797 | 81.3521442 | 81.365596459 | 84.4692580 | 84.4754324 |
PT5 (MW) | 81.4829314 | 81.5030072 | 160 | 160 | 132.5861458 | 132.0947090 |
PT6 (MW) | 83.0293259 | 83.0232077 | 240 | 240 | 148.8844943 | 150.1405606 |
PT7 (MW) | 299.9999999 | 300 | 294.5013582 | 294.50918872 | 298.3856220 | 300 |
PT8 (MW) | 340 | 340 | 297.2767111 | 297.26088151 | 317.3109360 | 318.6699829 |
PT9 (MW) | 470 | 470 | 396.7327820 | 396.76630122 | 436.6060140 | 437.5797908 |
PT10 (MW) | 470 | 470 | 395.5926758 | 395.55896593 | 446.4576771 | 440.4116407 |
Cost CT (PT) ($/h) | 111,497.6302221 | 111,497.6301430 | 116,412.4961603 | 116,412.5597722 | 112,884.4848042 | 112,913.8454551 |
Emission ET (PT) (lb/h) | 4572.2503628 | 4572.1759096 | 3932.2432876 | 3932.2432406 | 4177.6632977 | 4173.0883561 |
PL (MW) | 87.0388508 | 87.03878611 | 81.59518555 | 81.594840685 | 84.62280525 | 84.49001346 |
PD (MW) | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 |
∆P * (MW) | −9.9 × 10−6 | −9.8 × 10−6 | −9.3 × 10−6 | −9.2 × 10−6 | −8.3 × 10−7 | −9.8 × 10−6 |
Time (s) | 0.17 | 0.18 | 0.17 | 0.18 | 0.18 | 0.19 |
Outputs Algorithms | Best Cost (C2a) | Best Emission (C2b) | BCS (C2c) | |||
---|---|---|---|---|---|---|
SGO | MSGO | SGO | MSGO | SGO | MSGO | |
PT1 (MW) | 110.922179 | 111.716634 | 114.000000 | 114.000000 | 113.999966 | 110.800341 |
PT2 (MW) | 111.243322 | 110.860214 | 114.000000 | 114.000000 | 113.999796 | 110.800220 |
PT3 (MW) | 119.999923 | 97.403591 | 120.000000 | 120.000000 | 120.000000 | 119.999963 |
PT4 (MW) | 179.733198 | 179.743937 | 169.368013 | 169.367866 | 179.733101 | 179.733075 |
PT5 (MW) | 87.968669 | 87.780202 | 97.000000 | 97.000000 | 97.000000 | 87.801870 |
PT6 (MW) | 139.999997 | 139.999967 | 124.257317 | 124.257125 | 140.000000 | 139.999941 |
PT7 (MW) | 299.999977 | 259.611600 | 299.711092 | 299.711096 | 299.999999 | 299.999869 |
PT8 (MW) | 284.599970 | 284.603778 | 297.914825 | 297.914414 | 284.599650 | 284.599715 |
PT9 (MW) | 284.600310 | 284.603707 | 297.259861 | 297.260410 | 284.599652 | 284.599803 |
PT10 (MW) | 130.000055 | 130.000000 | 130.000000 | 130.000000 | 204.799826 | 130.000011 |
PT11 (MW) | 168.799938 | 94.001033 | 298.409765 | 298.409555 | 243.599650 | 318.397097 |
PT12 (MW) | 94.000100 | 168.802785 | 298.026091 | 298.026393 | 318.399211 | 318.396537 |
PT13 (MW) | 125.000068 | 214.762696 | 433.557450 | 433.557827 | 394.279369 | 394.279333 |
PT14 (MW) | 304.519644 | 394.279917 | 421.727984 | 421.729503 | 394.279373 | 394.279355 |
PT15 (MW) | 394.279363 | 304.520136 | 422.779051 | 422.780633 | 394.279370 | 394.279352 |
PT16 (MW) | 394.279396 | 394.281435 | 422.779145 | 422.779765 | 394.279371 | 394.279339 |
PT17 (MW) | 489.279362 | 489.279715 | 439.413302 | 439.412095 | 489.279356 | 489.279199 |
PT18 (MW) | 489.279374 | 489.277936 | 439.402981 | 439.402147 | 489.279365 | 489.278987 |
PT19 (MW) | 511.279452 | 511.286046 | 439.413322 | 439.413830 | 472.436489 | 421.519583 |
PT20 (MW) | 511.279469 | 511.288520 | 439.413375 | 439.412524 | 421.519581 | 421.519572 |
PT21 (MW) | 523.279375 | 523.282365 | 439.446230 | 439.446547 | 433.519581 | 433.519577 |
PT22 (MW) | 523.279470 | 523.288232 | 439.447404 | 439.446608 | 433.519581 | 433.519606 |
PT23 (MW) | 523.279716 | 523.286753 | 439.771529 | 439.772178 | 433.519581 | 433.519604 |
PT24 (MW) | 523.279630 | 523.298896 | 439.771899 | 439.771421 | 433.519585 | 433.519606 |
PT25 (MW) | 523.279479 | 523.282145 | 440.111752 | 440.112274 | 433.519584 | 433.519649 |
PT26 (MW) | 523.279413 | 523.285836 | 440.111656 | 440.111780 | 433.519583 | 433.519592 |
PT27 (MW) | 10.000142 | 10.001290 | 28.994136 | 28.993709 | 10.000009 | 10.000005 |
PT28 (MW) | 10.000000 | 10.000158 | 28.994289 | 28.993427 | 10.000000 | 10.000098 |
PT29 (MW) | 10.000004 | 10.000029 | 28.993716 | 28.994114 | 10.000000 | 10.000015 |
PT30 (MW) | 87.979665 | 96.047579 | 97.000000 | 97.000000 | 97.000000 | 96.999848 |
PT31 (MW) | 189.999986 | 189.999914 | 172.332024 | 172.331705 | 190.000000 | 189.999825 |
PT32 (MW) | 190.000000 | 190.000000 | 172.332025 | 172.331635 | 189.999867 | 189.999975 |
PT33 (MW) | 190.000000 | 189.999740 | 172.331486 | 172.331960 | 189.999915 | 189.999989 |
PT34 (MW) | 199.999981 | 164.840604 | 200.000000 | 200.000000 | 200.000000 | 199.999986 |
PT35 (MW) | 199.999969 | 199.999540 | 200.000000 | 200.000000 | 200.000000 | 199.999994 |
PT36 (MW) | 199.999996 | 199.999900 | 200.000000 | 200.000000 | 200.000000 | 199.999976 |
PT37 (MW) | 110.000000 | 109.999989 | 100.839198 | 100.838331 | 109.999999 | 109.999997 |
PT38 (MW) | 109.999997 | 109.999981 | 100.838254 | 100.838389 | 110.000000 | 109.999850 |
PT39 (MW) | 110.000000 | 109.999727 | 100.838245 | 100.838200 | 110.000000 | 109.999659 |
PT40 (MW) | 511.279414 | 511.283472 | 439.412572 | 439.412526 | 421.519580 | 488.039989 |
Cost CT (PT) ($/h) | 121,509.82092 | 121,426.70390 | 129,995.28508 | 129,995.30108 | 125,526.34268 | 125,434.46554 |
Emission ET (PT) (t/h) | 359,251.81848 | 356,231.07314 | 176,682.26364 | 176,682.26363 | 201,944.58419 | 200,613.67971 |
∆P * (MW) | −1.7 × 10−11 | 1.5 × 10−11 | −9.9 × 10−6 | −9.9 × 10−6 | −8.7 × 10−6 | 5.1 × 10−7 |
Time (s) | 7.64 | 8.03 | 7.34 | 7.65 | 9.28 | 9.97 |
Outputs Cases | Best Cost | Best Emission | BCS | |||
---|---|---|---|---|---|---|
Case C3a (Without Wind) | Case C4a (With Wind) | Case C3b (Without Wind) | Case C4b (With Wind) | Case C3c (Without Wind) | Case C4c (With Wind) | |
PT1/PW1 (MW) | 114.000000 | 549.9999977 | 114.000000 | 550.000000 | 114.0000000 | 549.9997828 |
PT2/PW2 (MW) | 113.999999 | 549.9999998 | 114.000000 | 550.000000 | 114.0000000 | 549.9997818 |
PT3 (MW) | 120.000000 | 97.39994714 | 120.000000 | 120.000000 | 120.0000000 | 119.9988116 |
PT4 (MW) | 189.999995 | 179.7331053 | 190.000000 | 175.313561 | 182.8929206 | 179.7374211 |
PT5 (MW) | 96.999999 | 87.79995033 | 97.000000 | 97.000000 | 96.99999982 | 96.99883835 |
PT6 (MW) | 140.000000 | 68.00000364 | 132.951212 | 119.769488 | 139.9999995 | 105.4022758 |
PT7 (MW) | 300.000000 | 259.5996859 | 300.000000 | 300.000000 | 300.0000000 | 299.9999742 |
PT8 (MW) | 300.000000 | 284.5996597 | 300.000000 | 299.999999 | 299.9999998 | 285.7135868 |
PT9 (MW) | 299.999998 | 284.5997061 | 300.000000 | 300.000000 | 299.9999995 | 287.9519754 |
PT10 (MW) | 279.599683 | 204.79983 | 270.805053 | 161.263885 | 279.5996268 | 204.8086989 |
PT11 (MW) | 168.799860 | 94.00001916 | 322.733043 | 297.366373 | 318.3994557 | 243.6012566 |
PT12 (MW) | 94.000003 | 94.00000226 | 315.129176 | 289.219449 | 318.3993251 | 243.6003501 |
PT13 (MW) | 484.039161 | 304.519587 | 480.860016 | 441.638969 | 484.0391469 | 394.2851366 |
PT14 (MW) | 484.039166 | 304.5195816 | 475.905463 | 431.552565 | 484.0391695 | 394.2799802 |
PT15 (MW) | 484.039164 | 394.2793758 | 476.271511 | 433.133288 | 484.0391541 | 394.2841752 |
PT16 (MW) | 484.039178 | 484.039163 | 480.455232 | 439.072444 | 484.0391647 | 484.0292251 |
PT17 (MW) | 489.279372 | 489.2793773 | 471.830727 | 438.041844 | 489.2793744 | 489.2692227 |
PT18 (MW) | 489.279372 | 489.2793735 | 461.973780 | 427.916684 | 399.5196438 | 399.5209877 |
PT19 (MW) | 511.279600 | 511.2793699 | 483.440794 | 446.749851 | 510.840761 | 506.0067276 |
PT20 (MW) | 511.279490 | 511.2793799 | 483.258780 | 446.772552 | 510.666052 | 421.5364187 |
PT21 (MW) | 526.732209 | 523.2793949 | 483.252001 | 447.336714 | 511.7221827 | 433.5530376 |
PT22 (MW) | 550.000000 | 523.2793745 | 486.947376 | 452.005128 | 516.1579618 | 514.2353651 |
PT23 (MW) | 523.279384 | 523.2793957 | 472.040407 | 438.402949 | 433.5204637 | 433.5329212 |
PT24 (MW) | 523.279383 | 523.2793722 | 462.227523 | 428.365213 | 433.5195802 | 433.5268561 |
PT25 (MW) | 524.239856 | 523.2793935 | 483.754300 | 447.367210 | 511.6249809 | 433.5342317 |
PT26 (MW) | 523.815577 | 523.2793731 | 483.575006 | 447.380310 | 511.4580636 | 433.7489257 |
PT27 (MW) | 10.000020 | 10.00000931 | 67.543932 | 33.650576 | 15.28948883 | 10.05540017 |
PT28 (MW) | 10.000113 | 10.00000064 | 72.653376 | 36.778266 | 17.79565013 | 10.24418652 |
PT29 (MW) | 10.000007 | 10.00000189 | 54.008031 | 28.253062 | 10.36768925 | 10.0022597 |
PT30 (MW) | 87.800155 | 87.79991386 | 97.000000 | 97.000000 | 96.99999662 | 89.80426078 |
PT31 (MW) | 190.000000 | 190.0000000 | 190.000000 | 175.455547 | 190.0000000 | 189.998884 |
PT32 (MW) | 190.000000 | 189.9999989 | 190.000000 | 175.467999 | 190.0000000 | 189.9955403 |
PT33 (MW) | 190.000000 | 189.9999997 | 190.000000 | 175.691210 | 190.0000000 | 189.9978565 |
PT34 (MW) | 200.000000 | 195.3472481 | 200.000000 | 200.000000 | 200.0000000 | 199.9994215 |
PT35 (MW) | 199.999999 | 164.7998866 | 200.000000 | 200.000000 | 200.0000000 | 199.9994151 |
PT36 (MW) | 164.799870 | 164.7998371 | 200.000000 | 200.000000 | 199.9999989 | 199.998299 |
PT37 (MW) | 110.000000 | 109.9999997 | 110.000000 | 103.209409 | 110.0000000 | 110.0000000 |
PT38 (MW) | 109.999999 | 109.9999992 | 110.000000 | 103.216803 | 110.0000000 | 109.9997758 |
PT39 (MW) | 110.000000 | 109.9999985 | 110.000000 | 103.385396 | 110.0000000 | 109.9962344 |
PT40 (MW) | 550.000000 | 511.2794082 | 486.926373 | 451.971343 | 511.2792996 | 509.5675741 |
Cost C(PT,PW) ($/h) | 136,454.33693 | 123,161.88666 | 147,526.93169 | 133,213.62916 | 139,049.0921 | 126,645.13420 |
Emission E(PT,PW) (t/h) | 501,366.97888 | 375,873.82903 | 347,578.49057 | 193,311.54070 | 388,020.2454 | 239,155.73184 |
PL (MW) | 958.6206217 | 936.7097306 | 1040.543121 | 1009.748098 | 1000.489155 | 962.815076 |
∆P (MW) | −9.7 × 10−6 | −9.8 × 10−6 | −9.9 × 10−6 | −9.7 × 10−6 | −6.1 × 10−6 | −4.1 × 10−6 |
Time (s) | 28.61 | 30.09 | 16.34 | 17.37 | 30.07 | 32.96 |
Cases | R− | R+ | p-Values | Winner |
---|---|---|---|---|
C1a | 3.00 | 26.44 | 0.000 | MSGO |
C1b | 1.00 | 26.00 | 0.000 | MSGO |
C2a | 12.50 | 27.27 | 0.000 | MSGO |
C2b | 22.11 | 29.82 | 0.858 | - |
C3a | 12.67 | 28.32 | 0.000 | MSGO |
C3b | 21.95 | 27.87 | 0.055 | - |
C4a | 11.67 | 28.54 | 0.000 | MSGO |
C4b | 13.54 | 29.70 | 0.000 | MSGO |
Items Cases | SGO Algorithm (ω = 0.5) | MSGO Algorithm (ω = 0.5) | Cost/Emission Reduced by MSGO ** | |||||
---|---|---|---|---|---|---|---|---|
Cost ($/h) | Emission (t/h) | μmax | Cost ($/h) | Emission (t/h) | μmax | Cost Saving ($/h) | Emission Reduction (t/h) | |
C1c | 112,884.4848 | 4177.6633 | 0.04903 | 112,913.8455 | 4173.0883 | 0.04908 | −29.36 | 4.57 |
C2c* | 125,526.3426 | 201,944.5841 | 0.08106 | 125,434.4655 | 200,613.6797 | 0.08017 | 91.88 | 1330.90 |
C3c | 139,588.2247 | 380,601.7819 | 0.10265 | 139,049.0921 | 388,020.2454 | 0.10244 | 539.13 | −7418.46 |
C4c* | 127,033.6502 | 242,252.893 | 0.10342 | 126,645.1342 | 239,155.7318 | 0.10661 | 388.52 | 3097.16 |
Case | Case C1c | Case C2c | Case C3c | Case C4c |
---|---|---|---|---|
IKSO [72] | 0.044284 | – | – | – |
SGO (ω = 0.5) | 0.044676 | MSGO’s BCS dominates SGO’s BCS, from Table 14 (MSGO winner) | 0.092898 | MSGO’s BCS dominates SGO’s BCS, from Table 14 (MSGO winner) |
MSGO (ω = 0.5) | μmax = 0.044715 (MSGO winner) | μmax = 0.092926 (MSGO winner) |
Item Cases | Hyper Volume | C-Metric (%) | ||
---|---|---|---|---|
SGO | MSGO | C(SGO, MSGO) | C(MSGO, SGO) | |
Case C1c | 0.9710 | 0.9712 | 0 | 4.55 |
Case C2c | 0.9775 | 0.9836 | 0 | 42.86 |
Case C3c | 1.0887 | 1.0942 | 0 | 27.27 |
Case C4c | 1.0007 | 1.0172 | 0 | 54.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secui, D.C.; Hora, C.; Bendea, C.; Secui, M.L.; Bendea, G.; Dan, F.C. Modified Social Group Optimization to Solve the Problem of Economic Emission Dispatch with the Incorporation of Wind Power. Sustainability 2024, 16, 397. https://doi.org/10.3390/su16010397
Secui DC, Hora C, Bendea C, Secui ML, Bendea G, Dan FC. Modified Social Group Optimization to Solve the Problem of Economic Emission Dispatch with the Incorporation of Wind Power. Sustainability. 2024; 16(1):397. https://doi.org/10.3390/su16010397
Chicago/Turabian StyleSecui, Dinu Calin, Cristina Hora, Codruta Bendea, Monica Liana Secui, Gabriel Bendea, and Florin Ciprian Dan. 2024. "Modified Social Group Optimization to Solve the Problem of Economic Emission Dispatch with the Incorporation of Wind Power" Sustainability 16, no. 1: 397. https://doi.org/10.3390/su16010397
APA StyleSecui, D. C., Hora, C., Bendea, C., Secui, M. L., Bendea, G., & Dan, F. C. (2024). Modified Social Group Optimization to Solve the Problem of Economic Emission Dispatch with the Incorporation of Wind Power. Sustainability, 16(1), 397. https://doi.org/10.3390/su16010397