Kinetic Modeling of Co-Pyrogasification in Municipal Solid Waste (MSW) Management: Towards Sustainable Resource Recovery and Energy Generation
Abstract
:1. Introduction
2. Materials and Methods
3. Kinetic Modeling and Artificial Neural Network Approaches
3.1. Kinetic Study
3.2. Deconvolution Procedure
3.3. Determination of the Kinetic Parameters
3.4. Thermodynamic Parameters
3.5. Artificial Neural Networks
4. Results
4.1. Raw Material Characterization
4.2. Macro-Thermogravimetric Analysis
4.2.1. Thermal Analysis
4.2.2. Deconvolution Analysis
4.3. Kinetic Parameters for the Multi-Step Mechanism
4.3.1. Activation Energy
4.3.2. Pre-Exponential Factor
4.3.3. Reaction Mechanism
4.4. Thermodynamic Parameters
4.5. Artificial Neural Networks
5. Discussion
5.1. Raw Material Characterization
5.2. Thermal Analysis
5.3. Kinetic Parameters for the Multi-Step Mechanism
5.3.1. Activation Energy
5.3.2. Pre-Exponential Factor
5.3.3. Reaction Mechanism
5.4. Thermodynamic Parameters
5.5. Artificial Neural Networks
6. Conclusions
- PW’s high volatile and low ash contents make it appropriate for bio-oil production, crucial for bioenergy generation via PW pyrogasification.
- PW shares characteristics with lignocellulosic biomass, enhancing its potential as an alternative feedstock with favorable pyrogasification qualities.
- Co-pyrogasification involves heterogeneous chemical reactions, evident from distinct ‘shoulders’ in DTG curves, necessitating multi-step kinetic analysis for accuracy.
- Deconvolution analysis identified stages in PP and PO mixtures, each representing components like cellulose, hemicellulose, LDPE, and lignin, with distinct decomposition temperature ranges.
- PW exhibits reduced activation energy variation compared to blends of PA and OM due to the complex structures of lignin and cellulose, necessitating higher energy inputs for decomposition, leading to char formation.
- Pyrogasification of PP-PC2 predominantly follows the Avrami–Erofeev model, providing insights into diffusion-controlled kinetics during solid-state reactions.
- Understanding activation energy variation in pyrogasification is crucial for optimizing parameters and predicting feedstock behavior, guiding future process design.
- Strong agreement between predicted and experimental data confirms result consistency, enhancing confidence in their reliability and significance.
- Macro-TGA effectively explores decomposition kinetics in various waste materials, validated by ANNs, highlighting their utility in characterizing pyrogasification behaviors.
- Encouraging investment in pyrogasification technologies, especially those using PW and organic materials through financial incentives and research grants.
- Allocating funds for research and development initiatives to improve pyrogasification technologies and explore new applications.
- Fostering international collaboration to share knowledge and best practices in pyrogasification and waste management, advancing the transition to a circular economy.
- Supporting public awareness campaigns and education to promote understanding of pyrogasification technologies and sustainable waste management practices.
- Exploring more complex waste mixtures and varied process conditions to broaden the scope of understanding.
- Studying scale-up and implementation of optimized pyrogasification processes in practical settings.
- Assessing environmental impacts and techno-economic feasibility.
- Continuing the development of AI applications to refine characterization and prediction capabilities.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Pre-exponential factor |
a | Kinetic compensation effect parameter (intersect), |
AAD | Average absolute deviation |
ANN | Artificial neural network |
b | Kinetic compensation effect parameter (slope) |
BPNN | Backpropagation neural network |
FWO | Flynn–Wall–Ozawa |
h | Planck constant, Js |
HDPE | High-density polyethylene |
HHV | Higher heating value, MJ/kg |
KAS | Kissinger–Akahira–Sunose |
kb | Boltzmann constant, J/K |
KCE | Kinetic compensation effect |
LDPE | Low-density polyethylene |
MAE | Mean absolute error |
MSE | Mean squared error |
MSW | Municipal solid waste |
N | Number of predicted points |
PA | Paper |
PC1 | Pseudo-component 1 |
PC2 | Pseudo-component 2 |
PC3 | Pseudo-component 3 |
PC4 | Pseudo-component 4 |
PLA | Polylactic acid |
PO | Plastic/organic matter 50/50 |
PP | Plastic/paper 50/50 |
PPR | Polypropylene |
PS | Polystyrene |
PVC | Polyvinyl chloride |
PW | Plastic waste |
R | Gas constant, KJ/Kmol K |
R2 | Determination coefficient |
RMSE | Root mean square error |
Tm | Temperature of the maximum mass decomposition rate, °C |
v | Fit parameter of the Levenberg–Marquardt iteration algorithm |
w | Fit parameter of the Levenberg–Marquardt iteration algorithm |
xc | Fit parameter of the Levenberg–Marquardt iteration algorithm |
Average of the experimental mass left (wt. %) | |
Yi | Experimental value of mass left (wt. %) |
Ypi | Predicted value of mass left (wt. %) |
α | Degree of conversion |
β | Heating rate, K/min |
∆G | Activation Gibbs energy, kJ/mol |
∆H | Activation enthalpy, kJ/mol |
∆S | Activation entropy, kJ/(K mol) |
References
- Hoornweg, D.; Bhada-Tata, P.; Kennedy, C. Environment: Waste Production Must Peak This Century. Nature 2013, 502, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Zhang, M.; Lu, Y.; Zhang, H.; Lau, E. Von New Insights for Improving Low-Rank Coal Flotation Performance via Emulsified Waste Fried Oil Collector. Fuel 2024, 357, 129925. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, M.; Lu, Y.; Zhang, Y.; Lin, B.; Von Lau, E. A Novel Method for the Green Utilization of Waste Fried Oil. Particuology 2024, 84, 1–11. [Google Scholar] [CrossRef]
- Zalazar-García, D.; Fernandez, A.; Cavaliere, L.; Deng, Y.; Soria, J.; Rodriguez, R.; Mazza, G. Slow Pyrolysis of Pistachio-Waste Pellets: Combined Phenomenological Modeling with Environmental, Exergetic, and Energetic Analysis (3-E). Biomass Convers. Biorefinery 2024, 14, 9197–9215. [Google Scholar] [CrossRef]
- Torres-Sciancalepore, R.; Fernandez, A.; Asensio, D.; Riveros, M.; Fabani, M.P.; Fouga, G.; Rodriguez, R.; Mazza, G. Kinetic and Thermodynamic Comparative Study of Quince Bio-Waste Slow Pyrolysis before and after Sustainable Recovery of Pectin Compounds. Energy Convers. Manag. 2022, 252, 115076. [Google Scholar] [CrossRef]
- Wang, Z.; Burra, K.G.; Lei, T.; Gupta, A.K. Co-Pyrolysis of Waste Plastic and Solid Biomass for Synergistic Production of Biofuels and Chemicals-A Review. Prog. Energy Combust. Sci. 2021, 84, 100899. [Google Scholar] [CrossRef]
- Singh, S.; Patil, T.; Tekade, S.P.; Gawande, M.B.; Sawarkar, A.N. Studies on Individual Pyrolysis and Co-Pyrolysis of Corn Cob and Polyethylene: Thermal Degradation Behavior, Possible Synergism, Kinetics, and Thermodynamic Analysis. Sci. Total Environ. 2021, 783, 147004. [Google Scholar] [CrossRef] [PubMed]
- Le, P.T.; Bui, H.T.; Le, D.N.; Nguyen, T.H.; Pham, L.A.; Nguyen, H.N.; Nguyen, Q.S.; Nguyen, T.P. Preparation and Characterization of Biochar Derived from Agricultural By-Products for Dye Removal. Adsorpt. Sci. Technol. 2021, 2021, 9161904. [Google Scholar] [CrossRef]
- Wu, S.; Li, Z. Experimental and Modeling Study on Centimeter Pine Char Combustion in Fast-Heating Macro TGA. Proc. Combust. Inst. 2023, 39, 3497–3508. [Google Scholar] [CrossRef]
- Durga, M.L.; Gangil, S.; Bhargav, V.K. Thermal Influx Induced Biopolymeric Transitions in Paddy Straw. Renew. Energy 2022, 199, 1024–1032. [Google Scholar] [CrossRef]
- Liu, X.; Burra, K.G.; Wang, Z.; Li, J.; Che, D.; Gupta, A.K. On Deconvolution for Understanding Synergistic Effects in Co-Pyrolysis of Pinewood and Polypropylene. Appl. Energy 2020, 279, 115811. [Google Scholar] [CrossRef]
- Xie, T.; Zhao, L.; Yao, Z.; Kang, K.; Jia, J.; Hu, T.; Zhang, X.; Sun, Y.; Huo, L. Co-Pyrolysis of Biomass and Polyethylene: Insights into Characteristics, Kinetic and Evolution Paths of the Reaction Process. Sci. Total Environ. 2023, 897, 165443. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Wang, W.; Xie, W.; Tang, Y.; Xu, Y.; Wang, K. Co-Pyrolysis of Corn Stover and Waste Tire: Pyrolysis Behavior and Kinetic Study Based on Fraser-Suzuki Deconvolution Procedure. J. Anal. Appl. Pyrolysis 2022, 168, 105743. [Google Scholar] [CrossRef]
- Muravyev, N.V.; Luciano, G.; Ornaghi, H.L.; Svoboda, R.; Vyazovkin, S. Artificial Neural Networks for Pyrolysis, Thermal Analysis, and Thermokinetic Studies: The Status Quo. Molecules 2021, 26, 3727. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Brems, A.; Baeyens, J.; Beerlandt, J.; Dewil, R. Thermogravimetric Pyrolysis of Waste Polyethylene-Terephthalate and Polystyrene: A Critical Assessment of Kinetics Modelling. Resour. Conserv. Recycl. 2011, 55, 772–781. [Google Scholar] [CrossRef]
- Motta, I.L.; Miranda, N.T.; Maciel Filho, R.; Wolf Maciel, M.R. Biomass Gasification in Fluidized Beds: A Review of Biomass Moisture Content and Operating Pressure Effects. Renew. Sustain. Energy Rev. 2018, 94, 998–1023. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Ding, H.; Huang, L.; Zhu, X. Comprehensive Study on Pyrolysis and Co-Pyrolysis of Walnut Shell and Bio-Oil Distillation Residue. Energy Convers. Manag. 2018, 168, 178–187. [Google Scholar] [CrossRef]
- Pinzi, S.; Buratti, C.; Bartocci, P.; Marseglia, G.; Fantozzi, F.; Barbanera, M. A Simplified Method for Kinetic Modeling of Coffee Silver Skin Pyrolysis by Coupling Pseudo-Components Peaks Deconvolution Analysis and Model Free-Isoconversional Methods. Fuel 2020, 278, 118260. [Google Scholar] [CrossRef]
- Torres-Sciancalepore, R.; Nassini, D.; Asensio, D.; Bohé, A.; Rodriguez, R.; Fouga, G.; Mazza, G. Synergistic Effects of the Mixing Factor on the Kinetics and Products Obtained by Co-Pyrolysis of Rosa Rubiginosa Rosehip Seed and Husk Wastes. Energy Convers. Manag. 2024, 302, 118095. [Google Scholar] [CrossRef]
- Gotor, F.J.; Criado, J.M.; Malek, J.; Koga, N. Kinetic Analysis of Solid-State Reactions: The Universality of Master Plots for Analyzing Isothermal and Nonisothermal Experiments. J. Phys. Chem. A 2000, 104, 10777–10782. [Google Scholar] [CrossRef]
- Mogul, R.; Limaye, S.S.; Way, M.J. The CO2 profile and analytical model for the Pioneer Venus Large Probe neutral mass spectrometer. Icarus 2023, 392, 115374. [Google Scholar] [CrossRef]
- Ansah, E.; Wang, L.; Shahbazi, A. Thermogravimetric and Calorimetric Characteristics during Co-Pyrolysis of Municipal Solid Waste Components. Waste Manag. 2016, 56, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Burra, K.G.; Gupta, A.K. Kinetics of Synergistic Effects in Co-Pyrolysis of Biomass with Plastic Wastes. Appl. Energy 2018, 220, 408–418. [Google Scholar] [CrossRef]
- Gunasee, S.D.; Carrier, M.; Gorgens, J.F.; Mohee, R. Pyrolysis and Combustion of Municipal Solid Wastes: Evaluation of Synergistic Effects Using TGA-MS. J. Anal. Appl. Pyrolysis 2016, 121, 50–61. [Google Scholar] [CrossRef]
- Gunasee, S.D.; Danon, B.; Görgens, J.F.; Mohee, R. Co-Pyrolysis of LDPE and Cellulose: Synergies during Devolatilization and Condensation. J. Anal. Appl. Pyrolysis 2017, 126, 307–314. [Google Scholar] [CrossRef]
- Hu, Q.; Tang, Z.; Yao, D.; Yang, H.; Shao, J.; Chen, H. Thermal Behavior, Kinetics and Gas Evolution Characteristics for the Co-Pyrolysis of Real-World Plastic and Tyre Wastes. J. Clean. Prod. 2020, 260, 121102. [Google Scholar] [CrossRef]
- Sette, P.; Fernandez, A.; Soria, J.; Rodriguez, R.; Salvatori, D.; Mazza, G. Integral Valorization of Fruit Waste from Wine and Cider Industries. J. Clean. Prod. 2020, 242, 118486. [Google Scholar] [CrossRef]
- Ni, Z.; Bi, H.; Jiang, C.; Sun, H.; Zhou, W.; Qiu, Z.; Lin, Q. Research on the Co-Pyrolysis of Coal Slime and Cellulose Based on TG-FTIR-MS, Artificial Neural Network, and Principal Component Analysis. Fuel 2022, 320, 123960. [Google Scholar] [CrossRef]
- Domenico, M.D.; Amorim, S.M.; Collazzo, G.C.; José, H.J.; Moreira, R.F.P.M. Coal Gasification in the Presence of Lithium Orthosilicate. Part 1: Reaction Kinetics. Chem. Eng. Res. Des. 2019, 141, 529–539. [Google Scholar] [CrossRef]
- Alam, M.; Bhavanam, A.; Jana, A.; Viroja, J.; Kumar, S.; Peela, N.R. Co-Pyrolysis of Bamboo Sawdust and Plastic: Synergistic Effects and Kinetics. Renew. Energy 2020, 149, 1133–1145. [Google Scholar] [CrossRef]
- Ma, M.; Xu, D.; Zhi, Y.; Yang, W.; Duan, P.; Wu, Z. Co-Pyrolysis Re-Use of Sludge and Biomass Waste: Development, Kinetics, Synergistic Mechanism and Industrialization. J. Anal. Appl. Pyrolysis 2022, 168, 105746. [Google Scholar] [CrossRef]
- Gouws, S.M.; Carrier, M.; Bunt, J.R.; Neomagus, H.W.J.P. Co-Pyrolysis of Coal and Raw/Torrefied Biomass: A Review on Chemistry, Kinetics and Implementation. Renew. Sustain. Energy Rev. 2021, 135, 110189. [Google Scholar] [CrossRef]
- Singh, Y.D.; Mahanta, P.; Bora, U. Comprehensive Characterization of Lignocellulosic Biomass through Proximate, Ultimate and Compositional Analysis for Bioenergy Production. Renew. Energy 2017, 103, 490–500. [Google Scholar] [CrossRef]
- Kaur, R.; Gera, P.; Jha, M.K.; Bhaskar, T. Pyrolysis Kinetics and Thermodynamic Parameters of Castor (Ricinus communis) Residue Using Thermogravimetric Analysis. Bioresour. Technol. 2018, 250, 422–428. [Google Scholar] [CrossRef]
- Wen, Y.; Zaini, I.N.; Wang, S.; Mu, W.; Jönsson, P.G.; Yang, W. Synergistic Effect of the Co-Pyrolysis of Cardboard and Polyethylene: A Kinetic and Thermodynamic Study. Energy 2021, 229, 120693. [Google Scholar] [CrossRef]
- Wang, W.; Luo, G.; Zhao, Y.; Tang, Y.; Wang, K.; Li, X.; Xu, Y. Kinetic and Thermodynamic Analyses of Co-Pyrolysis of Pine Wood and Polyethylene Plastic Based on Fraser-Suzuki Deconvolution Procedure. Fuel 2022, 322, 124200. [Google Scholar] [CrossRef]
- Martínez-Narro, G.; Royston, N.J.; Billsborough, K.L.; Phan, A.N. Kinetic Modelling of Mixed Plastic Waste Pyrolysis. Chem. Thermodyn. Therm. Anal. 2023, 9, 100105. [Google Scholar] [CrossRef]
- Wang, S.; Lin, H.; Ru, B.; Dai, G.; Wang, X.; Xiao, G.; Luo, Z. Kinetic Modeling of Biomass Components Pyrolysis Using a Sequential and Coupling Method. Fuel 2016, 185, 763–771. [Google Scholar] [CrossRef]
- Song, Z.; Li, M.; Pan, Y.; Shu, C.M. A Generalized Differential Method to Calculate Lumped Kinetic Triplet of the Nth Order Model for the Global One-Step Heterogeneous Reaction Using TG Data. J. Loss Prev. Process Ind. 2020, 64, 104094. [Google Scholar] [CrossRef]
- Tong, W.; Cai, Z.; Liu, Q.; Ren, S.; Kong, M. Evaluation of Biochar Combustion Reactivity under Pyrolysis Temperature: Microstructure Characterization, Kinetics and Thermodynamics. J. Energy Inst. 2020, 93, 1914–1923. [Google Scholar] [CrossRef]
- Mumbach, G.D.; Alves, J.L.F.; Da Silva, J.C.G.; De Sena, R.F.; Marangoni, C.; Machado, R.A.F.; Bolzan, A. Thermal Investigation of Plastic Solid Waste Pyrolysis via the Deconvolution Technique Using the Asymmetric Double Sigmoidal Function: Determination of the Kinetic Triplet, Thermodynamic Parameters, Thermal Lifetime and Pyrolytic Oil Composition for Clean. Energy Convers. Manag. 2019, 200, 112031. [Google Scholar] [CrossRef]
- da Silva, J.C.G.; de Albuquerque, J.G.; de Araujo Galdino, W.V.; de Sena, R.F.; Andersen, S.L.F. Single-step and multi-step thermokinetic study—Deconvolution method as a simple pathway for describe properly the biomass pyrolysis for energy conversion. Energy Convers. Manag. 2020, 209, 112653. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Q.X. Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation. Chem. Rev. 2001, 101, 673–695. [Google Scholar] [CrossRef]
- Garvín, A.; Ibarz, R.; Ibarz, A. Kinetic and thermodynamic compensation. A current and practical review for foods. Food Res. Int. 2017, 96, 132–153. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
Reference | TGA Experiment | Type of Biomass | Type of Plastic | Paper | Paper, Plastic, and Biomass (Mass) Ratio | Heating Rate (°C/min) |
---|---|---|---|---|---|---|
[23] | 1 | Wood | - | - | 0/0/1 | 10 |
2 | - | - | Paper | 1/0/0 | 10 | |
3 | - | PET | - | 0/1/0 | 10 | |
4 | Wood | PET | - | 0/7/3 | 10 | |
5 | Wood | PET | - | 0/1/1 | 10 | |
6 | Wood | PET | - | 0/3/7 | 10 | |
[24] | 7 | - | PPR | - | 0/1/0 | 10 |
8 | - | PPR | - | 0/1/0 | 20 | |
9 | - | PPR | - | 0/1/0 | 30 | |
10 | - | PET | - | 0/1/0 | 10 | |
11 | - | PET | - | 0/1/0 | 20 | |
12 | - | PET | - | 0/1/0 | 30 | |
13 | Pinewood | PPR | 0/75/25 | 10 | ||
14 | Pinewood | PPR | 0/50/50 | 10 | ||
15 | Pinewood | PPR | 0/25/75 | 10 | ||
16 | Pinewood | - | - | 0/0/1 | 10 | |
17 | Pinewood | - | - | 0/0/1 | 20 | |
18 | Pinewood | - | - | 0/0/1 | 30 | |
[25] | 19 | - | PVC | - | 0/1/0 | 20 |
20 | - | PPR | - | 0/1/0 | 20 | |
21 | - | PS | - | 0/1/0 | 20 | |
22 | Branches | - | - | 0/0/1 | 20 | |
23 | Leaves | - | - | 0/0/1 | 20 | |
24 | Grass | - | - | 0/0/1 | 20 | |
25 | - | - | Cardboard | 1/0/0 | 20 | |
26 | - | - | Hygienic paper | 1/0/0 | 20 | |
27 | Branches | PPR | Cardboard | 1/1/1 | 20 | |
[26] | 28 | - | - | Cellulose | 1/0/0 | 10 |
29 | - | LDPE | - | 0/1/0 | 10 | |
30 | - | LDPE | Cellulose | 1/1/0 | 10 | |
[27] | 31 | - | LDPE | - | 0/1/0 | 10 |
32 | - | HDPE | - | 0/1/0 | 10 | |
33 | - | PPR | - | 0/1/0 | 10 | |
34 | - | PS | - | 0/1/0 | 10 | |
35 | - | Terylene | - | 0/1/0 | 10 | |
36 | - | Terylene | LDPE | 1/1/0 | 10 | |
37 | - | Terylene | HDPE | 1/1/0 | 10 | |
38 | - | Terylene | PPR | 1/1/0 | 10 | |
[5] | 39 | Quince | - | - | 0/0/1 | 5 |
40 | Quince | - | - | 0/0/1 | 10 | |
41 | Quince | - | - | 0/0/1 | 15 | |
42 | Pectin-Free Quince | - | - | 0/0/1 | 5 | |
43 | Pectin-Free Quince | - | - | 0/0/1 | 10 | |
44 | Pectin-Free Quince | - | - | 0/0/1 | 15 | |
[28] | 45 | Grape Marc | - | - | 0/0/1 | 10 |
46 | Grape Marc | - | - | 0/0/1 | 15 | |
47 | Grape Marc | - | - | 0/0/1 | 20 | |
48 | Grape Stalk | - | 0/0/1 | 10 | ||
49 | Grape Stalk | - | 0/0/1 | 15 | ||
50 | Grape Stalk | - | 0/0/1 | 20 | ||
51 | Apple Pomace | - | 0/0/1 | 10 | ||
52 | Apple Pomace | - | 0/0/1 | 15 | ||
53 | Apple Pomace | - | 0/0/1 | 20 |
PW | PA | OM | |
---|---|---|---|
C (%) | 82.2 | 42.1 | 40.8 |
H (%) | 16.4 | 6.0 | 5.4 |
N (%) | - | - | 8.7 |
S (%) | - | - | 6.5 |
O (%) 1 | 1.5 | 50.7 | 38.6 |
Moisture (%) | - | 4.7 | 4.6 |
Ash (%) 2 | 0.3 | 1.2 | 9.3 |
Volatile matter (%) | 99.7 | 88.4 | 74.1 |
Fixed carbon (%) 2 | - | 10.4 | 12.0 |
HHV (MJ/kg) | 43.1 | 17.1 | 16.4 |
Component | β (K/min) | a | b | R2 | A (1/s) |
---|---|---|---|---|---|
PW | 10 | 0.223 | −2.428 | 0.978 | 7.42 |
15 | 0.202 | −2.249 | 0.947 | 5.88 | |
20 | 0.192 | −1.561 | 0.975 | 9.45 | |
PO-PC1 | 10 | 0.308 | −4.710 | 0.903 | 4.05 |
15 | 0.291 | −4.220 | 0.894 | 4.81 | |
20 | 0.273 | −3.980 | 0.900 | 421 | |
PO-PC2 | 10 | 0.339 | −4.878 | 0.903 | 4.04 |
15 | 0.321 | −4.341 | 0.898 | 4.87 | |
20 | 0.244 | −2.216 | 0.999 | 9.84 | |
PO-PC3 | 10 | 0.262 | −4.548 | 0.897 | 10.06 |
15 | 0.268 | −4.169 | 0.880 | 17.51 | |
20 | 0.228 | −2.219 | 0.998 | 42.13 | |
PO-PC4 | 10 | 0.345 | −5.081 | 0.868 | 36.46 |
15 | 0.335 | −4.665 | 0.841 | 43.11 | |
20 | 0.274 | −2.299 | 0.995 | 97.26 | |
PP-PC1 | 10 | 0.312 | −4.577 | 0.914 | 8.09 |
15 | 0.275 | −4.090 | 0.910 | 5.91 | |
20 | 0.254 | −2.184 | 0.999 | 25.41 | |
PP-PC2 | 10 | 0.279 | −4.467 | 0.910 | 67.45 |
15 | 0.271 | −4.109 | 0.899 | 76.35 | |
20 | 0.269 | −3.842 | 0.889 | 92.56 |
MSW | Tm (K) | E (kJ/mol) | ΔH (kJ/mol) | ΔG (kJ/mol) | ΔS (kJ/K mol) |
---|---|---|---|---|---|
PW | 522 | 20 | 16 | 141 | −0.24 |
PO-PC1 | 550 | 20 | 15 | 151 | −0.25 |
PO-PC2 | 505 | 18 | 14 | 137 | −0.24 |
PO-PC3 | 649 | 26 | 21 | 172 | −0.23 |
PO-PC4 | 573 | 25 | 20 | 149 | −0.22 |
PP-PC1 | 523 | 21 | 17 | 141 | −0.24 |
PP-PC2 | 591 | 31 | 26 | 158 | −0.22 |
MSW | β (K/min) | Parameter | Value | RMSE | MAE | R2 |
---|---|---|---|---|---|---|
PW | 10 | Network topology | 14-30-10-5-5-1-1 | 5.83 | 5.02 | 0.89 |
15 | 14-24-12-10-5-1-1 | 3.99 | 3.02 | 0.96 | ||
20 | 14-22-15-5-1-1 | 5.03 | 4.24 | 0.95 | ||
PP | 10 | 14-30-20-15-8-1-1 | 4.90 | 4.90 | 0.90 | |
15 | 14-30-20-15-8-1-1 | 6.59 | 4.84 | 0.90 | ||
20 | 14-30-20-15-8-1-1 | 8.58 | 7.49 | 0.86 | ||
PO | 10 | 14-30-20-15-8-1-1 | 10.69 | 7.97 | 0.88 | |
15 | 14-30-20-15-8-1-1 | 7.45 | 6.29 | 0.82 | ||
20 | 14-30-20-15-8-1-1 | 6.70 | 5.57 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, A.; Zalazar-García, D.; Lorenzo-Doncel, C.; Yepes Maya, D.M.; Silva Lora, E.E.; Rodriguez, R.; Mazza, G. Kinetic Modeling of Co-Pyrogasification in Municipal Solid Waste (MSW) Management: Towards Sustainable Resource Recovery and Energy Generation. Sustainability 2024, 16, 4056. https://doi.org/10.3390/su16104056
Fernandez A, Zalazar-García D, Lorenzo-Doncel C, Yepes Maya DM, Silva Lora EE, Rodriguez R, Mazza G. Kinetic Modeling of Co-Pyrogasification in Municipal Solid Waste (MSW) Management: Towards Sustainable Resource Recovery and Energy Generation. Sustainability. 2024; 16(10):4056. https://doi.org/10.3390/su16104056
Chicago/Turabian StyleFernandez, Anabel, Daniela Zalazar-García, Carla Lorenzo-Doncel, Diego Mauricio Yepes Maya, Electo Eduardo Silva Lora, Rosa Rodriguez, and Germán Mazza. 2024. "Kinetic Modeling of Co-Pyrogasification in Municipal Solid Waste (MSW) Management: Towards Sustainable Resource Recovery and Energy Generation" Sustainability 16, no. 10: 4056. https://doi.org/10.3390/su16104056
APA StyleFernandez, A., Zalazar-García, D., Lorenzo-Doncel, C., Yepes Maya, D. M., Silva Lora, E. E., Rodriguez, R., & Mazza, G. (2024). Kinetic Modeling of Co-Pyrogasification in Municipal Solid Waste (MSW) Management: Towards Sustainable Resource Recovery and Energy Generation. Sustainability, 16(10), 4056. https://doi.org/10.3390/su16104056