Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with A Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production
Abstract
:1. Introduction
2. Wind Turbines
2.1. Structure of Wind Turbines
2.2. Structure of the Blades, Material Composition, and Properties
Glass-Fiber-Reinforced Composites
2.3. Material Utilization per Blade
2.4. Sources of Blade Waste
2.5. Global Blade Material Quantification
2.5.1. GF and CF Composite Production
2.5.2. GF and CF Composite Waste Streams
3. Waste Management of Wind Turbine Rotor Blades
3.1. Landfilling
3.2. Incineration
3.3. Recycling
3.3.1. Thermal Recycling
3.3.2. Chemical Recycling
- High temperature and pressure (>200 °C) (HTP).
- Low temperature and pressure (<200 °C) (LTP).
3.3.3. Mechanical Recycling
Co-Processing in Cement Kilns
3.3.4. A Comparative Analysis of Recycling Technologies
- TRL 1–4: Lab scale.
- TRL 5–7: Pilot scale.
- TRL 8–9: Commercial scale.
3.4. Prevention
3.5. Reuse/Reduce/Repurpose
4. Microplastics and EoL Turbine Blades
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalid, M.Y.; Arif, Z.U.; Hossain, M.; Umer, R. Recycling of wind turbine blades through modern recycling technologies: A road to zero waste. Renew. Energy Focus 2023, 44, 373–389. [Google Scholar] [CrossRef]
- Beauson, J.; Lilholt, H.; Brøndsted, P. Recycling solid residues recovered from glass fibre-reinforced composites—A review applied to wind turbine blade materials. J. Reinf. Plast. Compos. 2014, 33, 1542–1556. [Google Scholar] [CrossRef]
- Composite UK. The Sustainability of Fibre-Reinforced Polymer Composites—A Good Practice Guide; Composites UK Ltd.: Berkhamsted, UK, 24 November 2022. [Google Scholar]
- ‘Our Common Future’, World Commission on Environment and Development. Published by Oxford University Press on Behalf of the United Nations. Available online: https://sdgs.un.org/https://sustainabledevelopment.un.org/index.php?menu=1375&year=1987 (accessed on 8 April 2024).
- Available online: https://www.iisd.org/topic/sustainable-development (accessed on 8 April 2024).
- Available online: https://sustainabilityadvantage.com/2010/07/20/3-sustainability-models/ (accessed on 8 April 2024).
- Al-Saud, K.M.; AlAli, R.; Abouelela, A.S.; Al Saud, A.M. Exploring the Feasibility for Utilizing Recycled Palm Waste in Decorative Design Applications as Enhancements for Tourist Destinations: A Step toward Environmental Sustainability. Sustainability 2024, 16, 1003. [Google Scholar] [CrossRef]
- Available online: http://www.wrap.org.uk/about-us/about/wrap-and-circular-economy (accessed on 8 April 2024).
- Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 8 April 2024).
- ‘What Is a Circular Economy?’ Ellen MacArthur Foundation. Available online: https://ellenmacarthurfoundation.org/topics/circular-economy-introduction/overview (accessed on 8 April 2024).
- Jensen, J.P.; Skelton, K. Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy. Renew. Sustain. Energy Rev. 2018, 97, 165–176. [Google Scholar] [CrossRef]
- Sommer, V.; Stockschläder, J.; Walther, G. Estimation of glass and carbon fiber reinforced plastic waste from end-of-life rotor blades of wind power plants within the European Union. Waste Manag. 2020, 115, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Federici, S.; Ademovic, Z.; Amorim, M.J.B.; Bigalke, M.; Cocca, M.; Depero, L.E.; Dutta, J.; Fritzsche, W.; Hartmann, N.B.; Kalčikova, G.; et al. COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues. Microplastics 2022, 1, 282–290. [Google Scholar] [CrossRef]
- Paulsen, E.B.; Enevoldsen, P. A Multidisciplinary Review of Recycling Methods for End-of-Life Wind Turbine Blades. Energies 2021, 14, 4247. [Google Scholar] [CrossRef]
- Chikha, I.; Bouzidi, Y.; Tazi, N.; Baklouti, S.; Idir, R. Comparative study between different valorization methods of glass fiber waste from end-of-life wind turbine blades. In Proceedings of the 2022 13th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 13–15 December 2022; IEEE: New York, NY, USA, 2022; pp. 1–6. [Google Scholar]
- Available online: https://www.anev.org/wp-content/uploads/2021/10/Anev_brochure_2021ENG.pdf (accessed on 8 April 2024).
- Lichtenegger, G.; Rentizelas, A.A.; Trivyza, N.; Siegl, S. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050. Waste Manag. 2020, 106, 120–131. [Google Scholar] [CrossRef]
- Albers, H.; Greiner, S.; Seifert, H.; Kühne, U. Recycling of wind turbine rotor blades. Fact or fiction? Recycling von Rotorblaettern aus Windenergieanlagen. Fakt oder Fiktion? DEWI-Magazin, 2009. [Google Scholar]
- Liu, P.; Barlow, C.Y. Wind turbine blade waste in 2050. Waste Manag. 2017, 62, 229–240. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Liu, J. Life-cycle green-house gas emissions of onshore and offshore wind turbines. J. Clean. Prod. 2019, 210, 804–810. [Google Scholar] [CrossRef]
- Kazemi, M.; Kabir, S.F.; Fini, E.H. State of the art in recycling waste thermoplastics and thermosets and their applications in construction. Resour. Conserv. Recycl. 2021, 174, 105776. [Google Scholar] [CrossRef]
- Morici, E.; Dintcheva, N.T. Recycling of Thermoset Materials and Thermoset-Based Composites: Challenge and Opportunity. Polymers 2022, 14, 4153. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R. Production, use, and fate of synthetic polymers. In Plastic Waste and Recycling; Academic Press: Cambridge, MA, USA, 2020; pp. 13–32. [Google Scholar]
- Brøndsted, P.; Lilholt, H.; Lystrup, A. Composite materials for wind power turbine blades. Annu. Rev. Mater. Res. 2005, 35, 505–538. [Google Scholar] [CrossRef]
- Salam, M.; Shahzadi, A.; Zheng, H.; Alam, F.; Nabi, G.; Dezhi, S.; Ullah, W.; Ammara, S.; Ali, N.; Bilal, M. Effect of different environmental conditions on the growth and development of Black Soldier Fly Larvae and its utilization in solid waste management and pollution mitigation. Environ. Technol. Innov. 2022, 28, 102649. [Google Scholar] [CrossRef]
- Sun, A.; Wang, W.-X. Human Exposure to Microplastics and Its Associated Health Risks. Environ. Health 2023, 1, 139–149. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, M.; Feng, Z.; Wang, Z.; Lv, M.; Chang, J.; Chen, L.; Wang, C. Human Microplastics Exposure and Potential Health Risks to Target Organs by Different Routes: A Review. Curr. Pollut. Rep. 2023, 9, 468–485. [Google Scholar] [CrossRef]
- Tong, W. Wind Power Generation and Wind Turbine Design; WIT Press: Billerica, MA, USA, 2010. [Google Scholar]
- Letcher, T. (Ed.) Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Alam, F.; Jin, Y. The Utilisation of Small Wind Turbines in Built-Up Areas: Prospects and Challenges. Wind 2023, 3, 418–438. [Google Scholar] [CrossRef]
- McKenna, R.; v.d. Leye, P.O.; Fichtner, W. Key challenges and prospects for large wind turbines. Renew. Sustain. Energy Rev. 2016, 53, 1212–1221. [Google Scholar] [CrossRef]
- Wikimedia Commons. Illustration of a Wind Turbine. Licensed under CC BY-SA 3.0. 2007. Available online: http://commons.wikimedia.org/wiki/File:Wind_turbine_int.svg#/media/File:Wind_turbine_int.svg (accessed on 8 April 2024).
- Gkantou, M.; Rebelo, C.; Baniotopoulos, C. Life Cycle Assessment of Tall Onshore Hybrid Steel Wind Turbine Towers. Energies 2020, 13, 3950. [Google Scholar] [CrossRef]
- Civera, M.; Surace, C. Non-Destructive Techniques for the Condition and Structural Health Monitoring of Wind Turbines: A Literature Review of the Last 20 Years. Sensors 2022, 22, 1627. [Google Scholar] [CrossRef]
- Korniejenko, K.; Kozub, B.; Bąk, A.; Balamurugan, P.; Uthayakumar, M.; Furtos, G. Tackling the Circular Economy Challenges—Composites Recycling: Used Tyres, Wind Turbine Blades, and Solar Panels. J. Compos. Sci. 2021, 5, 243. [Google Scholar] [CrossRef]
- Scaffaro, R.; Di Bartolo, A.; Dintcheva, N.T. Matrix and Filler Recycling of Carbon and Glass Fiber-Reinforced Polymer Composites: A Review. Polymers 2021, 13, 3817. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.S.P.; Suresh, R.; M.B., H.; Shivakumar, B. Use of composite materials and hybrid composites in wind turbine blades. Mater. Today Proc. 2021, 46, 2827–2830. [Google Scholar] [CrossRef]
- Naqvi, S.; Prabhakara, H.M.; Bramer, E.; Dierkes, W.; Akkerman, R.; Brem, G. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 2018, 136, 118–129. [Google Scholar] [CrossRef]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef] [PubMed]
- EWEA. Research Note Outline on Recycling Wind Turbine Blades; European Wind Energy Association: Brussels, Belgium, 2012. [Google Scholar]
- WindEurope. Wind in Power. 2016 European Statistics. WindEurope; 2015. Available online: https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2016.pdf (accessed on 8 April 2024).
- Celik, E.; Sacmaozu, G.; Irez, A.B. Development of Carbon-Glass Fiber Reinforced Hybrid Composites: Applications in Offshore Wind Turbine Blades. In Mechanics of Composite, Hybrid and Multifunctional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3: Proceedings of the 2021 Annual Conference on Experimental and Applied Mechanics, Virtual, 14–17 June 2021; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 17–22. [Google Scholar]
- Nghiem, A.; Pineda, I. Wind Energy in Europe: Scenarios for 2030; Wind Europe: Brussel, Belgium, 2017; p. 32. Available online: https://windeurope.org/wp-content/uploads/files/about-wind/reports/Wind-energy-in-Europe-Scenarios-for-2030.pdf (accessed on 8 April 2024).
- Gonçalves, R.M.; Martinho, A.; Oliveira, J.P. Recycling of Reinforced Glass Fibers Waste: Current Status. Materials 2022, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Boom, R.; Irion, B.; Van Heerden, D.J.; Kuiper, P.; De Wit, H. Recycling of composite materials. Chem. Eng. Process. Process Intensif. 2012, 51, 53–68. [Google Scholar] [CrossRef]
- Leeke, G.; Oliveux, G.; Pickering, S. Composite Recycling: Where Are We Now? Composites UK: Berkhamsted, UK, 2016; Available online: https://compositesuk.co.uk/wp-content/uploads/2021/10/Recycling-Report-2016-Light-Background.pdf (accessed on 8 April 2024).
- Larsen, K. Recycling wind. Reinf. Plast. 2009, 53, 20–25. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Anguilano, L.; Rivera, X.S. Circular waste management of electric vehicle batteries: Legal and technical perspectives from the EU and the UK post Brexit. Int. J. Thermofluids 2021, 10, 100078. [Google Scholar] [CrossRef]
- Korey, M.; Sproul, E.; Rencheck, M.L.; Ennis, B.L. Development of wind turbine blade recycling baselines in the United States. IOP Conf. Series Mater. Sci. Eng. 2023, 1293, 012018. [Google Scholar] [CrossRef]
- Cooperman, A.; Eberle, A.; Lantz, E. Wind turbine blade material in the United States: Quantities, costs, and end-of-life options. Resour. Conserv. Recycl. 2021, 168, 105439. [Google Scholar] [CrossRef]
- Yang, J.; Meng, F.; Zhang, L.; McKechnie, J.; Chang, Y.; Ma, B.; Hao, Y.; Li, X.; Pender, K.; Yang, L.; et al. Solutions for recycling emerging wind turbine blade waste in China are not yet effective. Commun. Earth Environ. 2023, 4, 466. [Google Scholar] [CrossRef]
- Sangroya, D.; Nayak, J.K. Development of wind energy in India. Int. J. Renew. Energy Res. 2015, 5, 1–13. [Google Scholar]
- Woo, S.M.; Whale, J. A mini-review of end-of-life management of wind turbines: Current practices and closing the circular economy gap. Waste Manag. Res. 2022, 40, 1730–1744. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M. Towards a coherent European approach for taxation of combustible waste. Waste Manag. 2013, 33, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, J.; Ni, A. Recycling and reuse of composite materials for wind turbine blades: An overview. J. Reinf. Plast. Compos. 2019, 38, 567–577. [Google Scholar] [CrossRef]
- Hoogmartens, R.; Eyckmans, J.; Van Passel, S. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams. Waste Manag. 2016, 55, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Deng, Z.; Dong, C.; Fan, J.; Ren, Y. A closed-loop recycling process for carbon fiber reinforced vinyl ester resin composite. Chem. Eng. J. 2022, 446, 137254. [Google Scholar] [CrossRef]
- Xu, P.; Li, J.; Ding, J. Chemical recycling of carbon fibre/epoxy composites in a mixed solution of peroxide hydrogen and N, N-dimethylformamide. Compos. Sci. Technol. 2013, 82, 54–59. [Google Scholar] [CrossRef]
- Palmer, J.A.T. Mechanical Recycling of Automotive Composites for Use as Reinforcement in Thermoset Composites. Ph.D. Thesis, University of Exeter, Exeter, UK, 2009; pp. 110–112. Available online: https://ore.exeter.ac.uk/repository/bitstream/handle/10036/72313/PalmerJ.pdf?sequence=1 (accessed on 23 January 2022).
- Mativenga, P.T.; Shuaib, N.A.; Howarth, J.; Pestalozzi, F.; Woidasky, J. High voltage fragmentation and mechanical recycling of glass fibre thermoset composite. CIRP Ann. 2016, 65, 45–48. [Google Scholar] [CrossRef]
- Schmidl, E.; Hinrichs, S. Geocycle provides sustainable recycling of rotor blades in cement plant. DEWI Mag. 2010, 36, 6–14. [Google Scholar]
- Tahir, M.; Rahimizadeh, A.; Kalman, J.; Fayazbakhsh, K.; Lessard, L. Experimental and analytical investigation of 3D printed specimens reinforced by different forms of recyclates from wind turbine waste. Polym. Compos. 2021, 42, 4533–4548. [Google Scholar] [CrossRef]
- Fonte, R.; Xydis, G. Wind turbine blade recycling: An evaluation of the European market potential for recycled composite materials. J. Environ. Manag. 2021, 287, 112269. [Google Scholar] [CrossRef] [PubMed]
- Nagle, A.J.; Delaney, E.L.; Bank, L.C.; Leahy, P.G. A Comparative Life Cycle Assessment between landfilling and Co-Processing of waste from decommissioned Irish wind turbine blades. J. Clean. Prod. 2020, 277, 123321. [Google Scholar] [CrossRef]
- Song, Y.S.; Youn, J.R.; Gutowski, T.G. Life cycle energy analysis of fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1257–1265. [Google Scholar] [CrossRef]
- Li, Y.; Chen, T.; Zhang, J.; Meng, W.; Yan, M.; Wang, H.; Li, X. Mass balance of dioxins over a cement kiln in China. Waste Manag. 2015, 36, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zheng, M.; Zhao, Y.; Yang, Y.; Li, C.; Liu, G. Unintentional persistent organic pollutants in cement kilns co-processing solid wastes. Ecotoxicol. Environ. Saf. 2019, 182, 109373. [Google Scholar] [CrossRef]
- Gerassimidou, S.; Velis, C.A.; Williams, P.T.; Castaldi, M.J.; Black, L.; Komilis, D. Chlorine in waste-derived solid recovered fuel (SRF), co-combusted in cement kilns: A systematic review of sources, reactions, fate and implications. Crit. Rev. Environ. Sci. Technol. 2021, 51, 140–186. [Google Scholar] [CrossRef]
- Rybicka, J.; Tiwari, A.; Leeke, G.A. Technology readiness level assessment of composites recycling technologies. J. Clean. Prod. 2016, 112, 1001–1012. [Google Scholar] [CrossRef]
- Shuaib, N.A.; Mativenga, P.T. Energy demand in mechanical recycling of glass fibre reinforced thermoset plastic composites. J. Clean. Prod. 2016, 120, 198–206. [Google Scholar] [CrossRef]
- Meng, F.; McKechnie, J.; Turner, T.A.; Pickering, S.J. Energy and environmental assessment and reuse of fluidised bed recycled carbon fibres. Compos. Part A Appl. Sci. Manuf. 2017, 100, 206–214. [Google Scholar] [CrossRef]
- Wong, K.; Rudd, C.; Pickering, S.; Liu, X. Composites recycling solutions for the aviation industry. Sci. China Technol. Sci. 2017, 60, 1291–1300. [Google Scholar] [CrossRef]
- Kadac-Czapska, K.; Knez, E.; Gierszewska, M.; Olewnik-Kruszkowska, E.; Grembecka, M. Microplastics Derived from Food Packaging Waste—Their Origin and Health Risks. Materials 2023, 16, 674. [Google Scholar] [CrossRef] [PubMed]
- Sundt, P.; Schulze, P.E.; Syversen, F. Sources of microplastic-pollution to the marine environment. Mepex Nor. Environ. Agency 2014, 86, 20. [Google Scholar]
- Mattsson, K.; Jocic, S.; Doverbratt, I.; Hansson, L.A. Nanoplastics in the aquatic environment. Microplastic Contam. Aquat. Environ. 2018, 379–399. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Wick, P.; Nowack, B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 2021, 16, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Valente, M.; Rossitti, I.; Sambucci, M. Different Production Processes for Thermoplastic Composite Materials: Sustainability versus Mechanical Properties and Processes Parameter. Polymers 2023, 15, 242. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Gong, J.; Song, B.; Li, J.; Fang, S.; Tang, S.; Cao, W.; Li, Y.; Chen, Z.; Ye, J. The effect of UV exposure on conventional and degradable microplastics adsorption for Pb (II) in sediment. Chemosphere 2022, 286, 131777. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, Y.; Sheng, Y.; Xiang, Q.; Zhou, Y.; Cizdziel, J.V. Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil. Environ. Pollut. 2020, 260, 113988. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Uheida, A.; Mejía, H.G.; Abdel-Rehim, M.; Hamd, W.; Dutta, J. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J. Hazard. Mater. 2021, 406, 124299. [Google Scholar] [CrossRef]
- Wróbel, M.; Szymańska, S.; Kowalkowski, T.; Hrynkiewicz, K. Selection of microorganisms capable of polyethylene (PE) and polypropylene (PP) degradation. Microbiol. Res. 2023, 267, 127251. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Jayanthi, B.; Fauziah, S.H. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Mar. Pollut. Bull. 2018, 127, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Cao, J.; Yu, F.; Ma, J. Microbial degradation of polystyrene microplastics by a novel isolated bacterium in aquatic ecosystem. Sustain. Chem. Pharm. 2022, 30, 100873. [Google Scholar] [CrossRef]
- Auta, H.S.; Abioye, O.P.; Aransiola, S.A.; Bala, J.D.; Chukwuemeka, V.; Hassan, A.; Aziz, A.; Fauziah, S.H. Enhanced microbial degradation of PET and PS microplastics under natural conditions in mangrove environment. J. Environ. Manag. 2022, 304, 114273. [Google Scholar] [CrossRef]
- Hota, G.; Barker, W.; Manalo, A. Degradation mechanism of glass fiber/vinylester-based composite materials under accelerated and natural aging. Constr. Build. Mater. 2020, 256, 119462. [Google Scholar] [CrossRef]
- Shin, K.-B.; Kim, C.-G.; Hong, C.-S. Correlation of Accelerated Aging Test to Natural Aging Test on Graphite-Epoxy Composite Materials. J. Reinf. Plast. Compos. 2003, 22, 849–861. [Google Scholar] [CrossRef]
- Gao, Z. The Coming Tide of Wind Turbine Blades Retirement: Threats and Treatment Measures. Highlights Sci. Eng. Technol. 2023, 29, 105–112. [Google Scholar] [CrossRef]
- Buggy, M.B.A.U.O.L.; Farragher, L.; Madden, W. Recycling of composite materials. J. Mater. Process. Technol. 1995, 55, 448–456. [Google Scholar] [CrossRef]
- EECI. Accelerating Wind Turbine Blade Circularity; WindEurope: Brussels, Belgium; Cefic: Brussels, Belgium; EuCIA: Brussels, Belgium, 2018; Available online: https://windeurope.org/wp-content/uploads/files/about-wind/reports/WindEurope-Accelerating-wind-turbine-blade-circularity.pdf (accessed on 8 April 2024).
- Qureshi, J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability 2022, 14, 16855. [Google Scholar] [CrossRef]
Component | Material | Function |
---|---|---|
Tower | Steel, concrete | Supporting the structure |
Rotor hub | Cast iron, GFRPs | A central part connecting blades; allows blades to rotate |
Blades | GFRPs, CFRPs, wood or foams, adhesives, metals | Responsible for extracting wind energy; convert the pressure of the working fluid to kinetic energy |
Gearbox | Steel (98%), aluminum (1%), copper (1%) | Increasing the rotation speed of the blades |
Generator | Steel (65%), copper (35%) | Converting mechanical energy to electrical energy |
Nacelle | Steel (85%), aluminum (9%), copper (4%), GFRPs (3%) | Holding key components of WTs, including gearbox and generator |
Foundation | Concrete, steel reinforcing bars | Supporting the entire turbine and forces acting on it |
Materials | Percentage (wt%) |
---|---|
Thermoset FRP composites: 1—Fiber reinforcements (glass, carbon, aramid, or basalt); 2—Thermoset resins (epoxy, polyester, vinylester). | 93% |
Core materials: Balsa wood or foams such as polyvinyl chloride or polyethylene terephthalate. | 4% |
Adhesive coatings: Usually polyethylene, polyurethane, or other materials (for example, metal copper wiring, steel bolts). | 3% |
Life Cycle Phase | Manufacture | Operation | Upgrade/Retrofit | EoL |
---|---|---|---|---|
Contributing causes to blade waste |
|
|
|
|
Estimated waste amount |
|
|
|
|
Thermal Recycling Type | Description | Benefits/Drawbacks | |
---|---|---|---|
1 | Pyrolysis | Composite’s organic part combusted in an inert high-temperature atmosphere (450–700 °C). |
|
2 | Microwave Pyrolysis | Microwaves are utilized to decompose the organic part of composite waste into a low-molecular-weight substance (gas/oil), specifically in a nitrogen chamber atmosphere (300–600 °C) by microwave radiation. |
|
3 | Fluidized bed | A scalding stream of air is employed to fluidize the waste on a silica bed for the resin decomposition and fiber retrieval. |
|
Solvolysis Type | Advantages | Disadvantages | |
---|---|---|---|
1 | HTP |
|
|
2 | LTP |
|
|
Recycling Method | Advantages | Disadvantages |
---|---|---|
Mechanical recycling |
|
|
Recycling Strategies | TRL | Material Output | |
---|---|---|---|
1 | Mechanical | 9 | GF/CF |
2 | Co-processing | 7–8 | GF |
3 | Pyrolysis | 7–8 | GF/CF |
4 | Microwave-assisted Pyrolysis | 4 | GF/CF |
5 | Fluidized Bed | 4/5 | GF/CF |
6 | Chemical | 5/6 | GF/CF |
7 | HVF | 5 | GF/CF |
Polymer | Degradation Method | Effects | Rate of Degradation (µm/Year) | |
---|---|---|---|---|
Polyethylene (PE) | Photodegradation [80] | Introducing oxygen functional groups on the surface; specific surface area increase [80]. | On land (un.acc): HDPE: 1.0. [82] LDPE: 11. [82] | In marine environments (un-acc): HDPE: 4.3. [82] LDPE: 15. [82] |
Chemical degradation [81] | Fragmentation [59]. | On land (acc): HDPE: 1.3. [82] LDPE: 22. [82] | In marine environments (acc): HDPE: 9.5. [82] LDPE: 10. [82] | |
Polypropylene (PP) | Photodegradation [83] | Volume reduction in MP particles [83]. | On land (un.acc): - | In marine environments (un-acc): 7.5. [82] |
Biological degradation [84,85] | Polymer mass reduction; structural and morphological changes [84,85]. | On land (acc): 0.51. [82] | In marine environments (acc): 4.6 [82] | |
Polystyrene (PS) | Biological degradation [86] | Changes in surface morphology, weight loss, and decreased carbon content [86]. | On land: - | In marine environments: - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayebi, S.T.; Sambucci, M.; Valente, M. Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with A Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production. Sustainability 2024, 16, 4517. https://doi.org/10.3390/su16114517
Tayebi ST, Sambucci M, Valente M. Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with A Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production. Sustainability. 2024; 16(11):4517. https://doi.org/10.3390/su16114517
Chicago/Turabian StyleTayebi, Sara Taherinezhad, Matteo Sambucci, and Marco Valente. 2024. "Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with A Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production" Sustainability 16, no. 11: 4517. https://doi.org/10.3390/su16114517
APA StyleTayebi, S. T., Sambucci, M., & Valente, M. (2024). Waste Management of Wind Turbine Blades: A Comprehensive Review on Available Recycling Technologies with A Focus on Overcoming Potential Environmental Hazards Caused by Microplastic Production. Sustainability, 16(11), 4517. https://doi.org/10.3390/su16114517