Optimizing Renewable Energy Systems for Water Security: A Comparative Study of Reanalysis Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Ground Measurements
2.2.2. MERRA2
2.2.3. ERA5-Land
2.2.4. Load Data
2.3. Method
2.3.1. Performance Metrics
2.3.2. Optimal Configuration of the Renewable Energy-Based Power System
3. Results
3.1. Performance Metrics Results
3.2. Homer Simulations
3.3. Hypothesis Testing Comparing Simulation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Tarroja, B.; Schell, L.S.; Shaffer, B.; Samuelsen, S. Prioritizing among the End Uses of Excess Renewable Energy for Cost-Effective Greenhouse Gas Emission Reductions. Appl. Energy 2019, 235, 284–298. [Google Scholar] [CrossRef]
- Arribas, L.; Lechón, Y.; Perula, A.; Domínguez, J.; Ferres, M.; Navarro, J.; Zarzalejo, L.F.; Barquero, C.G.; Cruz, I. Review of Data and Data Sources for the Assessment of the Potential of Utility-Scale Hybrid Wind–Solar Pv Power Plants Deployment, under a Microgrid Scope. Energies 2021, 14, 7434. [Google Scholar] [CrossRef]
- Mendoza-Fandiño, J.M.; Rhenals-Julio, J.D.; Ávila-Gómez, A.E.; Martínez-Guarín, A.R.; De la Vega González, T.D.; Durango-Padilla, E.R. Heat Absorption Cooling with Renewable Energies: A Case Study with Photovoltaic Solar Energy and Biogas in Cordoba, Colombia. Inge. Cuc. 2021, 17, 21–30. [Google Scholar]
- Canales, F.A.; Jurasz, J.; Kies, A.; Beluco, A.; Arrieta-Castro, M.; Peralta-Cayón, A. Spatial Representation of Temporal Complementarity between Three Variable Energy Sources Using Correlation Coefficients and Compromise Programming. MethodsX 2020, 7, 100871. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Walter, R.K.; White, C.; Farr, H.; Ruttenberg, B.I. Assessment of Surface Wind Datasets for Estimating Offshore Wind Energy along the Central California Coast. Renew. Energy 2019, 133, 343–353. [Google Scholar] [CrossRef]
- Polo, J.; Wilbert, S.; Ruiz-Arias, J.A.; Meyer, R.; Gueymard, C.; Súri, M.; Martín, L.; Mieslinger, T.; Blanc, P.; Grant, I.; et al. Preliminary Survey on Site-Adaptation Techniques for Satellite-Derived and Reanalysis Solar Radiation Datasets. Sol. Energy 2016, 132, 25–37. [Google Scholar] [CrossRef]
- Gualtieri, G. Analysing the Uncertainties of Reanalysis Data Used for Wind Resource Assessment: A Critical Review National Centers for Environmental Prediction. Renew. Sustain. Energy Rev. 2022, 167, 112741. [Google Scholar] [CrossRef]
- Chadee, X.T.; Clarke, R.M. Large-Scale Wind Energy Potential of the Caribbean Region Using near-Surface Reanalysis Data. Renew. Sustain. Energy Rev. 2014, 30, 45–58. [Google Scholar] [CrossRef]
- Vega-Durán, J.; Escalante-Castro, B.; Canales, F.A.; Acuña, G.J.; Kaźmierczak, B. Evaluation of Areal Monthly Average Precipitation Estimates from MERRA2 and ERA5 Reanalysis in a Colombian Caribbean Basin. Atmosphere 2021, 12, 1430. [Google Scholar] [CrossRef]
- Boilley, A.; Wald, L. Comparison between Meteorological Re-Analyses from ERA-Interim and MERRA and Measurements of Daily Solar Irradiation at Surface. Renew. Energy 2015, 75, 135–143. [Google Scholar] [CrossRef]
- Tahir, Z.R.; Asim, M.; Azhar, M.; Moeenuddin, G.; Farooq, M. Correcting Solar Radiation from Reanalysis and Analysis Datasets with Systematic and Seasonal Variations. Case Stud. Therm. Eng. 2021, 25, 100933. [Google Scholar] [CrossRef]
- Pfenninger, S.; Staffell, I. Long-Term Patterns of European PV Output Using 30 Years of Validated Hourly Reanalysis and Satellite Data. Energy 2016, 114, 1251–1265. [Google Scholar] [CrossRef]
- Piasecki, A.; Jurasz, J.; Kies, A. Measurements and Reanalysis Data on Wind Speed and Solar Irradiation from Energy Generation Perspectives at Several Locations in Poland. SN Appl. Sci. 2019, 1, 865. [Google Scholar] [CrossRef]
- Doddy Clarke, E.; Griffin, S.; McDermott, F.; Monteiro Correia, J.; Sweeney, C. Which Reanalysis Dataset Should We Use for Renewable Energy Analysis in Ireland? Atmosphere 2021, 12, 624. [Google Scholar] [CrossRef]
- Staffell, I.; Pfenninger, S. Using Bias-Corrected Reanalysis to Simulate Current and Future Wind Power Output. Energy 2016, 114, 1224–1239. [Google Scholar] [CrossRef]
- Ahmad, M.; Zeeshan, M. Validation of Weather Reanalysis Datasets and Geospatial and Techno-Economic Viability and Potential Assessment of Concentrated Solar Power Plants. Energy Convers. Manag. 2022, 256, 115366. [Google Scholar] [CrossRef]
- Aliana, A.; Chang, M.; Østergaard, P.A.; Victoria, M.; Andersen, A.N. Performance Assessment of Using Various Solar Radiation Data in Modelling Large-Scale Solar Thermal Systems Integrated in District Heating Networks. Renew. Energy 2022, 190, 699–712. [Google Scholar] [CrossRef]
- Gruber, K.; Regner, P.; Wehrle, S.; Zeyringer, M.; Schmidt, J. Towards Global Validation of Wind Power Simulations: A Multi-Country Assessment of Wind Power Simulation from MERRA-2 and ERA-5 Reanalyses Bias-Corrected with the Global Wind Atlas. Energy 2022, 238, 121520. [Google Scholar] [CrossRef]
- Olauson, J. ERA5: The New Champion of Wind Power Modelling? Renew. Energy 2018, 126, 322–331. [Google Scholar] [CrossRef]
- Thomas, S.R.; Nicolau, S.; Martínez-Alvarado, O.; Drew, D.J.; Bloomfield, H.C. How Well Do Atmospheric Reanalyses Reproduce Observed Winds in Coastal Regions of Mexico? Meteorol. Appl. 2021, 28, e2023. [Google Scholar] [CrossRef]
- Ramirez Camargo, L.; Schmidt, J. Simulation of Multi-Annual Time Series of Solar Photovoltaic Power: Is the ERA5-Land Reanalysis the next Big Step? Sustain. Energy Technol. Assess 2020, 42, 100829. [Google Scholar] [CrossRef]
- Mora, S.; Tinjacá, F. Statistical Analysis of Wind Speed and Direction Based on the Rayleigh Distribution Model. LADEE 2021, 2, 32–39. [Google Scholar] [CrossRef]
- Carvajal-Romo, G.; Valderrama-Mendoza, M.; Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Assessment of Solar and Wind Energy Potential in La Guajira, Colombia: Current Status, and Future Prospects. Sustain. Energy Technol. Assess. 2019, 36, 100531. [Google Scholar] [CrossRef]
- Gil Ruiz, S.A.; Barriga, J.E.C.; Martínez, J.A. Wind Power Assessment in the Caribbean Region of Colombia, Using Ten-Minute Wind Observations and ERA5 Data. Renew. Energy 2021, 172, 158–176. [Google Scholar] [CrossRef]
- Gil Ruiz, S.A.; Cañón Barriga, J.E.; Martínez, J.A. Assessment and Validation of Wind Power Potential at Convection-Permitting Resolution for the Caribbean Region of Colombia. Energy 2022, 244, 123127. [Google Scholar] [CrossRef]
- Contreras, D. The Integrated Spatial Pattern of Child Mortality during the 2012-2016 Drought in La Guajira, Colombia. Sustainability 2019, 11, 7190. [Google Scholar] [CrossRef]
- Daza-Daza, A.R.; Serna-Mendoza, C.A.; Carabalí-Angola, A. El Recurso Agua En Las Comunidades Indígenas Wayuu de La Guajira Colombiana. Parte 2: Estudio Cualitativo de Las Condiciones de Higiene, Aseo y Disponibilidad de Agua. Inf. Tecnol. 2018, 29, 25–32. [Google Scholar] [CrossRef]
- HOMER Energy HOMER Pro—Microgrid Software for Designing Optimized Hybrid Microgrids. Available online: https://www.homerenergy.com/products/pro/index.html (accessed on 11 July 2022).
- Das, B.K. Optimal Sizing of Stand-Alone and Grid-Connected Solar PV Systems in Bangladesh. Int. J. Energy A Clean Environ. 2020, 21, 107–124. [Google Scholar] [CrossRef]
- Podder, A.K.; Supti, S.A.; Islam, S.; Malvoni, M.; Jayakumar, A.; Deb, S.; Kumar, N.M. Feasibility Assessment of Hybrid Solar Photovoltaic-Biogas Generator Based Charging Station: A Case of Easy Bike and Auto Rickshaw Scenario in a Developing Nation. Sustainability 2021, 14, 166. [Google Scholar] [CrossRef]
- Johannsen, R.M.; Østergaard, P.A.; Hanlin, R. Hybrid Photovoltaic and Wind Mini-Grids in Kenya: Techno-Economic Assessment and Barriers to Diffusion. Energy Sustain. Dev. 2020, 54, 111–126. [Google Scholar] [CrossRef]
- Dawoud, S.M.; Lin, X.N.; Sun, J.W.; Okba, M.I.; Khalid, M.S.; Waqar, A. Feasibility Study of Isolated PV-Wind Hybrid System in Egypt. Adv. Mat. Res. 2015, 1092–1093, 145–151. [Google Scholar] [CrossRef]
- Veilleux, G.; Potisat, T.; Pezim, D.; Ribback, C.; Ling, J.; Krysztofiński, A.; Ahmed, A.; Papenheim, J.; Pineda, A.M.; Sembian, S.; et al. Techno-Economic Analysis of Microgrid Projects for Rural Electrification: A Systematic Approach to the Redesign of Koh Jik off-Grid Case Study. Energy Sustain. Dev. 2020, 54, 1–13. [Google Scholar] [CrossRef]
- Kamesh, M.R.; Girish Kumar, G.S.; Kiran, C. Sustainable Energy Solutions for Community Housing. IOP Conf. Ser. Earth Environ. Sci. 2020, 573, 012035. [Google Scholar] [CrossRef]
- Elmaadawy, K.; Kotb, K.M.; Elkadeem, M.R.; Sharshir, S.W.; Dán, A.; Moawad, A.; Liu, B. Optimal Sizing and Techno-Enviro-Economic Feasibility Assessment of Large-Scale Reverse Osmosis Desalination Powered with Hybrid Renewable Energy Sources. Energy Convers. Manag. 2020, 224, 113377. [Google Scholar] [CrossRef]
- Maisanam, A.K.S.; Podder, B.; Biswas, A.; Sharma, K.K. Site-Specific Tailoring of an Optimal Design of Renewable Energy System for Remote Water Supply Station in Silchar, India. Sustain. Energy Technol. Assess. 2019, 36, 100558. [Google Scholar] [CrossRef]
- Kotb, K.M.; Elkadeem, M.R.; Khalil, A.; Imam, S.M.; Hamada, M.A.; Sharshir, S.W.; Dán, A. A Fuzzy Decision-Making Model for Optimal Design of Solar, Wind, Diesel-Based RO Desalination Integrating Flow-Battery and Pumped-Hydro Storage: Case Study in Baltim, Egypt. Energy Convers. Manag. 2021, 235, 113962. [Google Scholar] [CrossRef]
- Orfila, A.; Urbano-Latorre, C.P.; Sayol, J.M.; Gonzalez-Montes, S.; Caceres-Euse, A.; Hernández-Carrasco, I.; Muñoz, Á.G. On the Impact of the Caribbean Counter Current in the Guajira Upwelling System. Front. Mar. Sci. 2021, 8, 128. [Google Scholar] [CrossRef]
- Duarte, L.; Revollo, J.; Betancur, D.; Lopez, G.; Isaac, I.; Cardona, H.; Ortega, S. Placement of Weather Stations in Colombia for Future Applications in Solar and Wind Energy Forecasting Models. In Proceedings of the 2019 FISE-IEEE/CIGRE Conference—Living the energy Transition (FISE/CIGRE), Medellin, Colombia, 4–6 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Gilbert, J.E.; Gilbertson, T.; Jakobsen, L. Incommensurability and Corporate Social Technologies: A Critique of Corporate Compensations in Colombia’s Coal Mining Region of La Guajira. J. Polit. Ecol. 2021, 28, 434–452. [Google Scholar] [CrossRef]
- Acosta Cubides, L.D.; Herrera Quintero, S. Metodología Para El Uso de Captadores de Rocío. Una Aproximación a Una Solución Sostenible para el Recurso Hídrico en Maicao, La Guajira. 2021. Available online: https://hdl.handle.net/20.500.11839/8594 (accessed on 11 November 2022).
- Cámara de Comercio de La Guajira. Informe Socioeconómico de La Guajira 2021; Cámara de Comercio de La Guajira: Riohacha, Colombia, 2021. [Google Scholar]
- La Realidad Del Hambre: Cada Seis Días Ha Muerto Un Niño En La Guajira En 2022. La Opinión, 22 May 2022.
- Mejía Ospino, E. Habitantes de Barrancas Denuncian Que Llevan Más de Un Mes Sin Agua. El Tiempo, 28 December 2021. [Google Scholar]
- Guerrero, S. El Agua de Camarones No Es Apta Para El Consumo Humano. El Heraldo, 15 October 2021. [Google Scholar]
- Barrios Florez, E.A. Indígenas Wayú Realizan Bloqueos En La Guajira, En Protesta Por La Falta de Agua. RCN Radio, 28 June 2022. [Google Scholar]
- La Guajira Hoy. En La Guajira, Comunidad Indígena Se Beneficia Con Planta Desalinizadora de Agua. La Guajira Hoy, 1 April 2022.
- La Guajira Hoy. En Extremo Norte de La Guajira No Hay Agua Para Consumo Humano. La Guajira Hoy, 3 May 2022.
- IDEAM Consulta y Descarga de Datos Hidrometeorológicos. Available online: http://dhime.ideam.gov.co/atencionciudadano/ (accessed on 10 October 2020).
- Quagraine, K.A.; Nkrumah, F.; Klein, C.; Klutse, N.A.B.; Quagraine, K.T. West African Summer Monsoon Precipitation Variability as Represented by Reanalysis Datasets. Climate 2020, 8, 111. [Google Scholar] [CrossRef]
- Pedreira, A.L.; Biudes, M.S.; Machado, N.G.; Vourlitis, G.L.; Geli, H.M.E.; Dos Santos, L.O.F.; Querino, C.A.S.; Ivo, I.O.; Neto, N.L. Assessment of Remote Sensing and Reanalysis Estimates of Regional Precipitation over Mato Grosso, Brazil. Water 2021, 13, 333. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Global Modeling and Assimilation Office (GMAO). MERRA-2 Tavg1_2d_slv_Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4. Available online: https://www.soda-pro.com/web-services/meteo-data/merra (accessed on 12 December 2021).
- Zou, J.; Lu, N.; Jiang, H.; Qin, J.; Yao, L.; Xin, Y.; Su, F. Performance of Air Temperature from ERA5-Land Reanalysis in Coastal Urban Agglomeration of Southeast China. Sci. Total Environ. 2022, 828, 154459. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Sabater, J.; ERA5-Land Hourly Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land (accessed on 10 October 2021).
- Minvivienda. Republic of Colombia: Minvivienda. Resolución 0330 de 2017. 2017. Available online: https://www.minvivienda.gov.co/sites/default/files/documentos/0330-2017.pdf (accessed on 11 April 2022).
- Veolia Sabana, S.A.E.S.P. Veolia Colombia. Available online: https://www.veolia.com.co/sabana/ (accessed on 2 February 2022).
- Hagen, I.; Huggel, C.; Ramajo, L.; Chacón, N.; Ometto, J.P.; Postigo, J.C.; Castellanos, E.J. Climate Change-Related Risks and Adaptation Potential in Central and South America during the 21st Century. Environ. Res. Lett. 2022, 17, 033002. [Google Scholar] [CrossRef]
- Feria-Díaz, J.J.; Correa-Mahecha, F.; López-Méndez, M.C.; Rodríguez-Miranda, J.P.; Barrera-Rojas, J. Recent Desalination Technologies by Hybridization and Integration with Reverse Osmosis: A Review. Water 2021, 13, 1369. [Google Scholar] [CrossRef]
- Lemma, E.; Upadhyaya, S.; Ramsankaran, R.A.A.J. Investigating the Performance of Satellite and Reanalysis Rainfall Products at Monthly Timescales across Different Rainfall Regimes of Ethiopia. Int. J. Remote Sens. 2019, 40, 4019–4042. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, J.; Chen, X. An Approach to Revising the Climate Forecast System Reanalysis Rainfall Data in a Sparsely-Gauged Mountain Basin. Atmos. Res. 2019, 220, 194–205. [Google Scholar] [CrossRef]
- Chawla, I.; Mujumdar, P.P. Evaluating Rainfall Datasets to Reconstruct Floods in Data-Sparse Himalayan Region. J. Hydrol. 2020, 588, 125090. [Google Scholar] [CrossRef]
- Wang, N.; Liu, W.; Sun, F.; Yao, Z.; Wang, H.; Liu, W. Evaluating Satellite-Based and Reanalysis Precipitation Datasets with Gauge-Observed Data and Hydrological Modeling in the Xihe River Basin, China. Atmos. Res. 2020, 234, 104746. [Google Scholar] [CrossRef]
- Springer, A.; Eicker, A.; Bettge, A.; Kusche, J.; Hense, A.; Mahto, S.S.; Pandey, A.C.; Huang, B.; Cubasch, U.; Li, Y.; et al. Evaluation of the Water Cycle in the European COSMO-REA6 Reanalysis Using GRACE. Water 2017, 9, 289. [Google Scholar] [CrossRef]
- Mehrjerdi, H. Modeling and Optimization of an Island Water-Energy Nexus Powered by a Hybrid Solar-Wind Renewable System. Energy 2020, 197, 117217. [Google Scholar] [CrossRef]
- Canales, F.A.; Beluco, A.; Mendes, C.A.B. Modelling a Hydropower Plant with Reservoir with the Micropower Optimisation Model (HOMER). Int. J. Sustain. Energy 2017, 36, 654–667. [Google Scholar] [CrossRef]
- Movahediyan, Z.; Askarzadeh, A. Multi-Objective Optimization Framework of a Photovoltaic-Diesel Generator Hybrid Energy System Considering Operating Reserve. Sustain. Cities Soc. 2018, 41, 1–12. [Google Scholar] [CrossRef]
- HOMER Energy Suggested Lifetime Throughput. Available online: https://www.homerenergy.com/products/pro/docs/latest/suggested_lifetime_throughput.html (accessed on 3 March 2022).
- Pinilla, A.; Rodriguez, L.; Trujillo, R. Performance Evaluation of Jepirachi Wind Park. Renew. Energy 2009, 34, 48–52. [Google Scholar] [CrossRef]
- Barrientos Marín, J.; Villada, F. Regionalized Discount Rate to Evaluate Renewable Energy Projects in Colombia. Int. J. Energy Econ. Policy 2020, 10, 332–336. [Google Scholar] [CrossRef]
- Bitar, S.; Chamas, F. Estudio de Factibilidad Para La Implementacion de Sistemas Fotovoltaicos Como Fuente de Energía En El Sector Industrial de Colombia. Master’s, Thesis, Colegio de Estudios Superiores de Administración (CESA), Bogotá, Colombia, 2017. [Google Scholar]
- Baek, S.; Park, E.; Kim, M.-G.; Kwon, S.J.; Kim, K.J.; Ohm, J.Y.; del Pobil, A.P. Optimal Renewable Power Generation Systems for Busan Metropolitan City in South Korea. Renew. Energy 2016, 88, 517–525. [Google Scholar] [CrossRef]
- Lacal Arantegui, R.; Jaeger-Waldau, A.; Vellei, M.; Sigfusson, B.; Magagna, D.; Jakubcionis, M.; Del Mar Perez Fortes, M.; Moles, C.; Lazarou, S.; Giuntoli, J.; et al. ETRI 2014—Energy Technology Reference Indicator Projections for 2010–2050; Publications Office of the European Union: Petten, The Netherlands, 2014; ISBN 9789279444036. [Google Scholar]
- Guezgouz, M.; Jurasz, J.; Bekkouche, B.; Ma, T.; Javed, M.S.; Kies, A. Optimal Hybrid Pumped Hydro-Battery Storage Scheme for off-Grid Renewable Energy Systems. Energy Convers. Manag 2019, 199, 112046. [Google Scholar] [CrossRef]
- California Energy Comission PV Modules. Available online: http://www.gosolarcalifornia.ca.gov/equipment/pv_modules.php (accessed on 12 December 2017).
- Kim, I.; James, J.A.; Crittenden, J. The Case Study of Combined Cooling Heat and Power and Photovoltaic Systems for Building Customers Using HOMER Software. Electr. Power Syst. Res. 2017, 143, 490–502. [Google Scholar] [CrossRef]
- Nordex N60/1300 KW Specifications. Available online: http://www.nordex-online.com/fileadmin/MEDIA/Produktinfos/EN/Nordex_N60_EN.pdf (accessed on 10 October 2021).
- Canales, F.A.; Jurasz, J.K.; Guezgouz, M.; Beluco, A. Cost-Reliability Analysis of Hybrid Pumped-Battery Storage for Solar and Wind Energy Integration in an Island Community. Sustain. Energy Technol. Assess. 2021, 44, 101062. [Google Scholar] [CrossRef]
- Ramli, M.A.M.; Hiendro, A.; Sedraoui, K.; Twaha, S. Optimal Sizing of Grid-Connected Photovoltaic Energy System in Saudi Arabia. Renew. Energy 2015, 75, 489–495. [Google Scholar] [CrossRef]
- Akoglu, H. User’s Guide to Correlation Coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Carvalho, D. An Assessment of NASA’s GMAO MERRA-2 Reanalysis Surface Winds. J. Clim. 2019, 32, 8261–8281. [Google Scholar] [CrossRef]
- Canales, F.A.; Beluco, A.; Mendes, C.A.B. A Matter of Cost. Int. Water Power Dam Constr. 2008, 60, 43–45. [Google Scholar]
- Karimi, L.; Abkar, L.; Aghajani, M.; Ghassemi, A. Technical Feasibility Comparison of Off-Grid PV-EDR and PV-RO Desalination Systems via Their Energy Consumption. Sep. Purif. Technol. 2015, 151, 82–94. [Google Scholar] [CrossRef]
- Goss-Sampson, M.A. Statistical Analysis in JASP: A Guide for Students, 2nd ed.; University of Amsterdam: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Cano, L.M.; Carmona, M.A.; Martínez, J.A.; Arias, P.A. Estimación y Pronóstico de Radiación Solar En El Valle de Aburrá—Colombia. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 2022, 46, 529–549. [Google Scholar] [CrossRef]
- Khatibi, A.; Krauter, S. Validation and Performance of Satellite Meteorological Dataset Merra-2 for Solar and Wind Applications. Energies 2021, 14, 882. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, Y.; Zhang, Y.; Terzija, V. Quantitative Synergy Assessment of Regional Wind-Solar Energy Resources Based on MERRA Reanalysis Data. Appl. Energy 2018, 216, 172–182. [Google Scholar] [CrossRef]
- Kapica, J.; Canales, F.A.; Jurasz, J. Global Atlas of Solar and Wind Resources Temporal Complementarity. Energy Convers. Manag. 2021, 246, 114692. [Google Scholar] [CrossRef]
- Anastasiades, G.; McSharry, P.E. Extreme Value Analysis for Estimating 50 Year Return Wind Speeds from Reanalysis Data. Wind Energy 2014, 17, 1231–1245. [Google Scholar] [CrossRef]
- Cannon, D.J.; Brayshaw, D.J.; Methven, J.; Coker, P.J.; Lenaghan, D. Using Reanalysis Data to Quantify Extreme Wind Power Generation Statistics: A 33 Year Case Study in Great Britain. Renew. Energy 2015, 75, 767–778. [Google Scholar] [CrossRef]
- Ramirez Camargo, L.; Gruber, K.; Nitsch, F. Assessing Variables of Regional Reanalysis Data Sets Relevant for Modelling Small-Scale Renewable Energy Systems. Renew. Energy 2019, 133, 1468–1478. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Villada, F.; Saldarriaga-Loaiza, J.D.; López-Lezama, J.M. Incentives for Renewable Energies in Colombia. Renew. Energy Power Qual. J. 2021, 19, 24–26. [Google Scholar] [CrossRef]
- Castillo-Ramirez, A.; Mejia-Giraldo, D.; Giraldo-Ocampo, J.D. Geospatial Levelized Cost of Energy in Colombia: GeoLCOE. In Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), Montevideo, Uruguay, 5–7 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 298–303. [Google Scholar]
- Bhojwani, S.; Topolski, K.; Mukherjee, R.; Sengupta, D.; El-Halwagi, M.M. Technology Review and Data Analysis for Cost Assessment of Water Treatment Systems. Sci. Total Environ. 2019, 651, 2749–2761. [Google Scholar] [CrossRef] [PubMed]
- Saleh, L.; Mezher, T. Techno-Economic Analysis of Sustainability and Externality Costs of Water Desalination Production. Renew. Sustain. Energy Rev. 2021, 150, 111465. [Google Scholar] [CrossRef]
- Fernández, D.; Saravia Matus, S.; Gil, M. Políticas Regulatorias y Tarifarias En El Sector de Agua Potable y Saneamiento En América Latina y El Caribe; Comisión Económica para América Latina y el Caribe (CEPAL): Santiago, Chile, 2021; Volume 205. [Google Scholar]
- Párraga Meneses, M.; Fajardo Jaimes, A.; Vuelvas Quintana, J. An Optimized Management Model of the Resources Embedded on an Isolated Water-Energy Microgrid for a Ranchería. In Proceedings of the 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC), Ibague, Colombia, 19–22 October 2021; IEEE: Ibagué, Colombia, 2021; pp. 98–103. [Google Scholar]
- Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G. Land-Use Requirements for Solar Power Plants in the United States; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. [Google Scholar]
Performance Metric | Formula | Value Range | Optimal Value |
---|---|---|---|
NRMSE | 0 to ∞ | 0.00 | |
BIAS | −∞ to ∞ | 0.00 | |
ρS | −1.00 to 1.00 | 1.00 | |
NSE | −∞ to 1.00 | 1.00 |
Parameters | Values | Units | References |
---|---|---|---|
LOAD | |||
Energy consumption for desalination | 2.5; 4.0; 8.5 | kWh/m3 | [59] |
ECONOMICS | |||
Discount rate | 8.20 | % | [70] |
Inflation rate | 4.21 | % | [71] |
Annual capacity shortage (ACS) | 0.0; 2.5; 5.0 | % | |
Project lifetime | 25 | Years | [72,73] |
PHOTOVOLTAIC | |||
CAPEX | 800 | EUR/kW | [73] |
Lifetime | 25 | Years | [73] |
Annual O&M | 1.70 | % of CAPEX | [74] |
Temperature coefficient | −0.43 | %/°C | [75] |
Derating factor | 90 | % | [76] |
Tracking system | No tracking | ||
WIND TURBINE—Nordex N60-1300 | |||
Rated power | 1300 | kW | [77] |
CAPEX | 1350 | EUR/kW | [73] |
Lifetime | 25 | Years | [73] |
Annual O&M | 2.40 | % of CAPEX | [73] |
Cut-in speed | 3.25 | m/s | [77] |
Cut-out speed | 25.00 | m/s | [77] |
Hub height | 46 | m | [77] |
BATTERY | |||
Nominal capacity | 100 | kWh | |
CAPEX | 250 | EUR/kW | [74] |
Lifetime | 10 | Years | [73] |
Replacement cost | 205 | EUR/kW | [74] |
Annual O&M | 1.71 | % of CAPEX | [74] |
Round trip efficiency | 90 | % | [73] |
Minimum state of charge | 20 | % | [78] |
Lifetime throughput | 300,000 | kWh | [68] |
DIESEL GENERATOR | |||
CAPEX | 500 | EUR/kW | [33] |
Lifetime | 25,000 | hours | [33] |
Replacement cost | 500 | EUR/kW | [33] |
Annual O&M | 1.05 | EUR/h | [33] |
Minimum load ratio | 75 | % | [33] |
Minimum runtime | 1 | hour | [33] |
Fuel price | 1 | EUR/L | |
CONVERTER | |||
CAPEX | 300 | EUR/kW | [74] |
Lifetime | 15 | Years | [74] |
Replacement cost | 250 | EUR/kW | [74] |
Annual O&M | 5 | % of CAPEX | [79] |
Inverter efficiency | 95 | % | [74,76] |
Rectifier inputs’ relative capacity | 75 | % | [76] |
Rectifier inputs’ efficiency | 85 | % | [76] |
Variable | OBSERVED: IDEAM vs. ESTIMATES: ERA5-Land | OBSERVED: IDEAM vs. ESTIMATES: MERRA2 | ||||||
---|---|---|---|---|---|---|---|---|
ρS | NRMSE | BIAS | NSE | ρS | NRMSE | BIAS | NSE | |
Solar Radiation | 0.9068 | 0.3310 | −0.1320 | 0.7749 | 0.8409 | 0.4127 | −0.0480 | 0.6500 |
Wind Speed | 0.6063 | 0.5242 | 0.2330 | −0.0441 | 0.4208 | 0.6603 | 0.4110 | −0.6567 |
Temperature | 0.7636 | 0.0688 | −0.0330 | 0.3571 | 0.2160 | 0.1076 | −0.0290 | −0.5706 |
kWh/m3 | ACS [%] | COE [EUR/kWh] | PV [MW] | Battery [MWh] | Converter [MW] | Renewable Fraction [%] | Generation [MWh/Year] | Excess [%] | NPC [Million EUR] |
---|---|---|---|---|---|---|---|---|---|
24 h operation | |||||||||
2.5 | 0.0 A | 0.199 | 2.701 | 5.700 | 1.099 | 99.10 | 4184.21 | 33.17 | 7.29 |
2.5 | 0.159 | 2.153 | 5.400 | 1.142 | 100.00 | 3319.04 | 17.40 | 5.71 | |
5.0 | 0.152 | 2.003 | 5.200 | 0.983 | 100.00 | 3086.59 | 12.90 | 5.35 | |
4.0 | 0.0 A | 0.194 | 4.259 | 9.300 | 1.697 | 99.17 | 6594.39 | 32.18 | 11.38 |
2.5 | 0.161 | 3.686 | 8.800 | 1.486 | 100.00 | 5681.87 | 22.90 | 9.25 | |
5.0 | 0.155 | 3.148 | 8.300 | 1.958 | 100.00 | 4851.37 | 11.13 | 8.75 | |
8.5 | 0.0 A | 0.187 | 8.722 | 19.400 | 3.507 | 99.12 | 13,511.68 | 29.71 | 23.32 |
2.5 | 0.160 | 7.669 | 18.500 | 3.317 | 100.00 | 11,821.10 | 21.20 | 19.48 | |
5.0 | 0.152 | 6.833 | 17.700 | 3.333 | 100.00 | 10,531.92 | 13.16 | 18.23 | |
8 h operation | |||||||||
2.5 | 0.0 | 0.146 | 2.895 | 3.600 | 0.826 | 100.00 | 4462.63 | 47.41 | 5.33 |
2.5 | 0.093 | 2.006 | 1.900 | 0.527 | 100.00 | 3091.99 | 23.53 | 3.36 | |
5.0 | 0.082 | 1.905 | 1.300 | 0.523 | 100.00 | 2935.90 | 20.47 | 2.95 | |
4.0 | 0.0 B | 0.139 | 3.349 | 4.400 | 1.205 | 99.14 | 5193.97 | 26.45 | 8.15 |
2.5 | 0.092 | 3.274 | 2.700 | 0.979 | 100.00 | 5046.95 | 25.14 | 5.35 | |
5.0 | 0.082 | 3.109 | 2.000 | 0.781 | 100.00 | 4791.42 | 22.11 | 4.70 | |
8.5 | 0.0 B | 0.125 | 7.321 | 7.200 | 2.561 | 99.09 | 11,355.42 | 28.74 | 15.58 |
2.5 | 0.092 | 7.164 | 5.500 | 1.964 | 100.00 | 11,042.73 | 27.43 | 11.39 | |
5.0 | 0.082 | 6.629 | 4.300 | 1.591 | 100.00 | 10,216.96 | 22.37 | 9.99 |
DATASET | IDEAM | ERA5-Land | MERRA2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
kWh/m3 | ACS [%] | Min. COE | Avg. COE | SD COE | Min. COE | Avg. COE | SD COE | Min. COE | Avg. COE | SD COE |
24 h operation | ||||||||||
2.5 | 0.0 | 0.256 | 1.736 | 1.500 | 0.261 | 1.502 | 1.204 | 0.263 | 1.080 | 0.799 |
2.5 | 0.214 | 1.636 | 1.499 | 0.218 | 1.369 | 1.062 | 0.221 | 0.907 | 0.655 | |
5.0 | 0.213 | 1.581 | 1.509 | 0.209 | 1.306 | 1.011 | 0.204 | 0.874 | 0.653 | |
4.0 | 0.0 | 0.228 | 1.342 | 1.021 | 0.229 | 1.517 | 1.593 | 0.234 | 0.848 | 0.567 |
2.5 | 0.191 | 1.238 | 0.975 | 0.192 | 1.138 | 0.868 | 0.199 | 0.761 | 0.494 | |
5.0 | 0.190 | 1.192 | 0.965 | 0.183 | 1.079 | 0.787 | 0.181 | 0.725 | 0.481 | |
8.5 | 0.0 | 0.203 | 0.743 | 0.528 | 0.203 | 0.644 | 0.411 | 0.209 | 0.528 | 0.309 |
2.5 | 0.179 | 0.867 | 0.583 | 0.203 | 0.649 | 0.404 | 0.183 | 0.608 | 0.360 | |
5.0 | 0.184 | 0.815 | 0.520 | 0.170 | 0.631 | 0.428 | 0.174 | 0.573 | 0.320 | |
8 h operation | ||||||||||
2.5 | 0.0 | 0.203 | 1.012 | 0.881 | 0.216 | 1.096 | 1.181 | 0.194 | 0.916 | 0.922 |
2.5 | 0.150 | 0.843 | 0.868 | 0.151 | 0.980 | 1.084 | 0.161 | 0.757 | 0.809 | |
5.0 | 0.143 | 0.794 | 0.849 | 0.143 | 0.923 | 1.026 | 0.151 | 0.722 | 0.798 | |
4.0 | 0.0 | 0.176 | 0.910 | 0.754 | 0.178 | 0.962 | 1.047 | 0.171 | 0.742 | 0.692 |
2.5 | 0.127 | 0.736 | 0.714 | 0.129 | 0.839 | 0.901 | 0.135 | 0.667 | 0.659 | |
5.0 | 0.118 | 0.682 | 0.682 | 0.121 | 0.787 | 0.829 | 0.128 | 0.621 | 0.626 | |
8.5 | 0.0 | 0.142 | 0.760 | 0.718 | 0.141 | 0.491 | 0.436 | 0.145 | 0.463 | 0.418 |
2.5 | 0.110 | 0.605 | 0.563 | 0.106 | 0.452 | 0.462 | 0.115 | 0.528 | 0.481 | |
5.0 | 0.099 | 0.551 | 0.507 | 0.099 | 0.662 | 0.711 | 0.106 | 0.496 | 0.451 |
Dataset1 | Dataset2 | Test | Statistic | z | df | p-Value | Effect Size |
---|---|---|---|---|---|---|---|
IDEAM | ERA5-Land | Student | 1.127 | 71 | 0.264 | 0.133 | |
Wilcoxon | 1361.000 | 0.476 | 0.636 | 0.065 | |||
IDEAM | MERRA2 | Student | −4.034 | 71 | <0.001 | −0.475 | |
Wilcoxon | 606.000 | −3.850 | <0.001 | −0.526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Brochero, J.; Hurtado-Castillo, S.; Altamiranda, J.; de Menezes Filho, F.C.M.; Beluco, A.; Canales, F.A. Optimizing Renewable Energy Systems for Water Security: A Comparative Study of Reanalysis Models. Sustainability 2024, 16, 4862. https://doi.org/10.3390/su16114862
Vargas-Brochero J, Hurtado-Castillo S, Altamiranda J, de Menezes Filho FCM, Beluco A, Canales FA. Optimizing Renewable Energy Systems for Water Security: A Comparative Study of Reanalysis Models. Sustainability. 2024; 16(11):4862. https://doi.org/10.3390/su16114862
Chicago/Turabian StyleVargas-Brochero, José, Sebastián Hurtado-Castillo, Jesús Altamiranda, Frederico Carlos M. de Menezes Filho, Alexandre Beluco, and Fausto A. Canales. 2024. "Optimizing Renewable Energy Systems for Water Security: A Comparative Study of Reanalysis Models" Sustainability 16, no. 11: 4862. https://doi.org/10.3390/su16114862
APA StyleVargas-Brochero, J., Hurtado-Castillo, S., Altamiranda, J., de Menezes Filho, F. C. M., Beluco, A., & Canales, F. A. (2024). Optimizing Renewable Energy Systems for Water Security: A Comparative Study of Reanalysis Models. Sustainability, 16(11), 4862. https://doi.org/10.3390/su16114862