Advancements in Soil Organic Carbon Mapping and Interpolation Techniques: A Case Study from Lithuania’s Moraine Plains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Description and Sampling
2.3. Chemical Analyses
2.4. Data Preparation and Mapping
2.5. Statistical Analysis
3. Results
3.1. Comparison of the Application of Interpolation Methods
3.2. Results of the Application of the Integrated Geographical Approach Method
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, J.B.; Xiao, D.N.; Zeng, H.; Fu, Y.K. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern China. Environ. Geol. 2008, 53, 1663–1672. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Shit, P.K.; Maiti, R. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J. Saudi Soc. Agric. Sci. 2018, 17, 114–126. [Google Scholar] [CrossRef]
- Galvydytė, D. Geografų indėlis į Lietuvos dirvožemio mokslą. Geogr. Metrašt. 2009, 42, 114–140. (In Lithuanian) [Google Scholar]
- Buivydaitė, V.V.; Vaičys, M.; Juodis, J.; Motuzas, A. Lithuanian Soil Classification; Lietuvos Mokslas Book: Vilnius, Lithuania, 2001; Volume 34, p. 137. (In Lithuanian) [Google Scholar]
- IUSS Working Group WRB. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. In World Reference Base for Soil Resources, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Dirv_DR10LT. Spatial Data Set of Soil of the Territory of the Republic of Lithuania at Scale 1:10,000. 2022. Available online: https://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7B449450A9-AD8C-6E9E-6FCB-06A0584BF88C%7D (accessed on 6 March 2023).
- DirvAgroch_DR10LT. Spatial Data Set of Soil Organic Carbon of the Territory of the Republic of Lithuania at Scale 1:10,000. 2023. Available online: https://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7BF14575DC-DE8B-4BD6-B52B-E164EA526534%7D (accessed on 30 June 2023).
- Armolaitis, K.; Varnagirytė-Kabašinskienė, I.; Žemaitis, P.; Stakėnas, V.; Beniušis, R.; Kulbokas, G.; Urbaitis, G. Evaluation of organic carbon stocks in mineral and organic soils in Lithuania. Soil Use Manag. 2021, 38, 355–368. [Google Scholar] [CrossRef]
- Li, T.; Xia, A.; McLaren, T.I.; Pandey, R.; Xu, Z.; Liu, H.; Manning, S.; Madgett, O.; Duncan, S.; Rasmussen, P.; et al. Preliminary Results in Innovative Solutions for Soil Carbon Estimation: Integrating Remote Sensing, Machine Learning, and Proximal Sensing Spectroscopy. Remote Sens. 2023, 15, 5571. [Google Scholar] [CrossRef]
- Wu, T.; Wu, Q.; Zhuang, Q.; Li, Y.; Yao, Y.; Zhang, L.; Xing, S. Optimal Sample Size for SOC Content Prediction for Mapping Using the Random Forest in Cropland in Northern Jiangsu, China. Eurasian Soil Sci. 2022, 55, 1689–1699. [Google Scholar] [CrossRef]
- Negassa, M.K.; Haile, M.; Feyisa, G.L.; Wogi, L.; Merga, F. Modeling and mapping spatial distribution of baseline soil organic carbon stock, a case of West Hararghe, Oromia Regional State, Eastern Ethiopia. Geol. Ecol. Landsc. 2023, 1–16. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E.; Minasny, B.; Bou Kheir, R.; Greve, M.B.; Greve, M.H. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark. PLoS ONE 2014, 9, e105519. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Cui, L.; Xu, Z.; Hu, R.; Joshi, P.K.; Song, X.; Tang, L.; Xia, A.; Wang, Y.; Guo, D.; et al. Quantitative Analysis of the Research Trends and Areas in Grassland Remote Sensing: A Scientometrics Analysis of Web of Science from 1980 to 2020. Remote Sens. 2021, 13, 1279. [Google Scholar] [CrossRef]
- Marchetti, A.; Piccini, C.; Francaviglia, R.; Mabit, L. Spatial distribution of soil organic matter using geostatistics: A key indicator to assess soil degradation status in Central Italy. Pedosphere 2012, 22, 230–242. [Google Scholar] [CrossRef]
- Castaldi, F.; Koparan, M.H.; Wetterlind, J.; Žydelis, R.; Vinci, I.; Savas, A.O.; Kıvrak, C.; Tunçay, T.; Volungevičius, J.; Obber, S.; et al. Assessing the capability of Sentinel-2 time-series to estimate soil organic carbon and clay content at local scale in croplands. ISPRS J. Photogramm. Remote Sens. 2023, 199, 40–60. [Google Scholar] [CrossRef]
- Steffensen, J.F. Interpolation, 2nd ed.; Dover: Mineola, NY, USA, 2006. [Google Scholar]
- Schulp, C.J.E.; Verbung, P.H. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agric. Ecosyst. Environ. 2009, 133, 86–97. [Google Scholar] [CrossRef]
- Fan, M.; Lal, R.; Zhang, H.; Marganot, A.J.; Wu, J.; Wu, P.; Zhang, L.; Yao, J.; Chen, F.; Gao, C. Variability, and determinants of soil organic matter under different land uses and soil types in eastern China. Soil Tillage Res. 2020, 198, 104544. [Google Scholar] [CrossRef]
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Szostek, M.; Szpunar-Krok, E.; Pawlak, R.; Stanek-Tarkowska, J.; Ilek, A. Effect of Different Tillage Systems on Soil Organic Carbon and Enzymatic Activity. Agronomy 2022, 12, 208. [Google Scholar] [CrossRef]
- Bardule, A.; Lupikis, A.; Butlers, A.; Lazdins, A. Organic carbon stock in different types of mineral soils in cropland and grassland in Latvia. Zemdirb.-Agric. 2017, 104, 3–8. [Google Scholar] [CrossRef]
- Kõlli, R.; Ellermae, O.; Koster, T.; Lemetti, I.; Asi, E.; Kauer, K. Stocks of organic carbon in Estonian soils. Est. J. Earth Sci. 2009, 58, 95–108. [Google Scholar] [CrossRef]
- Metzger, M.J.; Shkaruba, A.D.; Jongman, R.H.G.; Bunce, R.G.H. Description of the European Environmental Zones and Strata; Alterra Report: Wageniningen, The Netherland, 2012; p. 154. [Google Scholar]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Mücher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Bukantis, A. Agroklimatinis rajonavimas. Liet. Nac. Atlasas 2014, 1T, 74. (In Lithuanian) [Google Scholar]
- Rinterknecht, V.R.; Bitinas, A.; Clark, P.U.; Raisbeck, G.M.; Yiou, F.; Brook, E.J. Timing of the last deglaciation in Lithuania. Boreas 2008, 37, 426–433. [Google Scholar] [CrossRef]
- Tylmann, K.; Uscinowicz, S. Timing of the last deglaciation phases in the southern Baltic area inferred from Bayesian age modeling. Quat. Sci. Rev. 2022, 287, 107563. [Google Scholar] [CrossRef]
- Guobytė, R.; Kavaliauskas, P. Geomorfologinis rajonavimas. LLiet. Nac. Atlasas 2014, 1T, 52. (In Lithuanian) [Google Scholar]
- NMA-Paseliai (National Paying Agency—Crops) Spatial Crop Declaration Data Set of the Territory of the Republic of Lithuania at Scale 1:10,000. 2023. Available online: https://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7B7AF3F5B2-DC58-4EC5-916C-813E994B2DCF%7D (accessed on 13 October 2023).
- Nikitin, B.A. Methods for soil humus determination. Agric. Chem. 1999, 3, 156–158. [Google Scholar]
- Armolaitis, K.; Stakėnas, V.; Varnagirytė-Kabašinskienė, I.; Žemaitis, P.; Araminienė, V.; Buivydaitė, V.V.; Muraškienė, M.; Armolaitis, T. Evaluation of National Organic Carbon Stocks and the Determination of Stock Values in Organic and Mineral Soils in Forest and Non-Forest Land; Report; Ministry of Environment of the Republic of Lithuania: Kaunas-Girionys, Lithuania, 2016; p. 90. (In Lithuanian)
- Watson, D.F.; Philip, G.M. A Refinement of Inverse Distance Weighted Interpolation. Geoprocessing 1985, 2, 315–327. [Google Scholar]
- ArcGIS Pro Documentation. ESRI. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/understanding-interpolation-analysis.htm (accessed on 16 May 2024).
- GDB10LT-Static. Spatial Data Set of Georeferenced Base Map of the Territory of the Republic of Lithuania at Scale 1:10,000. 2023. Available online: https://www.geoportal.lt/metadata-catalog/catalog/search/resource/details.page?uuid=%7B3FCEEFFD-9704-4A0C-96F3-4CF5DBA94F15%7D (accessed on 25 January 2023).
- Armolaitis, K. Evaluation of National Organic Carbon Stocks and the Determination of Stock Values in Organic and Mineral Soils in Forest and Non-Forest Land. XLS Data Base 2016.
- Göl, C.; Bulut, S.; Bolat, F. Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey. J. Afr. Earth Sci. 2017, 134, 85–91. [Google Scholar] [CrossRef]
IIc | IId | ||
---|---|---|---|
Sum of active temperatures (>10 °C), °C | In the air | 2100–2170 | 2190–2250 |
Loamy soil | 2300–2400 | 2400–2500 | |
Sandy loam soil | 2500–2600 | 2500–2600 | |
Average annual temperature, °C | 6.3–6.6 | 6.7–7.1 | |
Amount of precipitation, mm | 570–700 | ~610 | |
Average absolute minimum temperatures, °C | −22.0 … −23.0 | −21.7 … −21.9 | |
Duration of frost-free periods on the soil surface, annual number of days | 126–139 | 142–143 | |
Amount of precipitation when air t > 10 °C, mm | 300–310 | 280–320 | |
Maximum depth of soil freezing, cm | 30–35 | 40–45 |
Agricultural Land Uses | ha | % |
---|---|---|
Winter cereals | 103,665.62 | 40.86 |
Rapeseed | 45,078.40 | 17.77 |
Spring cereals | 34,232 | 13.49 |
Pastures/grasslands | 22,181.20 | 8.74 |
Protein crops (peas, beans, etc.) | 14,174.20 | 5.59 |
Sugar beet | 7721.36 | 3.04 |
Maize | 6091.29 | 2.40 |
Perennial grasses | 5657.29 | 2.24 |
Fallow land | 4181.41 | 1.65 |
Oats | 2801.96 | 1.10 |
Other (vegetables, fibrous hemp, buckwheat, berries, flax, aromatic plants, mushrooms, gardens, other plantations) | 795,116.82 | 3.12 |
Texture Classes | Area in Agricultural Land | Number of Samples | Point Density, Units/100 ha | |
---|---|---|---|---|
ha | % | |||
peat (P) | 14,493.30 | 4.19 | 24 | 0.17 |
silty loam (SiL) | 8421.74 | 2.43 | 7 | 0.08 |
silty clay loam (SiCL) * | 109.29 | 0.03 | - | - |
clay (C) * | 237.57 | 0.07 | - | - |
loam (L) | 8519.34 | 2.46 | 11 | 0.13 |
clay loam (CL) | 1229.76 | 0.36 | 2 | 0.16 |
sandy loam (SL) | 289,372.88 | 83.73 | 229 | 0.08 |
mucky layer | 16,456.33 | 4.75 | 19 | 0.11 |
sand (S) | 1727.76 | 0.45 | 6 | 0.35 |
loamy sand (LS) | 5300.01 | 1.53 | 15 | 0.28 |
Soil Groups by, % | IDW | Kriging | LPI | RBF | EBK | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Qualitative categories | SOC | % | 1000 ha | % | 1000 ha | % | 1000 ha | % | 1000 ha | % | 1000 ha |
Very low | <0.580 | 0.01 | 0.046 | - | 0.35 | 1.521 | 0.00 | 0.000 | - | ||
Low | 0.581–1.160 | 0.99 | 4.286 | 0.00 | 0.002 | 0.42 | 1.817 | 0.08 | 0.336 | 0.01 | 0.042 |
Moderate | 1.161–1.740 | 13.48 | 58.077 | 9.14 | 39.391 | 7.9 | 34.048 | 7.29 | 31.405 | 7.74 | 33.334 |
High | 1.741–2.330 | 37.03 | 159.538 | 38.35 | 165.209 | 36.97 | 159.289 | 38.70 | 166.737 | 36.60 | 157.677 |
Very high | 2.331–5.000 | 37.82 | 162.949 | 39.38 | 169.655 | 42.12 | 181.469 | 42.85 | 184.618 | 42.09 | 181.324 |
Extremely high (Muck soil) | 5.000–13.000 | 9.49 | 40.897 | 13.13 | 56.566 | 11.60 | 49.986 | 10.94 | 47.135 | 13.52 | 58.231 |
Peat soil | >13.001 | 1.17 | 5.029 | - | 0.63 | 2.693 | 0.14 | 0.592 | 0.05 | 0.215 |
Soil Groups by % | Scenario I * | Scenario II * | Scenario III * | |||||
---|---|---|---|---|---|---|---|---|
Qualitative categories | SOC | Humus | % | ha | % | ha | % | ha |
Very low | <0.580 | <1.0 | - | - | 0.47 | 1612.34 | ||
Low | 0.581–1.160 | 1.1–2.0 | - | - | 0.66 | 2242.96 | ||
Moderate | 1.161–1.740 | 2.1–3.0 | 10.99 | 37,493.25 | 20.31 | 70,239.61 | 10.69 | 36,473.63 |
High | 1.741–2.330 | 3.1–4.0 | 64.04 | 218,456.39 | 55.84 | 193,221.39 | 63.20 | 215,620.70 |
Very high | 2.331–5.000 | 4.0–10.0 | 21.81 | 74,423.97 | 20.69 | 71,598.83 | 15.89 | 5420.40 |
Extreme high (Muck soil) | 5.000–13.000 | 10.0–22.0 | 0.08 | 285.84 | 0.08 | 285.84 | 6.01 | 20,505.78 |
Peat soil | >13.001 | >22.0 | 3.08 | 10,522.32 | 3.08 | 10,522.32 | 3.08 | 10,522.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volungevicius, J.; Žydelis, R.; Amaleviciute-Volunge, K. Advancements in Soil Organic Carbon Mapping and Interpolation Techniques: A Case Study from Lithuania’s Moraine Plains. Sustainability 2024, 16, 5157. https://doi.org/10.3390/su16125157
Volungevicius J, Žydelis R, Amaleviciute-Volunge K. Advancements in Soil Organic Carbon Mapping and Interpolation Techniques: A Case Study from Lithuania’s Moraine Plains. Sustainability. 2024; 16(12):5157. https://doi.org/10.3390/su16125157
Chicago/Turabian StyleVolungevicius, Jonas, Renaldas Žydelis, and Kristina Amaleviciute-Volunge. 2024. "Advancements in Soil Organic Carbon Mapping and Interpolation Techniques: A Case Study from Lithuania’s Moraine Plains" Sustainability 16, no. 12: 5157. https://doi.org/10.3390/su16125157
APA StyleVolungevicius, J., Žydelis, R., & Amaleviciute-Volunge, K. (2024). Advancements in Soil Organic Carbon Mapping and Interpolation Techniques: A Case Study from Lithuania’s Moraine Plains. Sustainability, 16(12), 5157. https://doi.org/10.3390/su16125157