Synthesis of Sulfur-Grafted Chitosan Biopolymers and Improvement to Their Sorption of Silver Ions from Different Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Adsorbents
2.2.1. Synthesis of Chitosan Formaldehyde Particles (Reference Material)
2.2.2. Synthesis of Functionalized Chitosan Thiourea Particles
2.3. Characterization
2.4. Sorption and Application Experiments
3. Results
3.1. Characterization of Synthesized Sorbents
3.1.1. FTIR Analysis
3.1.2. TGA Analysis
3.1.3. Elemental Analysis and pHpzc
3.1.4. SEM Analysis
3.1.5. BET Surface Area
3.2. Silver Sorption
3.2.1. Effect of pH
3.2.2. Uptake Kinetics
3.2.3. Sorption Isotherms
3.2.4. Sorption Selectivity
- For CH-F/pHeq 6.89: Ca(II) ≈ Na(I) > Mg(II) > Fe(II) > Al(III) ≈ Cu(II) > Ag(I).
- For CH-TU/pHeq 6.71: Ag(I) > Ca(II) > Mg(II) >Fe(III) > Al(III) > Na(I) ≈Cu(II).
3.2.5. Metal Desorption and Recycling Performance
3.3. Application to a Real Effluent—Acidic Leachate of Waste Photographic Film
- CH-F/pHeq/2.35: Al > Cr > N i> Co> Fe > Mg ≈ Cu; CH-F/pHeq/6.11: Ni > Al > Co ≈ Cr ≈ Mg > Fe ≈ Cu. For CH-TU/pHeq/2.19: Al > Co ≈ Cr > Fe > Mg > Ni> Cu; CH-F/pHeq/5.86: Ni > Mg > Co> Al > Cu> Cr > Fe.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva de Oliveira, L.S.; Weitzel Dias Carneiro Lima, M.T.; Yamane, L.H.; Siman, R.R. Silver receovery from end-of-life photo-voltaic panels. Detritus 2020, 10, 62–74. [Google Scholar] [CrossRef]
- Savvilotidou, V.; Gidarakos, E. Pre-concentration and recovery of silver and indium from crystalline silicon and copper indium selenide photovoltaic panels. J. Clean. Prod. 2020, 250, 119440. [Google Scholar] [CrossRef]
- Carata, C.; Vasile, E.; Ghica, V.-G.; Petrescu, M.-I.; Iacob, G.; Buzatu, M. Recovery of silver from waste silver oxide button cells Part I: Characterization of active material. Rom. J. Mater. 2020, 50, 191–197. [Google Scholar]
- Ho, N.A.D.; Babel, S.; Sombatmankhong, K. Factors influencing silver recovery and power generation in bio-electrochemical reactors. Environ. Sci. Pollut. Res. 2017, 24, 21024–21037. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Wang, L.; Waseem, H.; Sharif, H.M.A.; Djellabi, R.; Zhang, C.; Pan, G. Bioelectrochemical recovery of silver from wastewater with sustainable power generation and its reuse for biofouling mitigation. J. Clean. Prod. 2019, 235, 1425–1437. [Google Scholar] [CrossRef]
- Noorbakhsh-Sabet, N.; Zand, R.; Zhang, Y.; Abedi, V. Artificial intelligence transforms the future of health care. Am. J. Med. 2019, 132, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Avilés, P.; Huang, Y.; Keller, A.A. Incidence and persistence of silver nanoparticles throughout the wastewater treatment process. Water Res. 2019, 156, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Erku, M.D.; Yimam, A.; Jabasingh, A.S. Process optimization for the recovery of silver from waste X-ray photographic films. Indian J. Chem. Technol. 2019, 26, 404–410. [Google Scholar]
- Sverdrup, H.U.; Ragnarsdottir, K.V.; Koca, D. An assessment of metal supply sustainability as an input to policy: Security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity. J. Clean. Prod. 2017, 140, 359–372. [Google Scholar] [CrossRef]
- Azimzada, A.; Tufenkji, N.; Wilkinson, K.J. Transformations of silver nanoparticles in wastewater effluents: Links to Ag bio-availability. Environ. Sci. Nano 2017, 4, 1339–1349. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Cantuaria, M.L.; de Almeida Neto, A.F.; Nascimento, E.S.; Vieira, M.G. Adsorption of silver from aqueous solution onto pre-treated bentonite clay: Complete batch system evaluation. J. Clean. Prod. 2016, 112, 1112–1121. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, L.; Liang, J.; Xu, W.; Yu, H.; Zhang, J.; Ye, S.; Xing, W.; Yuan, X. Photocatalytic degradation of tetracycline an-tibiotics using delafossite silver ferrite-based Z-scheme photocatalyst: Pathways and mechanism insight. Chemosphere 2021, 270, 128651. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Wu, X.; Zhao, S.; Djellabi, R.; Zhao, X. Peroxymonosulfate enhanced photocatalytic decomposition of silver-cyanide complexes using g-C3N4 nanosheets with simultaneous recovery of silver. Appl. Catal. B Environ. 2020, 265, 118587. [Google Scholar] [CrossRef]
- Baes, A.; Umali, S.; Mercado, R. Ion exchange and adsorption of some heavy metals in a modified coconut coir cation exchanger. Water Sci. Technol. 1996, 34, 193–200. [Google Scholar] [CrossRef]
- Jin, K.; Huang, X.; Yang, H.; Li, Y.; Zeng, J.; Zhou, H.; Liu, Y.; Zhang, R. A acylthiourea based ion-imprinted membrane for selective removal of Ag+ from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2024, 684, 133162. [Google Scholar] [CrossRef]
- Wang, Z.; Halli, P.; Hannula, P.; Liu, F.; Wilson, B.P.; Yliniemi, K.; Lundstrom, M. Recovery of silver from dilute effluents via electrodeposition and redox replacement. J. Electrochem. Soc. 2019, 166, E266–E274. [Google Scholar] [CrossRef]
- Ho, N.A.D.; Babel, S. Bioelectrochemical technology for recovery of silver from contaminated aqueous solution: A review. Environ. Sci. Pollut. Res. 2020, 28, 63480–63494. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-Y.; Kim, T.-Y.; Sun, P.-P. Recovery of silver from leachate of silicon solar cells by solvent extraction with TOPO. Sep. Purif. Technol. 2019, 215, 516–520. [Google Scholar] [CrossRef]
- Sun, P.-P.; Kim, T.-Y.; Seo, H.; Cho, S.-Y. Recovery of copper(II) and silver(I) from nitrate leaching solution of industrial dust via solvent extraction with LIX63. Metals 2021, 11, 1300. [Google Scholar] [CrossRef]
- Xing, W.D.; Lee, M.S. Development of a hydrometallurgical process for the recovery of gold and silver powders from anode slime containing copper, nickel, tin, and zinc. Gold Bull. 2019, 52, 69–77. [Google Scholar] [CrossRef]
- Celik, Z.; Guelfen, M.; Aydin, A.O. Synthesis of a novel dithiooxamide-formaldehyde resin and its application to the adsorption and separation of silver ions. J. Hazard. Mater. 2010, 174, 556–562. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, X.; Pan, Q.; Ao, Y.; Du, J.; Zhai, M.; Zhao, L. Performance and mechanism of selective adsorption of silver to L-cysteine functionalized cellulose microsphere. Cellulose 2020, 27, 3249–3261. [Google Scholar] [CrossRef]
- Pilsniak-Rabiega, M.; Wejman, K.; Wolska, J. Novel conventional and chelating anion exchange resins with amino ligands for sorption of silver. Sep. Sci. Technol. 2020, 55, 2170–2182. [Google Scholar] [CrossRef]
- El-Shorbagy, H.G.; El-Kousy, S.M.; Elwakeel, K.Z.; Abd El-Ghaffar, M.A. Eco-friendly chitosan condensation adduct resins for removal of toxic silver ions from aqueous medium. J. Ind. Eng. Chem. 2021, 100, 410–421. [Google Scholar] [CrossRef]
- Han, C.; Li, J.; Wang, G.; Zhang, C. The adsorption of silver on powdered activated carbon in the ammonia-rree thiosulfate leaching solution. Russ. J. Non-Ferr. Met. 2021, 62, 165–173. [Google Scholar] [CrossRef]
- Omar, N.B.; Merroun, M.L.; Peñalver, J.M.A.; Gonzalez Muñoz, M.T. Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere 1997, 35, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Tsui, M.T.K.; Cheung, K.C.; Tam, N.F.Y.; Wong, M.H. A comparative study on metal sorption by brown seaweed. Chemosphere 2006, 65, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.Q.; Tang, X.H.; Zhou, L.M.; Liu, Z.R.; Le, Z.G.; Huang, G.L. Effective adsorption Ag(I) onto triethylenetetra-mine-modified chitosan beads: Adsorption equilibrium, kinetic, and thermodynamic studies. Desalin. Water Treat. 2020, 206, 297–306. [Google Scholar] [CrossRef]
- Nancharaiah, Y.; Mohan, S.V.; Lens, P. Metals removal and recovery in bioelectrochemical systems: A review. Bioresour. Technol. 2015, 195, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wan, H.; Song, S.; Liu, D.; Puma, G.L. Complete removal of heavy metals with simultaneous efficient treatment of etching terminal wastewater using scaled-up microbial electrolysis cells. Chem. Eng. J. 2022, 439, 135763. [Google Scholar] [CrossRef]
- Hassan, M.; Kanwal, S.; Singh, R.S.; SA, M.A.; Anwar, M.; Zhao, C. Current challenges and future perspectives associated with configuration of microbial fuel cell for simultaneous energy generation and wastewater treatment. Int. J. Hydrogen Energy 2023, 50, 323–350. [Google Scholar] [CrossRef]
- Nazarchuk, G.I.; Melnyk, I.V.; Zub, Y.L.; Makridina, O.I.; Vezentsev, A.I. Mesoporous silica containing Si(CH2)3NHC(S)NHC2H5 functional groups in the surface layer. J. Colloid Interface Sci. 2013, 389, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Cigil, A.B.; Urucu, O.A.; Birtane, H.; Kahraman, M.V. Cellulose/cysteine based thiol-ene UV cured adsorbent: Removal of silver (I) ions from aqueous solution. Cellulose 2021, 28, 6439–6448. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Al-Bogami, A.S.; Guibal, E. 2-Mercaptobenzimidazole derivative of chitosan for silver sorption—Contribution of magnetite incorporation and sonication effects on enhanced metal recovery. Chem. Eng. J. 2021, 403, 126265. [Google Scholar] [CrossRef]
- Onofrei, T.; Albu, M.; Mita, C. Sorption and concentration of Ag(I) on celluloses modified with azo and thiourea groups. Cellul. Chem. Technol. 2001, 35, 429–433. [Google Scholar]
- Hao, Z.; Guo, Y.; Wu, P.; Mansuer, M.; Zhu, J. Adsorption properties of silver ions on thiourea-formaldehyde resin. In Proceedings of the 3rd International Conference on Energy, Environment and Sustainable Development (EESD 2013), Shanghai, China, 12–13 November 2014; pp. 459–462. [Google Scholar] [CrossRef]
- Kumar, P.; Ansari, K.B.; Koli, A.C.; Gaikar, V.G. Sorption behavior of thiourea grafted polymeric resin toward silver ion, re-duction to silver nanoparticles, and their antibacterial properties. Ind. Eng. Chem. Res. 2013, 52, 6438–6445. [Google Scholar] [CrossRef]
- Yun, J.-I.; Bhattarai, S.; Yun, Y.-S.; Lee, Y.-S. Synthesis of thiourea-immobilized polystyrene nanoparticles and their sorption behavior with respect to silver ions in aqueous phase. J. Hazard. Mater. 2018, 344, 398–407. [Google Scholar] [CrossRef]
- Pilsniak-Rabiega, M.; Wolska, J. Silver(I) recovery on sulfur-containing polymeric sorbents from chloride solutions. Physicochem. Probl. Miner. Process. 2020, 56, 290–310. [Google Scholar] [CrossRef]
- Liu, P.; Wang, X.; Tian, L.; He, B.; Lv, X.; Li, X.; Wang, C.; Song, L. Adsorption of silver ion from the aqueous solution using a polyvinylidene fluoride functional membrane bearing thiourea groups. J. Water Process Eng. 2020, 34, 101184. [Google Scholar] [CrossRef]
- Pearson, R.G. Acids and bases. Science 1966, 151, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.L.; Marques, K.L.; Girao, A.V.; Pereira, E.; Trindade, T. Functionalized magnetite particles for adsorption of colloidal noble metal nanoparticles. J. Colloid Interface Sci. 2016, 475, 96–103. [Google Scholar] [CrossRef]
- El-Ghaffar, M.A.A.; Mohamed, M.H.; Elwakeel, K.Z. Adsorption of silver(I) on synthetic chelating polymer derived from 3-amino-1,2,4-triazole-5-thiol and glutaraldehyde. Chem. Eng. J. 2009, 151, 30–38. [Google Scholar] [CrossRef]
- Melnyk, I.V.; Nazarchuk, G.I.; Vaclavikova, M.; Zub, Y.L. IR spectroscopy study of SBA-15 silicas functionalized with the ethylthiocarbamidepropyl groups and their interactions with Ag(I) and Hg(II) ions. Appl. Nanosci. 2019, 9, 683–694. [Google Scholar] [CrossRef]
- Qiao, H.; Li, B.; Hu, S.; Liu, C. Fast cost-effective synthesis of metal ions/biopolymer/silica composites by supramolecular hydrogels crosslink with superior tetracycline sorption performance. Chemosphere 2022, 294, 133821. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.; Alam, M.; Wang, S.; Zaman, J.U.; Rahman, M.S.; Johir, M.; Tian, L.; Choi, J.-G.; Ahmed, M.B.; Yoon, M.-H. Interaction chemistry of functional groups for natural biopolymer-based hydrogel design. Mater. Sci. Eng. R Rep. 2023, 156, 100758. [Google Scholar] [CrossRef]
- Yang, W.; Yang, W.; Zeng, J.; Chen, Y.; Huang, Y.; Liu, J.; Gan, J.; Li, T.; Zhang, H.; Zhong, L. Biopolymer-based gel electrolytes for electrochemical energy Storage: Advances and prospects. Prog. Mater. Sci. 2024, 144, 101264. [Google Scholar] [CrossRef]
- Neto, L.A.A.; Silva, L.P. Influence of biopolymer composition and crosslinking agent concentration on the micro-and nanomechanical properties of hydrogel-based filaments. J. Mech. Behav. Biomed. Mater. 2024, 150, 106316. [Google Scholar]
- Zhao, M.; Salih, K.A.; Wei, Y.; Guibal, E.; Ning, S.; Goda, A.E.-S.; Hamza, M.F. Novel method for synthesizing high S-bearing hybrid sorbent for efficient silver binding–Characterization, testing, and application to metal recovery from X-ray films. Chem. Eng. J. 2023, 477, 147010. [Google Scholar] [CrossRef]
- Hou, X.; Lin, L.; Li, K.; Jiang, F.; Qiao, D.; Zhang, B.; Xie, F. Towards superior biopolymer gels by enabling interpenetrating network structures: A review on types, applications, and gelation strategies. Adv. Colloid Interface Sci. 2024, 325, 103113. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.L.; Sarjadi, M.S.; Arshad, S.E.; Yusoff, M.M.; Sarkar, S.M.; Musta, B. Kenaf cellulose-based poly(amidoxime) ligand for adsorption of rare earth ions. Rare Met. 2019, 38, 259–269. [Google Scholar] [CrossRef]
- Seelarak, C.; Saiwan, C.; Supap, T.; Idem, R.; Tontiwachwuthikul, P.; Wongpanit, P. Studies of Crosslinked Quaternized Biopolymer for Separation of Heat Stable Salts in Amine Absorption Solution for Carbon Dioxide Capture. Energy Procedia 2013, 37, 1202–1208. [Google Scholar] [CrossRef]
- Gad, H.M.H.; Hamed, M.M.; Eldahab, H.; Moustafa, M.E.; El-Reefy, S.A. Radiation-induced grafting copolymerization of resin onto the surface of silica extracted from rice husk ash for adsorption of gadolinium. J. Mol. Liq. 2017, 231, 45–55. [Google Scholar] [CrossRef]
- Roosen, J.; Binnemans, K. Adsorption and chromatographic separation of rare earths with EDTA- and DTPA-functionalized chitosan biopolymers. J. Mater. Chem. A 2014, 2, 1530–1540. [Google Scholar] [CrossRef]
- Wang, F.C.; Zhao, J.M.; Wei, X.T.; Huo, F.; Li, W.S.; Hu, Q.Y.; Liu, H.Z. Adsorption of rare earths(III) by calcium alginate-poly glutamic acid hybrid gels. J. Chem. Technol. Biotechnol. 2014, 89, 969–977. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Peng, Y.-L.; Zou, J.-S.; Yang, T.; Liu, Z.; Qiu, F.; Liu, C.; Jiang, S. Probing the differences in CO2 adsorption/desorption behaviors of solid amine sorbents in fixed and fluidized beds. Sep. Purif. Technol. 2024, 343, 127171. [Google Scholar] [CrossRef]
- Hamza, M.F.; Guibal, E.; Althumayri, K.; Wei, Y.; Eid, A.M.; Fouda, A. Poly-condensation of N-(2-acetamido)-2-aminoethanesulfonic acid with formaldehyde for the synthesis of a highly efficient sorbent for Cs (I). Chem. Eng. J. 2022, 454, 140155. [Google Scholar] [CrossRef]
- Ravi, S.; Lee, Y.-R.; Yu, K.; Ahn, J.-W.; Ahn, W.-S. Benzene triamido-tetraphosphonic acid immobilized on mesoporous silica for adsorption of Nd3+ ions in aqueous solution. Microporous Mesoporous Mater. 2018, 258, 62–71. [Google Scholar] [CrossRef]
- Maranescu, B.; Lupa, L.; Visa, A. Synthesis, characterization and rare earth elements adsorption properties of phosphonate metal organic frameworks. Appl. Surf. Sci 2019, 481, 83–91. [Google Scholar] [CrossRef]
- Abdel-Magied, A.F.; Abdelhamid, H.N.; Ashour, R.M.; Zou, X.; Forsberg, K. Hierarchical porous zeolitic imidazolate frame-works nanoparticles for efficient adsorption of rare-earth elements. Microporous Mesoporous Mater. 2019, 278, 175–184. [Google Scholar] [CrossRef]
- Xu, M.; Guo, L.; Wang, Y.; Wang, Q.; Hao, L.; Wang, C.; Wu, Q.; Wang, Z. Heterocyclic frameworks as efficient sorbents for solid phase extraction-high performance liquid chromatography analysis of nitroimidazoles in chicken meat. Microchem. J. 2021, 165, 106096. [Google Scholar] [CrossRef]
- Duarte, M.; Jagadeesan, K.K.; Billing, J.; Yilmaz, E.; Laurell, T.; Ekström, S. Solid-phase extraction of the alcohol abuse biomarker phosphatidylethanol using newly synthesized polymeric sorbent materials containing quaternary heterocyclic groups. J. Chromatogr. A 2017, 1519, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Nachimuthu, S.; Thangavel, S.; Kannan, K. Green synthesized nano-functionalized material. In Industrial Applications of Nanocrystals; Elsevier: Amsterdam, The Netherlands, 2022; pp. 53–69. [Google Scholar]
- Gamzazade, A.; Sklyar, A.; Nasibov, S.; Sushkov, I.; Shashkov, A.; Knirel, Y. Structural features of sulfated chitosans. Carbohydr. Polym. 1997, 34, 113–116. [Google Scholar] [CrossRef]
- Varma, A.J.; Deshpande, S.V.; Kennedy, J.F. Metal complexation by chitosan and its derivatives: A review. Carbohydr. Polym. 2004, 55, 77–93. [Google Scholar] [CrossRef]
- Fu, J.; Yang, F.; Guo, Z. The chitosan hydrogels: From structure to function. New J. Chem. 2018, 42, 17162–17180. [Google Scholar] [CrossRef]
- Nagahama, H.; Maeda, H.; Kashiki, T.; Jayakumar, R.; Furuike, T.; Tamura, H. Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr. Polym. 2009, 76, 255–260. [Google Scholar] [CrossRef]
- Juang, R.S.; Ju, C.Y. Equilibrium sorption of copper(II)-ethylenediaminetetraacetic acid chelates onto cross-linked, polyaminated chitosan beads. Ind. Eng. Chem. Res. 1997, 36, 5403–5409. [Google Scholar] [CrossRef]
- Dragan, E.S.; Humelnicu, D.; Dinu, M.V. Development of chitosan-poly(ethyleneimine) based double network cryogels and their application as superadsorbents for phosphate. Carbohydr. Polym. 2019, 210, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Kyzas, G.Z.; Siafaka, P.I.; Pavlidou, E.G.; Chrissafis, K.J.; Bikiaris, D.N. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J. 2015, 259, 438–448. [Google Scholar] [CrossRef]
- Borsagli, F.; Mansur, A.A.P.; Chagas, P.; Oliveira, L.C.A.; Mansur, H.S. O-carboxymethyl functionalization of chitosan: Complexation and adsorption of Cd (II) and Cr (VI) as heavy metal pollutant ions. React. Funct. Polym. 2015, 97, 37–47. [Google Scholar] [CrossRef]
- Ramos, V.M.; Rodriguez, N.M.; Diaz, M.F.; Rodriguez, M.S.; Heras, A.; Agullo, E. N-methylene phosphonic chitosan. Eff. Prep. Methods Its Properties. Carbohydr. Polym. 2003, 52, 39–46. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Ruan, D.; Xu, H.; Wang, F.; Lei, W.; Xia, M. Efficient removal of heavy metal ions by diethylenetri-aminepenta (methylene phosphonic) acid-doped hydroxyapatite. Sci. Total Environ. 2022, 849, 157557. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Chu, Y.; Khan, M.A.; Xia, M.; Shi, M.; Zhu, S.; Lei, W.; Wang, F. Facile immobilization of ethylenediamine tetrameth-ylene-phosphonic acid into UiO-66 for toxic divalent heavy metal ions removal: An experimental and theoretical exploration. Sci. Total Environ. 2022, 806, 150652. [Google Scholar] [CrossRef] [PubMed]
- Maranescu, B.; Popa, A.; Lupa, L.; Maranescu, V.; Visa, A. Use of chitosan complex with aminophosphonic groups and cobalt for the removal of Sr2+ ions. Sep. Sci. Technol. 2018, 53, 1058–1064. [Google Scholar] [CrossRef]
- Lopez-Ramon, M.V.; Stoeckli, F.; Moreno-Castilla, C.; Carrasco-Marin, F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 1999, 37, 1215–1221. [Google Scholar] [CrossRef]
- Burns, G.R. Metal complexes of thiocarbohydrazide. Inorg. Chem. 1968, 7, 277–283. [Google Scholar] [CrossRef]
- Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G. APPENDIX 3—A Summary of Characteristic Raman and Infrared Frequencies. In The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Lin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G., Eds.; Academic Press: San Diego, CA, USA, 1991; pp. 477–490. [Google Scholar]
- Sánchez-Cid, P.; Alonso-González, M.; Jiménez-Rosado, M.; Benhnia, M.R.-E.-I.; Ruiz-Mateos, E.; Ostos, F.J.; Romero, A.; Perez-Puyana, V.M. Effect of different crosslinking agents on hybrid chitosan/collagen hydrogels for potential tissue engineering applications. Int. J. Biol. Macromol. 2024, 263, 129858. [Google Scholar] [CrossRef] [PubMed]
- Sarnaghi, S.P.; Ayazi, Z. Synthesis of a molecularly imprinted polymer-based thin film as a smart sorbent for microextraction by packed syringe of n-propyl gallate in vegetable edible oils followed by its colorimetric detection applying a smartphone. Microchem. J. 2024, 203, 110772. [Google Scholar] [CrossRef]
- Regina, S.; Poerio, T.; Mazzei, R.; Sabia, C.; Iseppi, R.; Giorno, L. Pectin as a non-toxic crosslinker for durable and water-resistant biopolymer-based membranes with improved mechanical and functional properties. Eur. Polym. J. 2022, 172, 111193. [Google Scholar] [CrossRef]
- Sulejmanović, J.; Memić, M.; Šehović, E.; Omanović, R.; Begić, S.; Pazalja, M.; Ajanović, A.; Azhar, O.; Sher, F. Synthesis of green nano sorbents for simultaneous preconcentration and recovery of heavy metals from water. Chemosphere 2022, 296, 133971. [Google Scholar] [CrossRef]
- Muddin, N.A.I.; Badsha, M.M.; Arafath, M.A.; Merican, Z.M.A.; Hossain, M.S. Magnetic Chitosan Nanoparticles as a Potential Bio-sorbent for the Removal of Cr (VI) from Wastewater: Synthesis, environmental impact and challenges. Desalination Water Treat. 2024, 319, 100449. [Google Scholar] [CrossRef]
- Hamza, M.F.; Abdel-Rahman, A.A.-H.; Negm, A.S.; Hamad, D.M.; Khalafalla, M.S.; Fouda, A.; Wei, Y.; Amer, H.H.; Alotaibi, S.H.; Goda, A.E.-S. Grafting of Thiazole Derivative on Chitosan Magnetite Nanoparticles for Cadmium Remov-al—Application for Groundwater Treatment. Polymers 2022, 14, 1240. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Wang, Z.; Hu, Q. Chitosan hydrogel structure modulated by metal ions. Sci. Rep. 2016, 6, 36005. [Google Scholar] [CrossRef] [PubMed]
- Kaya, F.; Özer, A. Selective sulfate sorption from boric acid factory process liquor: Chitosan-bentonite biocomposite film synthesis as sorbent. Miner. Eng. 2022, 187, 107777. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, Y.; Miao, S.; Wan, D. Fabrication of a novel chitosan/polyaspartic acid composite: A pH-tunable sorbent for efficient adsorption of heavy metal ions and dyes from water. J. Water Process Eng. 2023, 56, 104554. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Khan, S.; Nami, S.A.A.; El-ajaily, M.M. Polynuclear transition metal complexes with thiocarbohydrazide and dithiocarbamates. Spectrochim. Acta Part A 2007, 67, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Tien, C. Adsorption Calculations and Modeling; Butterworth-Heinemann: Newton, MA, USA, 1994; p. 243. [Google Scholar]
- Hubbe, M.A.; Azizian, S.; Douven, S. Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources 2019, 14, 7582–7626. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Kang, X.; Zhang, C. Rapid and efficient recovery of silver with nanoscale zerovalent iron supported on high performance activated carbon derived from straw biomass. Environ. Pollut. 2019, 255, 113043. [Google Scholar] [CrossRef]
- Biswas, F.B.; Rahman, I.M.M.; Nakakubo, K.; Yunoshita, K.; Endo, M.; Nagai, K.; Mashio, A.S.; Taniguchi, T.; Nishimura, T.; Maeda, K.; et al. Selective recovery of silver and palladium from acidic waste solutions using dithiocarbamate-functionalized cellulose. Chem. Eng. J. 2021, 407, 127225. [Google Scholar] [CrossRef]
- Mahlangu, T.; Das, R.; Abia, L.K.; Onyango, M.; Ray, S.S.; Maity, A. Thiol-modified magnetic polypyrrole nanocomposite: An effective adsorbent for the adsorption of silver ions from aqueous solution and subsequent water disinfection by silver-laden nanocomposite. Chem. Eng. J. 2019, 360, 423–434. [Google Scholar] [CrossRef]
- Tran Thu, H.; Okabe, H.; Hidaka, Y.; Hara, K. Equilibrium and kinetic studies for silver removal from aqueous solution by hybrid hydrogels. J. Hazard. Mater. 2019, 365, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Shehzad, H.; Ahmed, E.; Sharif, A.; Din, M.I.; Farooqi, Z.H.; Nawaz, I.; Bano, R.; Iftikhar, M. Amino-carbamate moiety grafted calcium alginate hydrogel beads for effective biosorption of Ag(I) from aqueous solution: Economically-competitive recovery. Int. J. Biol. Macromol. 2020, 144, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, S.; Fu, L.; Zhao, J.; Zhang, L.; Peng, J. Selective adsorption of silver ions from highly acidic aqueous solutions by polymers containing multiple sulfur groups. Water Air Soil Pollut. 2018, 229, 199. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, T.; Yao, Y.; Jiang, T.; Wang, B.; Wang, M. Recycling supercapacitor activated carbons for adsorption of silver (I) and chromium (VI) ions from aqueous solutions. Chemosphere 2020, 238, 124638. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.N.; Reddy, D.S.; Mohan, G.V.K.; Kumar, G.S.; Dora, T.K. Mathematical investigation into the sequential adsorption of silver ions and brilliant green dye using biochar derived from Gracilaria rhodophyta algae. Biomass Convers. Biorefin. 2021, 13, 10065–10084. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokolowska, Z.; Boguta, P. Biomass type effect on biochar surface characteristic and adsorption capacity relative to silver and copper. Fuel 2020, 278, 118168. [Google Scholar] [CrossRef]
- Zhang, Z.; Kuang, Y.; Lin, Y.; Wu, D. A closed-loop sustainable scheme for silver recovery from water by reusable thiol-grafted graphene oxide. J. Clean. Prod. 2021, 305, 127146. [Google Scholar] [CrossRef]
- Liu, Y.; Pei, R.; Lv, Y.; Lin, C.; Huang, J.; Liu, M. Removal behavior and mechanism of silver from low concentration wastewater using cellulose aerogel modified by thiosemicarbazide. J. Appl. Polym. Sci. 2021, 138, 51226. [Google Scholar] [CrossRef]
- Pham Thi, N.; Dinh Thi Mai, T.; Nguyen Thu, P.; Nguyen Thi Thu, T.; Cao Thi, H.; Vo Thi Kieu, A.; Tran Dai, L.; Nguyen Thi, T. Adsorption of Ag+ ions using hydroxyapatite powder and recovery silver by electrodeposition. Vietnam J. Chem. 2021, 59, 179–186. [Google Scholar] [CrossRef]
- Lima, É.C.; Dehghani, M.H.; Guleria, A.; Sher, F.; Karri, R.R.; Dotto, G.L.; Tran, H.N. CHAPTER 3—Adsorption: Fundamental aspects and applications of adsorption for effluent treatment. In Green Technologies for the Defluoridation of Water; Hadi Dehghani, M., Karri, R., Lima, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 41–88. [Google Scholar]
- Buema, G.; Lupu, N.; Chiriac, H.; Ciobanu, G.; Bucur, R.D.; Bucur, D.; Favier, L.; Harja, M. Performance assessment of five adsorbents based on fly ash for removal of cadmium ions. J. Mol. Liq. 2021, 333, 115932. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Oxford University Press: Oxford, UK, 1975; p. 414.w. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, Y.; Chen, L.; Huang, Z. Preparation of thiol-functionalized cellulose and its application to the removal of Hg (II) from water environment. Cellul. Chem. Technol. 2017, 51, 559–567. [Google Scholar]
- Katowah, D.F. Poly O-toluidine-coated acetic acid modified eggshell-chitosan with ZnFe2O4 nanoparticles as a new and promising sorbent nanocomposite for rapid removal of toxic dyes such as Brilliant Green and Acid Red from the aquatic environment. J. Saudi Chem. Soc. 2024, 28, 101828. [Google Scholar] [CrossRef]
- Wang, T.; Gunasekaran, S. State of water in chitosan–PVA hydrogel. J. Appl. Polym. Sci. 2006, 101, 3227–3232. [Google Scholar] [CrossRef]
- Mirzaei, B.E.; Ramazani SA, A.; Shafiee, M.; Danaei, M. Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 605–611. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, P.; Vulesevic, B.; Kuraitis, D.; Li, F.; Yang, A.F.; Griffith, M.; Ruel, M.; Suuronen, E.J. A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng. Part A 2010, 16, 3099–3109. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.F.; Abdel-Rahman, A.A.-H. Extraction studies of some hazardous metal ions using magnetic peptide resins. J. Dispers. Sci. Technol. 2015, 36, 411–422. [Google Scholar] [CrossRef]
- Niu, Y.; Wu, J.; Kang, Y.; Sun, P.; Xiao, Z.; Zhao, D. Recent advances of magnetic chitosan hydrogel: Preparation, properties and applications. Int. J. Biol. Macromol. 2023, 247, 125722. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.F. Uranium recovery from concentrated chloride solution produced from direct acid leaching of calcareous shale, Allouga ore materials, southwestern Sinai, Egypt. J. Radioanal. Nucl. Chem. 2018, 315, 613–626. [Google Scholar] [CrossRef]
- Fan, L.; Yang, J.; Wu, H.; Hu, Z.; Yi, J.; Tong, J.; Zhu, X. Preparation and characterization of quaternary ammonium chitosan hydrogel with significant antibacterial activity. Int. J. Biol. Macromol. 2015, 79, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, B.; Liu, H.; Zheng, Y.; Li, M.; Tang, K.; Pan, B.; Liu, C.; Luo, J.; Pang, X. Multi-crosslinked robust alginate/polyethyleneimine modified graphene aerogel for efficient organic dye removal. Colloids Surf. A Physicochem. Eng. Asp. 2024, 683, 133034. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1–23. [Google Scholar]
- Jin, W.; Shen, D.; Liu, Q.; Xiao, R. Evaluation of the co-pyrolysis of lignin with plastic polymers by TG-FTIR and Py-GC/MS. Polym. Degrad. Stab. 2016, 133, 65–74. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Eid, A.M.; Awad, M.A.; Althumayri, K.; Badr, N.F.; Hamza, M.F. Endophytic bacterial strain, Brevibacillus brevis-mediated green synthesis of copper oxide nanoparticles, characterization, antifungal, in vitro cytotoxicity, and larvicidal activity. Green Process. Synth. 2022, 11, 931–950. [Google Scholar] [CrossRef]
- Hamza, M.F.; Guibal, E.; Wei, Y.; Fouda, A. Magnetic amino-sulfonic dual sorbent for uranyl sorption from aqueous solutions–Influence of light irradiation on sorption properties. Chem. Eng. J. 2023, 456, 141099. [Google Scholar] [CrossRef]
- Amin, M.A.; Ismail, M.A.; Badawy, A.A.; Awad, M.A.; Hamza, M.F.; Awad, M.F.; Fouda, A. The Potency of fungal-fabricated selenium nanoparticles to improve the growth performance of Helianthus annuus L. and control of cutworm Agrotis ipsilon. Catalysts 2021, 11, 1551. [Google Scholar] [CrossRef]
- Saraji, M.; Tarami, M.; Mehrafza, N. Preparation of a nano-biocomposite film based on halloysite-chitosan as the sorbent for thin film microextraction. Microchem. J. 2019, 150, 104171. [Google Scholar] [CrossRef]
- Hamza, M.F. Removal of uranium (VI) from liquid waste of calcareous shale, Allouga, southwestern Sinai, Egypt. Desalination Water Treat. 2015, 54, 2530–2540. [Google Scholar] [CrossRef]
- Ali, N.; Khan, A.; Malik, S.; Badshah, S.; Bilal, M.; Iqbal, H.M. Chitosan-based green sorbent material for cations removal from an aqueous environment. J. Environ. Chem. Eng. 2020, 8, 104064. [Google Scholar] [CrossRef]
- Do, N.H.; Truong, Q.T.; Le, P.K.; Ha, A.C. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr. Polym. 2022, 294, 119726. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.; Hassan, S.E.-D.; Saied, E.; Hamza, M.F. Photocatalytic degradation of real textile and tannery effluent using biosynthesized magnesium oxide nanoparticles (MgO-NPs), heavy metal adsorption, phytotoxicity, and antimicrobial activity. J. Environ. Chem. Eng. 2021, 9, 105346. [Google Scholar] [CrossRef]
- Corazzari, I.; Nistico, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym. Degrad. Stabil. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.; Grondahl, L. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 2007, 8, 2533–2541. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.F. Grafting of quaternary ammonium groups for uranium (VI) recovery: Application on natural acidic leaching liquor. J. Radioanal. Nucl. Chem. 2019, 322, 519–532. [Google Scholar] [CrossRef]
- Hamza, M.F.; Hamad, N.A.; Hamad, D.M.; Khalafalla, M.S.; Abdel-Rahman, A.A.-H.; Zeid, I.F.; Wei, Y.; Hessien, M.M.; Fouda, A.; Salem, W.M. Synthesis of eco-friendly biopolymer, alginate-chitosan composite to adsorb the heavy metals, Cd (II) and Pb (II) from contaminated effluents. Materials 2021, 14, 2189. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.F.; Wei, Y.; Althumayri, K.; Fouda, A.; Hamad, N.A. Synthesis and Characterization of Functionalized Chitosan Nanoparticles with Pyrimidine Derivative for Enhancing Ion Sorption and Application for Removal of Contaminants. Materials 2022, 15, 4676. [Google Scholar] [CrossRef] [PubMed]
- Hamza, M.F.; Mira, H.; Ning, S.; Yin, X.; Wang, J.; Wei, Y.; Guibal, E. Synthesis and characterization of phosphonic acid functionalized maleic anhydride co-polymer for recovering scandium: Acidic red mud leachate as a case study. Colloids Surf. A Physicochem. Eng. Asp. 2024, 692, 133875. [Google Scholar] [CrossRef]
- Yao, Z.; Zhang, C.; Ping, Q.; Yu, L.L. A series of novel chitosan derivatives: Synthesis, characterization and micellar solubilization of paclitaxel. Carbohydr. Polym. 2007, 68, 781–792. [Google Scholar] [CrossRef]
- Wang, S.; Yu, D. Adsorption of Cd(II), Pb(II), and Ag(I) in aqueous solution on hollow chitosan microspheres. J. Appl. Polym. Sci. 2010, 118, 733–739. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Khalafalla, M.S.; Abed, N.S.; Fouda, A.; Elwakeel, K.Z.; Guibal, E.; Hamad, N.A. U (VI) and Th (IV) recovery using silica beads functionalized with urea-or thiourea-based polymers–Application to ore leachate. Sci. Total Environ. 2022, 821, 153184. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.S.; Wang, Y.Z.; Lin, J.J.; Lien, W.F. Preparation and properties of sulfopropyl chitosan derivatives with various sulfonation degree. J. Appl. Polym. Sci. 2010, 116, 1686–1693. [Google Scholar] [CrossRef]
- Chang, S.-H.; Huang, J.-J. Biodegradability and anticoagulant properties of chitosan and sulfonated chitosan films coated on TiNi alloys. Surf. Coat. Technol. 2012, 206, 4959–4963. [Google Scholar] [CrossRef]
- Hamza, M.F.; Salih, K.A.; Zhou, K.; Wei, Y.; Khoziem, H.A.A.; Alotaibi, S.H.; Guibal, E. Effect of bi-functionalization of algal/polyethyleneimine composite beads on the enhancement of tungstate sorption: Application to metal recovery from ore leachate. Sep. Purif. Technol. 2022, 290, 120893. [Google Scholar] [CrossRef]
- Hamza, M.F.; Khalafalla, M.S.; Wei, Y.; Hamad, N.A. Effect of bi-functionalization silica micro beads on uranium adsorption from synthetic and washing pregnant uranyl solutions. J. Radioanal. Nucl. Chem. 2021, 330, 191–206. [Google Scholar] [CrossRef]
- Atta, A.M.; Abdel-Rahman, A.A.-H.; Hamza, M.F.; El Aassy, I.E.; Ahmed, F.Y. Effect of crosslinker chemical structure and monomer compositions on adsorption of uranium (VI) ions based on reactive crosslinked acrylamidoxime acrylic acid resins. J. Dispers. Sci. Technol. 2012, 33, 490–496. [Google Scholar] [CrossRef]
- Duarte, M.L.; Ferreira, M.C.; Marvao, M.R.; Rocha, J. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int. J. Biol. Macromol. 2002, 31, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Metecan, A.; Cihanoğlu, A.; Altinkaya, S.A. A positively charged loose nanofiltration membrane fabricated through complexing of alginate and polyethyleneimine with metal ions on the polyamideimide support for dye desalination. Chem. Eng. J. 2021, 416, 128946. [Google Scholar] [CrossRef]
- Hamza, M.F.; Wei, Y.; Guibal, E. Quaternization of algal/PEI beads (a new sorbent): Characterization and application to scandium sorption from aqueous solutions. Chem. Eng. J. 2020, 383, 123210. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Noruzi, E.B.; Mehrban, S.F.; Aliabadi, H.A.M.; Karimi, M.; Mohammadi, A.; Maleki, A.; Mahdavi, M.; Larijani, B.; Shalan, A.E. The latest advances in biomedical applications of chitosan hydrogel as a powerful natural structure with eye-catching biological properties. J. Mater. Sci. 2022, 57, 3855–3891. [Google Scholar] [CrossRef]
- Xiang, Y.; Yang, M.; Guo, Z.; Cui, Z. Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. J. Membr. Sci. 2009, 337, 318–323. [Google Scholar] [CrossRef]
- Caetano, C.S.; Caiado, M.; Farinha, J.; Fonseca, I.M.; Ramos, A.M.; Vital, J.; Castanheiro, J.E. Esterification of free fatty acids over chitosan with sulfonic acid groups. Chem. Eng. J. 2013, 230, 567–572. [Google Scholar] [CrossRef]
- Hamza, M.F.; Salih, K.A.M.; Abdel-Rahman, A.A.H.; Zayed, Y.E.; Wei, Y.; Liang, J.; Guibal, E. Sulfonic-functionalized algal/PEI beads for scandium, cerium and holmium sorption from aqueous solutions (synthetic and industrial samples). Chem. Eng. J. 2021, 403, 126399. [Google Scholar] [CrossRef]
- Fouda, A.; Eid, A.M.; Abdel-Rahman, M.A.; El-Belely, E.F.; Awad, M.A.; Hassan, S.E.-D.; Al-Faifi, Z.E.; Hamza, M.F. Enhanced antimicrobial, cytotoxicity, larvicidal, and repellence activities of brown algae, cystoseira crinita-mediated green synthesis of magnesium oxide nanoparticles. Front. Bioeng. Biotechnol. 2022, 10, 849921. [Google Scholar] [CrossRef] [PubMed]
Model | Parameter | Unit | CH-F | CH-TU |
---|---|---|---|---|
qeq,exp | mmol Ag g−1 | 0.551 | 1.342 | |
PFORE | qeq,1 | mmol Ag g−1 | 0.549 | 1.358 |
k1 × 10 | min−1 | 0.559 | 0.731 | |
R2 | - | 0.997 | 0.995 | |
AIC | - | −105 | −118 | |
PSORE | qeq,2 | mmol Ag g−1 | 0.789 | 1.819 |
k2 × 10 | gmmol−1 min−1 | 1.55 | 1.94 | |
R2 | - | 0.493 | 0.512 | |
AIC | - | −13 | −15 | |
RIDE | De × 108 | m2 min−1 | 1.95 | 2.03 |
R2 | 0.38 | 0.53 | ||
AIC | −15 | −19 |
Model | Parameter | Unit | CH-F | CH-TU |
---|---|---|---|---|
qm,exp | mmol Ag g−1 | 0.763 | 2.125 | |
Langmuir | qm,L | mmol Ag g−1 | 0.779 | 2.135 |
bL | L mmol−1 | 1.11 | 3.24 | |
R2 | - | 0.995 | 0.993 | |
AIC | - | −138 | −134 | |
Freundlich | kF | L1/nF mmol1−1/nF g−1 | 1.53 | 1.87 |
nF | - | 2.33 | 2.14 | |
R2 | - | 0.754 | 0.562 | |
AIC | - | −29 | −23 | |
Sips | qm,S | mmol Ag g−1 | 0.792 | 1.227 |
bS | (L mmol−1)1/nS | 2.11 | 2.35 | |
nS | - | 0.982 | 1.15 | |
R2 | - | 0.992 | 0.991 | |
AIC | - | −113 | −122 |
Sorbent | pH | Time | qeq,exp. | qeq,L. | bL | Ref. |
---|---|---|---|---|---|---|
Biocomposite hydrogel (CMCellulose/CMChitosan/NaSulfon) | 5 | 2880 | 0.0033 | 0.0042 | 205 | [96] |
Alginate-functionalized amino-carbamate beads | 5 | 180 | 1.28 | 1.95 | 0.503 | [97] |
Poly-pyrrole thiol functionalization | 5.63 | 480 | 7.23 | 7.48 | 150 | [95] |
Cellulose/L-cysteine microsphere | n.d. | 540 | 0.584 | 0.618 | 17.4 | [23] |
Sargassum biomass (Ca-loaded) | 5 | 1440 | 0.6 | 0.935 | 0.317 | [28] |
Sulfur-bearing resin | 1 | 360 | - | 1.16 | 6.47 | [98] |
Dithiocarbamate-modified cellulose | 0.2 M HNO3 | 70 | - | 9.94 | 24.9 | [94] |
Chitosan grafted with mercapto-benzimidazole | 6.8 | 60 | - | 2.02 | 1.05 | [35] |
Nanoscale iron0/activated carbon (a) | 5–6 | 40 | 9.15 | 12.0 | 0.649 | [93] |
Supercapacitor-activated carbon | 4.5 | 60 | 2.16 | 2.45 | 0.583 | [99] |
Supercapacitor recycled AC | 4.5 | 60 | 0.964 | 1.03 | 0.683 | [99] |
Gracilaria rhodophyta biochar | 5.7 | 45 | - | 0.0013 | 244 | [100] |
Magnetic chitosan trione-pyrimidine derivative (MC-PYO) | 6 | 90 | 1.91 | 2.15 | 2.33 | [16] |
Magnetic chitosan trithione-pyrimidine derivative (MC-PYS) | 6 | 60 | 2.33 | 2.38 | 6.68 | [16] |
Magnetic chitosan (MC) | 6 | 90 | 0.678 | 0.844 | 0.870 | [16] |
Thiourea–PVDF composite | 6 | 360 | 1.60 | 1.86 | 40.4 | [41] |
Straw biochar | 5 | 60 | 0.25 | 0.249 | 108 | [101] |
Cysteine/cellulose/thiol-ene | 3 | 120 | - | 0.222 | 490 | [34] |
Thiol/graphene oxide | 5 | 240 | 1.25 | 1.24 | 189 | [102] |
Thiosemicarbazide-based cellulose | 7 | 2160 | 0.417 | 0.476 | 18.7 | [103] |
Hydroxyapatite | 5.9 | 60 | - | 0.173 | n.d. | [104] |
CH-F | 6 | 35 | 0.763 | 0.779 | 1.11 | This study |
CH-TU | 6 | 20 | 2.125 | 2.135 | 3.24 |
CH-F | CH-TU | |||||||
---|---|---|---|---|---|---|---|---|
Cycle | SE | StD | DE | StD | SE | StD | DE | StD |
1 | 12.491 | 0.227 | 100.00 | 0.639 | 65.769 | 0.868 | 100.00 | 0.635 |
2 | 12.072 | 0.337 | 100.00 | 0.979 | 65.172 | 0.393 | 100.00 | 0.437 |
3 | 11.706 | 0.579 | 99.99 | 0.006 | 64.797 | 0.265 | 100.00 | 0.183 |
4 | 11.422 | 0.263 | 100.00 | 0.079 | 64.537 | 0.131 | 99.98 | 0.272 |
5 | 11.172 | 0.41 | 100.00 | 0.12 | 64.162 | 0.276 | 100.04 | 0.209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, M.F.; El-Habibi, G.A.; Abdel-Rahman, A.A.-H.; Khalafalla, M.S.; Amer, H.H.; Fouda, A.; Swelim, M.A.; Salem, W.M.; El Dakkony, S.R. Synthesis of Sulfur-Grafted Chitosan Biopolymers and Improvement to Their Sorption of Silver Ions from Different Aqueous Solutions. Sustainability 2024, 16, 5280. https://doi.org/10.3390/su16135280
Hamza MF, El-Habibi GA, Abdel-Rahman AA-H, Khalafalla MS, Amer HH, Fouda A, Swelim MA, Salem WM, El Dakkony SR. Synthesis of Sulfur-Grafted Chitosan Biopolymers and Improvement to Their Sorption of Silver Ions from Different Aqueous Solutions. Sustainability. 2024; 16(13):5280. https://doi.org/10.3390/su16135280
Chicago/Turabian StyleHamza, Mohammed F., Gehan A. El-Habibi, Adel A.-H. Abdel-Rahman, Mahmoud S. Khalafalla, Hamada H. Amer, Amr Fouda, Mahmoud A. Swelim, Waheed M. Salem, and Saly R. El Dakkony. 2024. "Synthesis of Sulfur-Grafted Chitosan Biopolymers and Improvement to Their Sorption of Silver Ions from Different Aqueous Solutions" Sustainability 16, no. 13: 5280. https://doi.org/10.3390/su16135280
APA StyleHamza, M. F., El-Habibi, G. A., Abdel-Rahman, A. A. -H., Khalafalla, M. S., Amer, H. H., Fouda, A., Swelim, M. A., Salem, W. M., & El Dakkony, S. R. (2024). Synthesis of Sulfur-Grafted Chitosan Biopolymers and Improvement to Their Sorption of Silver Ions from Different Aqueous Solutions. Sustainability, 16(13), 5280. https://doi.org/10.3390/su16135280