Geopolymer Cement in Pavement Applications: Bridging Sustainability and Performance
Abstract
:1. Introduction
2. Methodology
3. Geopolymer Cement
3.1. Geopolymer Synthesis
3.2. Key Ratios in Geopolymer Formation and Properties
3.3. Key Properties of Geopolymer Cement
3.3.1. Mechanical Properties
3.3.2. Durability Properties
Self-Healing Properties
Chemical Resistance
Fire Resistance
Freeze–Thaw Resistance
Abrasion Resistance
Fatigue Resistance
Porosity and Air Permeability
Water Absorption and Permeability
Drying Shrinkage
Sorptivity
Corrosion Performance
3.4. Environmental Impact Assessment of Geopolymer Cement
3.4.1. Greenhouse Gas Emissions Reduction
3.4.2. Energy Efficiency in Geopolymer Cement Production
3.4.3. Resource Conservation and Waste Reduction
3.4.4. Comparison between Geocement and Portland Cement Based on Their Eco-Friendliness and Sustainability
4. Geopolymer Cement/Binder as Sustainable Pavement Construction Materials
Performance of Geopolymer Cement in Pavement Applications
5. Challenges and Future Directions of Geopolymer Cement in Pavement Applications Challenges
- Material Variability: One of the primary challenges in utilizing geopolymer cement is the variability in raw materials, such as fly ash, slag, and other industrial byproducts. The chemical composition of these materials can vary significantly, affecting the consistency and performance of the final geopolymer product. This variability necessitates rigorous quality control measures and tailored formulations for different applications.
- Hardeners: The production of geopolymer cement requires hardeners like sodium hydroxide (NaOH) and sodium silicate (Na2SiO3), which can be costly and hazardous to handle. The high alkalinity of these hardeners poses safety risks during manufacturing and application, requiring careful management and protective measures.
- Long-term Durability: While laboratory studies have demonstrated the durability of geopolymer cement, there is limited long-term field data on its performance in pavement applications. Concerns about potential issues such as carbonation, alkali–aggregate reactions, and freeze–thaw resistance in various environmental conditions need to be addressed through extensive field trials.
- Standardization and Codes: The adoption of geopolymer cement in pavement construction is hindered by the lack of standardized testing methods, design codes, and guidelines. Without established standards, engineers and contractors may be hesitant to use geopolymer cement, despite its potential benefits.
- Cost Competitiveness: Although geopolymer cement has environmental advantages, its cost competitiveness with traditional Portland cement is still a concern. The production and transportation of alkali hardeners and the need for specialized equipment and curing processes can increase costs.
6. Future Directions
- Material Optimization: Research should focus on optimizing the raw material composition and alkali hardener ratios to improve the consistency and performance of geopolymer cement. Innovations in using locally available materials and industrial byproducts can enhance sustainability and reduce costs.
- Development of Hardeners: Developing low-cost, low hardeners that are safer and easier to handle can significantly advance the practical application of geopolymers. This research can include exploring alternative hardeners derived from waste materials.
- Field Trials and Long-term Studies: Conducting extensive field trials and long-term performance studies of geopolymer pavements in various environmental conditions will provide valuable data on durability, maintenance needs, and overall performance. These studies will help build confidence in the use of geopolymers for pavement applications.
- Standardization and Codes Development: Establishing standardized testing methods, design codes, and construction guidelines for geopolymer cement will facilitate its broader adoption. Collaboration between industry, academia, and regulatory bodies is essential to develop these standards.
- Cost Reduction Strategies: Implementing cost reduction strategies, such as using more affordable raw materials, optimizing production processes, and scaling up manufacturing, can make geopolymer cement more economically viable. Additionally, integrating geopolymer production with existing industrial processes can reduce overall costs.
- Environmental and Life Cycle Assessments: Conducting comprehensive environmental and life cycle assessments will quantify the sustainability benefits of geopolymer cement compared to traditional Portland cement. These assessments can highlight the reduction in greenhouse gas emissions, energy consumption, and resource usage, promoting the environmental advantages of geopolymers.
- Innovation in Application Techniques: Developing new application techniques and equipment tailored for geopolymer cement can improve its workability and ease of use in pavement construction. Innovations such as rapid-setting formulations and self-healing technologies can further enhance the performance and durability of geopolymer pavements.
7. Conclusions
- Building on this knowledge, GPC stands out as an innovative material for pavement construction, showcasing superior strength, chemical resistance, thermal stability, and durability against freeze–thaw cycles, making it exceptionally suitable for high-load pavement applications. This is in line with SDG 9.
- GPC’s production process significantly reduces greenhouse gas emissions and energy use when compared to Portland cement, supporting global sustainability goals. Through the use of industrial byproducts and reduced high-temperature processing, GPC reduces carbon footprint, encourages waste material recycling, and fosters a circular economy. This is in line with SDG 3, 11, and 12.
- The integration of GPC in pavement construction not only addresses the urgent need for sustainable development but also ensures the creation of resilient infrastructure capable of withstanding the demands of modern urban environments.
- As research and technological advancements continue to unfold, the broader adoption of GPC is anticipated, paving the way for a more sustainable and resilient future in pavement engineering.
Funding
Acknowledgments
Conflicts of Interest
References
- Van Deventer, J.S.; Provis, J.L.; Duxson, P. Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 2011, 29, 89–104. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Cement: A Review; Technical Papers; Geopolymer Institute: Saint Quentin, France, 2013; Volume 21, pp. 1–11. [Google Scholar]
- Živica, V.; Palou, M.T.; Križma, M. Geopolymer Cements and Their Properties: A Review. Build. Res. J. 2015, 61, 85–100. [Google Scholar] [CrossRef]
- Díaz, E.E.S.; Barrios, V.A.E. Development and use of geopolymers for energy conversion: An overview. Constr. Build. Mater. 2022, 315, 125774. [Google Scholar] [CrossRef]
- Patil, S.; Joshi, D.A.; Menon, R.; Wadhwa, L. Environmental Impact Assessment of fly ash and GGBS based Geopolymer Concrete in Road Construction. E3S Web Conf. 2023, 405, 3021. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Science and Global Warming. In Proceedings of the GEC 2021—First International Geopolymeric Composites Congress, Erzurum, Turkey, 29–30 December 2021. [Google Scholar]
- Jwaida, Z.; Dulaimi, A.; Mashaan, N.; Mydin, A.O. Geopolymers: The Green Alternative to Traditional Materials for Engineering Applications. Infrastructures 2023, 8, 98. [Google Scholar] [CrossRef]
- Drechsler, M.; Graham, A. Geopolymers-an innovative materials technology bringing resource sustainability to construction and mining industries. In Proceedings of the IQA Annual Conference, Adelaide, Australia, 12–15 October 2005; pp. 12–15. [Google Scholar]
- Almutairi, A.L.; Tayeh, B.A.; Adesina, A.; Isleem, H.F.; Zeyad, A.M. Potential applications of geopolymer concrete in construction: A review. Case Stud. Constr. Mater. 2021, 15, e00733. [Google Scholar] [CrossRef]
- Wasim, M.; Ngo, T.D.; Law, D. A state-of-the-art review on the durability of geopolymer concrete for sustainable structures and infrastructure. Constr. Build. Mater. 2021, 291, 123381. [Google Scholar] [CrossRef]
- Soundararajan, E.K.; Vaiyapuri, R. Geopolymer binder for pervious concrete. J. Croat. Assoc. Civ. Eng. 2021, 73, 209–218. [Google Scholar]
- Mohamad, N.; Muthusamy, K.; Embong, R.; Kusbiantoro, A.; Hashim, M.H. Environmental impact of cement production and Solutions: A review. Mater. Today Proc. 2022, 48, 741–746. [Google Scholar] [CrossRef]
- Van der Zee, S.; Zeman, F. Production of carbon negative precipitated calcium carbonate from waste concrete. Can. J. Chem. Eng. 2016, 94, 2153–2159. [Google Scholar] [CrossRef]
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Mohammed, A.A.; Rafiq, S.; Mohammed, A.S.; Mosavi, A.; Sor, N.H.; Qaidi, S.M.A. Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review. Sustainability 2021, 13, 13502. [Google Scholar] [CrossRef]
- Burden, R. Using Co-Disposal Techniques to Achieve Stable ‘Dry-Stacked’ Tailings: Geotechnical Properties of Blended Waste Rock and Tailings in Oil Sands and Metal Mining. Ph.D. Thesis, Department of Civil and Environmental Engineering University of Alberta, Edmonton, AB, Canada, 2021. [Google Scholar]
- McKendry, P. Use of Road Stabilizers in Sensitive Environments. Int. J. Manag. Humanit. 2020, 4, 168–189. [Google Scholar] [CrossRef]
- Nanda, R.P.; Priya, N. Geopolymer as stabilising materials in pavement constructions: A review. Clean. Waste Syst. 2024, 7, 100134. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Ceramic-Like Inorganic Polymers. J. Ceram. Sci. Technol. 2017, 8, 335–350. [Google Scholar] [CrossRef]
- Madirisha, M.M.; Dada, O.R.; Ikotun, B.D. Chemical Fundamentals of Geopolymers in Sustainable Construction. Mater. Today Sustain. 2024, 82, 100842. [Google Scholar] [CrossRef]
- Ikotun, J.O.; Aderinto, G.E.; Katte, V.Y. Geo-polymerization of mining tailing for use as a pavement construction material—A review. In Young Concrete Researchers, Engineers & Technologist Symposium (YCRETS); Cement & Concrete SA: Midrand, South Africa, 2023; pp. 16–23. [Google Scholar]
- Migunthanna, J.; Rajeev, P.; Sanjayan, J. Waste Clay Bricks as a Geopolymer Binder for Pavement Construction. Sustainability 2022, 14, 6456. [Google Scholar] [CrossRef]
- Xiao, R.; Polaczyk, P.; Zhang, M.; Jiang, X.; Zhang, Y.; Huang, B.; Hu, W. Evaluation of Glass Powder-Based Geopolymer Stabilized Road Bases Containing Recycled Waste Glass Aggregate. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 22–32. [Google Scholar] [CrossRef]
- Erkens, S.; Tan, Y. Functional Pavement Design. In Proceedings of the 4th Chinese-European Workshop on Functional Pavement Design, CEW 2016, Delft, The Netherlands, 29 June–1 July 2016; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Usha, S.; Nair, D.G.; Vishnudas, S. Geopolymer binder from industrial wastes: A review. Int. J. Civ. Eng. Technol. 2014, 5, 219–225. [Google Scholar]
- Toda, O.; Wajima, T. Preparation of geopolymer cement from lunar rock sand using alkali fusion, and its evaluation of radiation shielding ability. Geomate J. 2023, 24, 54–60. [Google Scholar] [CrossRef]
- Khatib, J. Sustainability of Construction Materials; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Delatte, N. Concrete Pavement Design, Construction, and Performance; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Thorpe, D.; Zhuge, Y. Advantages and disadvantages in using permeable concrete as a pavement construction material. In Proceedings of the 26th Annual Conference of the Association of Researchers in Construction Management (ARCOM 2010) (Association of Researchers in Construction Management (ARCOM)), Leeds, UK, 6–8 September 2010; Volume 2, pp. 1341–1350. [Google Scholar]
- Tanyildizi, M.; Gökalp, İ. Joint Types and Applications in Rigid Pavements. Innov. Res. Eng. 2023, 33, 471–496. [Google Scholar]
- Imtiaz, L.; Rehman, S.K.U.; Memon, S.A.; Khan, M.K.; Javed, M.F. A Review of Recent Developments and Advances in Eco-Friendly Geopolymer Concrete. Appl. Sci. 2020, 10, 7838. [Google Scholar] [CrossRef]
- Sofri, L.A.; Abdullah, M.M.A.B.; Sandu, A.V.; Imjai, T.; Vizureanu, P.; Hasan, M.R.M.; Almadani, M.; Aziz, I.H.A.; Rahman, F.A. Mechanical Performance of Fly Ash Based Geopolymer (FAG) as Road Base Stabilizer. Materials 2022, 15, 7242. [Google Scholar] [CrossRef]
- Zhou, Y.; Duan, X.; Chen, T.; Yan, B.; Li, L. Mechanical Properties and Toxicity Risks of Lead-Zinc Sulfide Tailing-Based Construction Materials. Materials 2021, 14, 2940. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhang, Z.; Liu, X. Comprehensive Understanding of Aluminosilicate Phosphate Geopolymers: A Critical Review. Materials 2022, 15, 5961. [Google Scholar] [CrossRef]
- Sotelo-Piña, C.; Aguilera-González, E.N.; Martínez-Luévanos, A. Geopolymers: Past, present, and future of low carbon footprint eco-materials. Handb. Ecomater. 2019, 4, 2765–2785. [Google Scholar]
- Bellum, R.R.; Muniraj, K.; Madduru, S.R.C. Characteristic Evaluation of Geopolymer Concrete for the Development of Road Network: Sustainable Infrastructure. Innov. Infrastruct. Solut. 2020, 5, 91. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Alrefaei, Y.; Dai, J.-G. Silico-Aluminophosphate and Alkali-Aluminosilicate Geopolymers: A Comparative Review. Front. Mater. 2019, 6, 106. [Google Scholar] [CrossRef]
- Razak, S.; Zainal, F.F.; Shamsudin, S.R. Effect of Porosity and Water Absorption on Compressive Strength of Fly Ash based Geopolymer and OPC Paste. IOP Conf. Ser. Mater. Sci. Eng. 2020, 957, 012035. [Google Scholar] [CrossRef]
- Farhana, Z.; Kamarudin, H.; Rahmat, A.; Al Bakri, A.M. The Relationship between Water Absorption and Porosity for Geopolymer Paste. Mater. Sci. Forum 2015, 803, 166–172. [Google Scholar] [CrossRef]
- Bewa, C.N.; Tchakouté, H.K.; Rüscher, C.H.; Kamseu, E.; Leonelli, C. Influence of the curing temperature on the properties of poly(phospho-ferro-siloxo) networks from laterite. SN Appl. Sci. 2019, 1, 916. [Google Scholar] [CrossRef]
- Kaze, C.R.; Lecomte-Nana, G.L.; Kamseu, E.; Camacho, P.S.; Yorkshire, A.S.; Provis, J.L.; Duttine, M.; Wattiaux, A.; Melo, U.C. Mechanical and physical properties of inorganic polymer cement made of iron-rich laterite and lateritic clay: A comparative study. Cem. Concr. Res. 2021, 140, 106320. [Google Scholar] [CrossRef]
- Nikolov, A. Novel one-part ferro-phosphate geopolymer cement. Rev. Bulg. Geol. Soc. 2020, 81, 43–45. [Google Scholar]
- Matalkah, F.; Soroushian, P. Freeze thaw and deicer salt scaling resistance of concrete prepared with alkali aluminosilicate cement. Constr. Build Mater. 2018, 163, 200–213. [Google Scholar] [CrossRef]
- Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. Geopolymer: A Systematic Review of Methodologies. Materials 2022, 15, 6852. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.; Khattak, M.J.; Adhikari, S. Mechanical and durability characteristics of flyash-based soil-geopolymer mixtures for pavement base and subbase layers. Int. J. Pavement Eng. 2021, 22, 1193–1212. [Google Scholar] [CrossRef]
- Turkane, S.D.; Chouksey, S.K. Design of low volume road pavement of stabilized low plastic soil using fly ash geopolymer. Mater. Today Proc. 2022, 65, 1154–1160. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H. Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 2016, 125, 253–267. [Google Scholar] [CrossRef]
- Pan, Z.; Sanjayan, J.G.; Rangan, B.V. Fracture properties of geopolymer paste and concrete. Mag. Concr. Res. 2011, 63, 763–771. [Google Scholar] [CrossRef]
- Ramujee, K.; PothaRaju, M. Mechanical Properties of Geopolymer Concrete Composites. Mater. Today Proc. 2017, 4, 2937–2945. [Google Scholar] [CrossRef]
- Asha, G.; Antony, J. Experimental investigation on strength and durability of fly ash and GGBS based geopolymer concrete. In Proceedings of the SECON’19: Structural Engineering and Construction Management 3; Springer: Berlin/Heidelberg, Germany, 2020; pp. 53–64. [Google Scholar]
- Manjarrez, L.; Zhang, L. Utilization of Copper Mine Tailings as Road Base Construction Material through Geopolymerization. J. Mater. Civ. Eng. 2018, 30, 04018201. [Google Scholar] [CrossRef]
- Panias, D.; Giannopoulou, I.P.; Panias, D. Advances in Mineral Resources Management and Environmental Geotechnology. 2006. Available online: https://www.researchgate.net/publication/234107816 (accessed on 16 December 2023).
- Bruschi, G.J.; dos Santos, C.P.; de Araújo, M.T.; Ferrazzo, S.T.; Marques, S.F.V.; Consoli, N.C. Green Stabilization of Bauxite Tailings: Mechanical Study on Alkali-Activated Materials. J. Mater. Civ. Eng. 2021, 33, 06021007. [Google Scholar] [CrossRef]
- Huo, W.; Zhu, Z.; Sun, H.; Ma, B.; Yang, L. Development of machine learning models for the prediction of the compressive strength of calcium-based geopolymers. J. Clean. Prod. 2022, 380, 135159. [Google Scholar] [CrossRef]
- Solouki, A.; Viscomi, G.; Lamperti, R.; Tataranni, P. Quarry Waste as Precursors in Geopolymers for Civil Engineering Applications: A Decade in Review. Materials 2020, 13, 3146. [Google Scholar] [CrossRef] [PubMed]
- Trincal, V.; Multon, S.; Benavent, V.; Lahalle, H.; Balsamo, B.; Caron, A.; Bucher, R.; Caselles, L.D.; Cyr, M. Shrinkage mitigation of metakaolin-based geopolymer activated by sodium silicate solution. Cem. Concr. Res. 2022, 162, 106993. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Li, Z.; Gao, Y.; Liu, C.; Qi, Y. Workability and microstructural properties of red-mud-based geopolymer with different particle sizes. Adv. Cem. Res. 2021, 33, 210–223. [Google Scholar] [CrossRef]
- Ghuge, J.; Surale, S.; Patil, B.M.; Bhutekar, S.B. Utilization of Waste Plastic in Manufacturing of Paver Blocks. Int. Res. J. Eng. Technol. 2008. Available online: https://iopscience.iop.org/article/10.1088/1742-6596/2054/1/012075 (accessed on 16 December 2023).
- Unuofin, J.O.; Okoh, A.I.; Nwodo, U.U. Utilization of agroindustrial wastes for the production of laccase by Achromobacter xylosoxidans HWN16 and Bordetella bronchiseptica HSO16. J. Environ. Manag. 2019, 231, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Ozen, M.Y.; Firdous, R.; Lehmann, C.; Stephan, D. Effects of Curing Conditions on the Self-Healing of Geopolymer Paste. MATEC Web Conf. 2023, 378, 02017. [Google Scholar] [CrossRef]
- Rajczakowska, M.; Habermehl-Cwirzen, K.; Hedlund, H.; Cwirzen, A. Self-healing potential of geopolymer concrete. Proceedings 2019, 34, 6. [Google Scholar] [CrossRef]
- Lekshmi, S.; Benjamin, B.; Sudhakumar, J. The Potential use of Bio-mineralization Technique in Developing Eco-Sustainable Self-Healing Geopolymer Binder: A Systematic Review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1280, 012002. [Google Scholar] [CrossRef]
- Liu, X.; Ramos, M.J.; Nair, S.D.; Lee, H.; Espinoza, D.N.; van Oort, E. True Self-Healing Geopolymer Cements for Improved Zonal Isolation and Well Abandonment. In Proceedings of the SPE/IADC Drilling Conference and Exhibition, The Hague, The Netherlands, 14 March 2017. [Google Scholar]
- Xue, Q.-P.; Chen, H.-X.; Feng, S.-J. Engineering properties of microcapsules self-healing geopolymer cutoff wall backfill under dry-wet cycles. IOP Conf. Ser. Earth Environ. Sci. 2024, 1335, 012034. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Shaikh, F.U.A. Review on Performance Evaluation of Autonomous Healing of Geopolymer Composites. Infrastructures 2023, 6, 94. [Google Scholar] [CrossRef]
- Nergis, D.D.B.; Vizureanu, P.; Ardelean, I.; Sandu, A.V.; Corbu, O.C.; Matei, E. Revealing the Influence of Microparticles on Geopolymers’ Synthesis and Porosity. Materials 2020, 13, 3211. [Google Scholar] [CrossRef] [PubMed]
- Kusbiantoro, A.; Rahman, N.; Chin, S.C.; Aji, R.B. Effect of Poly(Ethylene-co-Vinyl Acetate) as a Self-Healing Agent in Geopolymer Exposed to Various Curing Temperatures. Mater. Sci. Forum 2016, 841, 16–20. [Google Scholar] [CrossRef]
- Hossain, M.A.; Hossain, K.M.A.; Manzur, T.; Hasan, M.J.; Sood, D. Fresh and hardened properties of engineered geopolymer composite with MgO. In Proceedings of the 5th International Conference on Civil Structural and Transportation Engineering (ICCSTE’20), Niagara, ON, Canada, 12–14 November 2020. [Google Scholar] [CrossRef]
- Nguyen, M.-T.; Fernandez, C.A.; Haider, M.; Chu, K.-H.; Jian, G.; Nassiri, S.; Zhang, D.; Rousseau, R.; Glezakou, V.-A. Toward Self-Healing Concrete Infrastructure: Review of Experiments and Simulations across Scales. Chem. Rev. 2023, 123, 10838–10876. [Google Scholar] [CrossRef] [PubMed]
- Garces, J.I.T.; Dollente, I.J.; Beltran, A.B.; Tan, R.R.; Promentilla, M.A.B. Life cycle assessment of self-healing geopolymer concrete. Clean. Eng. Technol. 2021, 4, 100147. [Google Scholar] [CrossRef]
- Qin, L.; Yan, J.; Zhou, M.; Liu, H.; Wang, A.; Zhang, W.; Duan, P.; Zhang, Z. Mechanical properties and durability of fiber reinforced geopolymer composites: A review on recent progress. Eng. Rep. 2022, 5, e12708. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, X.; Wang, F.; Wang, J. Mechanical Properties and Durability of Geopolymer Recycled Aggregate Concrete: A Review. Polymers 2023, 15, 615. [Google Scholar] [CrossRef] [PubMed]
- Kurtoglu, A.E.; Alzeebaree, R.; Aljumaili, O.; Nis, A.; Gulsan, M.E.; Humur, G.; Cevik, A. Mechanical and durability properties of fly ash and slag based geopolymer concrete. Adv. Concr. Constr. 2018, 6, 345. [Google Scholar]
- Kwasny, J.; Aiken, T.A.; Soutsos, M.N.; McIntosh, J.A.; Cleland, D.J. Sulfate and acid resistance of lithomarge-based geopolymer mortars. Constr. Build. Mater. 2018, 166, 537–553. [Google Scholar] [CrossRef]
- Bhutta, M.A.R.; Ariffin, N.F.; Hussin, M.W.; Lim, N.H.A.S. Sulfate and Sulfuric Acid Resistance of Geopolymer Mortars Using Waste Blended Ash. J. Teknol. 2013, 61, 1–5. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Chalee, W. Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr. Build. Mater. 2014, 63, 303–310. [Google Scholar] [CrossRef]
- Hwang, J.P.; Shim, H.B.; Lim, S.; Ann, K.Y. Enhancing the durability properties of concrete containing recycled aggregate by the use of pozzolanic materials. KSCE J. Civ. Eng. 2013, 17, 155–163. [Google Scholar] [CrossRef]
- Megahed, S.Y.; Elthakeb, A.M.; Mohamed, W.A.; Nooman, M.T.; Soufy, W.H. The Impact of Marine Water on Different Types of Coarse Aggregate of Geopolymer Concrete. J. Miner. Mater. Charact. Eng. 2019, 7, 330–353. [Google Scholar] [CrossRef]
- Giasuddin, H.M.; Sanjayan, J.G.; Ranjith, P.G. Strength of geopolymer cured in saline water in ambient conditions. Fuel 2013, 107, 34–39. [Google Scholar] [CrossRef]
- Ariffin, M.; Bhutta, M.; Hussin, M.; Tahir, M.M.; Aziah, N. Sulfuric acid resistance of blended ash geopolymer concrete. Constr. Build. Mater. 2013, 43, 80–86. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; Hamdan, S.; van Deventer, J.S.J. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Mater. Struct. 2013, 46, 361–373. [Google Scholar] [CrossRef]
- Castel, A. Bond between steel reinforced and geopolymer concrete. In Handbook of Low Carbon Concrete; Butterworth-Heinemann: Oxford, UK, 2016; pp. 375–386. [Google Scholar]
- Al Bakri, M.M.; Mohammed, H.; Kamarudin, H.; Niza, I.K.; Zarina, Y. Review on fly ash-based geopolymer concrete without Portland Cement. J. Eng. Technol. Res. 2011, 3, 1–4. [Google Scholar]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Constr. Build. Mater. 2008, 22, 1315–1322. [Google Scholar] [CrossRef]
- Olivia, M.; Nikraz, H. Properties of fly ash geopolymer concrete in seawater environment. In Proceedings of the 13th East Asia-Pacific Conference on Structural Engineering and Construction, EASEC, Hokkaido, Japan, 1 January 2013. [Google Scholar]
- Kirupa, J.P.; Sakthieswaran, N. Possible materials for producing Geopolymer concrete and its performance with and without Fibre addition-A State of the art review. Int. J. Civ. Struct. Eng. 2015, 5, 296. [Google Scholar]
- Lee, Y.H.; Chua, N.; Amran, M.; Lee, Y.Y.; Kueh, A.B.H.; Fediuk, R.; Vatin, N.; Vasilev, Y. Thermal Performance of Structural Lightweight Concrete Composites for Potential Energy Saving. Crystals 2021, 11, 461. [Google Scholar] [CrossRef]
- Karim, M.; Zain, M.; Jamil, M.; Lai, F. Fabrication of a non-cement binder using slag, palm oil fuel ash and rice husk ash with sodium hydroxide. Constr. Build. Mater. 2013, 49, 894–902. [Google Scholar] [CrossRef]
- Vickers, L.; van Riessen, A.; Rickard, W.D.A. Fire-Resistant Geopolymers; Springer: Dordrecht, Netherlands, 2015. [Google Scholar] [CrossRef]
- Ali, M.; Zurisman, A. Performance of Geopolymer Concrete in Fire. Ph.D. Thesis, Swinburne University of Technology, Melbourne, VIC, Australia, 2015. [Google Scholar]
- Ranjbar, N.; Mehrali, M.; Alengaram, U.J.; Metselaar, H.S.C.; Jumaat, M.Z. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures. Constr. Build. Mater. 2014, 65, 114–121. [Google Scholar] [CrossRef]
- Neupane, K.; Chalmers, D.; Kidd, P. High-strength geopolymer concrete-properties, advantages and challenges. Adv. Mater. 2018, 7, 15–25. [Google Scholar] [CrossRef]
- Yuksel, I. Blast-furnace slag. In Waste and Supplementary Cementitious Materials in Concrete; Elsevier: Amsterdam, The Netherlands, 2018; pp. 361–415. [Google Scholar]
- Wang, L.; Zeng, X.; Li, Y.; Yang, H.; Tang, S. Influences of MgO and PVA fiber on the abrasion and cracking resistance, pore structure and fractal features of hydraulic concrete. Fractal Fract. 2022, 6, 674. [Google Scholar] [CrossRef]
- Maaz, M.; Khan, R.A.; Sharma, R. Fatigue and fracture behaviour of geopolymer concrete. Mater. Today Proc. 2023, 93, 163–169. [Google Scholar] [CrossRef]
- Deivabalan, B.; Saravanan, D. Fatigue behaviour of geopolymer concrete beam. Int. J. Res. Eng. Sci. Technol. 2015, 1, 39–45. [Google Scholar]
- Rambabu, D.; Sharma, S.K.; Akbar, M.A. A review on suitability of using geopolymer concrete for rigid pavement. Innov. Infrastruct. Solut. 2022, 7, 286. [Google Scholar] [CrossRef]
- Tahir, M.F.M.; Abdullah, M.M.A.B.; Rahim, S.Z.A.; Hasan, M.R.M.; Saafi, M.; Jaya, R.P.; Mohamed, R. Potential of industrial By-Products based geopolymer for rigid concrete pavement application. Constr. Build. Mater. 2022, 344, 128190. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. Int. J. Sustain. Built Environ. 2016, 5, 277–287. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 2007, 37, 1583–1589. [Google Scholar] [CrossRef]
- Pan, X.; Shi, Z.; Shi, C.; Ling, T.-C.; Li, N. A review on concrete surface treatment Part I: Types and mechanisms. Constr. Build. Mater. 2017, 132, 578–590. [Google Scholar] [CrossRef]
- Wongpa, J.; Kiattikomol, K.; Jaturapitakkul, C.; Chindaprasirt, P. Compressive strength, modulus of elasticity, and water permeability of inorganic polymer concrete. Mater. Des. 2010, 31, 4748–4754. [Google Scholar] [CrossRef]
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G.; Nazari, A. Suitability of Sarawak and Gladstone fly ash to produce geopolymers: A physical, chemical, mechanical, mineralogical and microstructural analysis. Ceram. Int. 2016, 42, 9613–9620. [Google Scholar] [CrossRef]
- Tepfers, R. Concrete Technology–Porosity Is Decisive; Befestigungstechnik, Bewehrungstechnik und... II; Ibidem-Verlag: Stuttgart, Germany, 2012. [Google Scholar]
- Aghaeipour, A.; Madhkhan, M. Effect of ground granulated blast furnace slag (GGBFS) on RCCP durability. Constr. Build. Mater. 2017, 141, 533–541. [Google Scholar] [CrossRef]
- Tian, L.; He, D.; Zhao, J.; Wang, H. Durability of geopolymers and geopolymer concretes: A review. Rev. Adv. Mater. Sci. 2021, 60, 1–14. [Google Scholar]
- Abbas, A.-G.N.; Aziz, F.N.A.A.; Abdan, K.; Nasir, N.A.M.; Huseien, G.F. A state-of-the-art review on fibre-reinforced geopolymer composites. Constr. Build. Mater. 2022, 330, 127187. [Google Scholar] [CrossRef]
- Kulkarni, K.S.; Babu Narayan, K.S.; Yaragal, S.C. Effect of elevated temperatures on physical and residual strength properties of HPC. In Proceedings of the International Conference on Innovations in Civil Engineering (ICICE-2013), Ernakulam, India, 9–10 May 2013; pp. 71–74. [Google Scholar]
- Harries, K.A.; Sharma, B. Nonconventional and Vernacular Construction Materials: Characterisation, Properties and Applications; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Farhana, Z.F.; Kamarudin, H.; Rahmat, A.; Al Bakri Abdullah, M.M.; Norainiza, S. Corrosion performance of reinforcement bar in geopolymer concrete compare with its performance in ordinary portland cement concrete: A short review. Adv. Mat. Res. 2013, 795, 509–512. [Google Scholar] [CrossRef]
- McLellan, B.C.; Williams, R.P.; Lay, J.; van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R. Geopolymer: Cement for low carbon economy. Indian Concr. J. 2014, 88, 29–37. [Google Scholar]
- Majidi, B. Geopolymer technology, from fundamentals to advanced applications: A review. Mater. Technol. 2009, 24, 79–87. [Google Scholar] [CrossRef]
- Habert, G.; d’Espinose de Lacaillerie, J.B.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Bajpai, R.; Choudhary, K.; Srivastava, A.; Sangwan, K.S.; Singh, M. Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 2020, 254, 120147. [Google Scholar] [CrossRef]
- Singh, N.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- McLeod, R.S. Ordinary portland cement. BFF Autumn 2005, 30, 33. [Google Scholar]
- Kline, J.; Kline, C. Cement and CO2: What is Happening. IEEE Trans. Ind. Appl. 2014, 51, 1289–1294. [Google Scholar] [CrossRef]
- Li, Y.; Shen, J.; Lin, H.; Lv, J.; Feng, S.; Ci, J. Properties and environmental assessment of eco-friendly brick powder geopolymer binders with varied alkali dosage. J. Build. Eng. 2022, 58, 105020. [Google Scholar] [CrossRef]
- Rathod, N.; Chippagiri, R.; Ralegaonkar, R.V. Cleaner production of geopolymer materials: A critical review of waste-derived activators. Mater. Today Proc. 2023, 58, 105020. [Google Scholar] [CrossRef]
- Yahya, Z.; Abdullah, M.M.A.B.; Hussin, K.; Ismail, K.N.; Sandu, A.V.; Vizureanu, P.; Razak, R.A. Chemical and physical characterization of boiler ash from palm oil industry waste for geopolymer composite. Rev. Chim. 2013, 64, 1408–1412. [Google Scholar]
- Khan, A.; Biswas, N.; Banerjee, A.; Puppala, A.J. Field Performance of geocell reinforced recycled asphalt pavement base layer. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 69–80. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Hoy, M.; Witchayaphong, P.; Rachan, R.; Arulrajah, A. Recycled asphalt pavement–fly ash geopolymer as a sustainable stabilized pavement material. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; p. 12005. [Google Scholar]
- Farooq, F.; Jin, X.; Javed, M.F.; Akbar, A.; Shah, M.I.; Aslam, F.; Alyousef, R. Geopolymer concrete as sustainable material: A state of the art review. Constr. Build. Mater. 2021, 306, 124762. [Google Scholar] [CrossRef]
- Montano, L.F.M. Utilization of Copper Mine Tailings as Road Construction Materials through Geopolymerization Item Type Text; Electronic Dissertation. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 2018. Available online: http://hdl.handle.net/10150/631338 (accessed on 15 September 2023).
- Adajar, M.A.; Beltran, H.E.; Calicdan, C.A.; Duran, T.R.; Ramos, C.D.; Galupino, J. Assessment of Gold Mine Tailings as Based Geopolymer Binder in Concrete. 2021. Available online: https://www.researchgate.net/publication/353380297 (accessed on 3 January 2024).
- Federal Highway Administration (FHWA); Highway Statistics Series Publications: Washington, DC, USA, 2015.
- Jaya, R.P. Porous concrete pavement containing nanosilica from black rice husk ash. In New Materials in Civil Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 493–527. [Google Scholar]
- Rahman, S.S.; Khattak, M.J. Mechanistic and microstructural characteristics of roller compacted geopolymer concrete using reclaimed asphalt pavement. Int. J. Pavement Eng. 2022, 23, 4385–4403. [Google Scholar] [CrossRef]
- Deepa Raj, S.; Abraham, R.; Ganesan, N.; Sasi, D. Fracture properties of fibre reinforced geopolymer concrete. Int. J. Sci. Eng. Res. 2013, 4, 75–80. [Google Scholar]
- Ganesan, N.; Abraham, R.; Deepa, R.A.J.S.; Sasi, D. Fracture properties of geopolymer concrete. Asian J. Civ. Eng. 2015, 16, 127–134. [Google Scholar]
- Dias, D.P.; Thaumaturgo, C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 2005, 27, 49–54. [Google Scholar] [CrossRef]
- Kumar, G.; Mishra, S.S. Effect of recycled concrete aggregate on mechanical, physical and durability properties of GGBS–fly ash-based geopolymer concrete. Innov. Infrastruct. Solut. 2022, 7, 237. [Google Scholar] [CrossRef]
- Ganeshan, M.; Venkataraman, S. Interface shear strength evaluation of self compacting geopolymer concrete using push-off test. J. King Saud Univ. Eng. Sci. 2020, 34, 98–107. [Google Scholar] [CrossRef]
- Amran, M.; Huang, S.-S.; Debbarma, S.; Rashid, R.S. Fire resistance of geopolymer concrete: A critical review. Constr. Build. Mater. 2022, 324, 126722. [Google Scholar] [CrossRef]
- da Silva, A.C.R.; Almeida, B.M.; Lucas, M.M.; Candido, V.S.; da Cruz, K.S.P.; Oliveira, M.S.; de Azevedo, A.R.G.; Monteiro, S.N. Fatigue behavior of steel fiber reinforced geopolymer concrete. Case Stud. Constr. Mater. 2022, 16, e00829. [Google Scholar] [CrossRef]
- Katpady, D.N.; Hazehara, H.; Soeda, M.; Kubota, T.; Murakami, S. Durability Assessment of Blended Concrete by Air Permeability. Int. J. Concr. Struct. Mater. 2018, 12, 30. [Google Scholar] [CrossRef]
- Zhou, X.M.; Slater, J.R.; Wavell, S.E.; Oladiran, O. Effects of PFA and GGBS on Early-Ages Engineering Properties of Portland Cement Systems. J. Adv. Concr. Technol. 2012, 10, 74–85. [Google Scholar] [CrossRef]
- Manjunatha, M.; Kvgd, B.; Vengala, J.; Manjunatha, L.; Shankara, K.; Patnaikuni, C.K. Experimental study on the use of human hair as fiber to enhance the performance of concrete: A novel use to reduce the disposal challenges. Mater. Today Proc. 2021, 47, 3966–3972. [Google Scholar] [CrossRef]
- Asmara, Y.P.; Siregar, J.P.; Tezara, C.; Nurlisa, W.; Jamiluddin, J. Long Term Corrosion Experiment of Steel Rebar in Fly Ash-Based Geopolymer Concrete in NaCl Solution. Int. J. Corros. 2016, 2016, 3853045. [Google Scholar] [CrossRef]
- Abd Razak, R.; Abdullah, M.M.A.B.; Hussin, K.; Subaer Yahya, Z.; Mohamed, R.; Abdullah, A. Performance of Sintered Pozzolanic Artificial Aggregates as Coarse Aggregate Replacement in Concrete. In Sustainable Waste Utilization in Bricks, Concrete, and Cementitious Materials: Characteristics, Properties, Performance, and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 191–210. [Google Scholar]
- Bouaissi, A.; Li, L.-Y.; Abdullah, M.M.A.B.; Bui, Q.-B. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Constr. Build. Mater. 2019, 210, 198–209. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef]
- Snell, C.; Tempest, B.; Gentry, T. Comparison of the thermal characteristics of portland cement and geopolymer cement concrete mixes. J. Archit. Eng. 2017, 23, 4017002. [Google Scholar] [CrossRef]
- Burciaga-Díaz, O.; Escalante-García, J.I. Strength and Durability in Acid Media of Alkali Silicate-Activated Metakaolin Geopolymers. J. Am. Ceram. Soc. 2012, 95, 2307–2313. [Google Scholar] [CrossRef]
Criteria | Geocement | Portland Cement |
---|---|---|
CO2 emissions | Low to none | Extremely high |
Sustainability | High | Low |
Energy saving | High with no embodied energy | Low with greater embodied energy |
Costs (production, sales, etc.) | Low | Extremely high |
Eco-friendliness | High | Low |
Water requirement | Low | High |
Availability of raw materials | Abundant and cheap | Non-abundant and costly |
Thermal conductivity | Low | High |
Ability to adsorb and immobilize toxic substances | High | Moderate to high |
Preparation technique | Simple | Complex |
Volume stability | Good | Fair |
Setting time | Short (about 10–60 min) | Long (about 30–300 min) |
Global warming contribution | Low to none | High |
No | Waste Material (wt.%) | Alkali Hardener | Curing Condition | Test Conducted | UCS (MPa) | Ref. |
---|---|---|---|---|---|---|
1 | Copper MT (100%) | NaOH (0, 3, 5, 7, and 11 M) | Oven at 35 °C for 7 days | UCS, SEM | 5.32 (11 M (NaOH) | [79] |
2 | Copper MT (100%) | NaOH (0–6%) | Ambient temperature for 7 days | UCS, SEM | 2.5 (2% NaOH) | [119] |
3 | Gold MT (100%) | Na2SiO3 | 8, 14, 21, and 28 days at room temperature | UCS | 30 (8% of Na2SiO3) | [80] |
4 | Copper MT | NaOH (5, 10, 15 M) | Ambient temperature for 4 days | UCS | 4.4 (10 M) | [31] |
Country | Stabilizer Portland Cement (%) | 7-Day UCS (MPa)–(Base/Subbase) |
---|---|---|
South Africa | 1.5–3.0 | 1.5–3.0 (base) |
United Kingdom (UK) | 2–5.0 | 2.5–4.5 (base) |
China | >4 (road-mix method) >5 (central plant mixing) | >2 (subbase), >4 (base) |
Spain | 3.5–6.0 | 4.5–6.0 (base) |
U.S.A. | 3–10 | 1.03–2.75 (base) [26] 2.06–5.51 (base) [27] |
| Descriptions | References |
---|---|---|
|
| [71,112,128,129] |
|
| [71,93,130] |
|
| [48,131,132,133] |
|
| [71,91,97,134] |
| The shear strength of GPC concrete has a better shear strength property for rigid pavement for various fiber mixes and curing conditions. GPC is suitable for road base stabilization. | [71,72,135] |
| Descriptions | |
|
| [111,112,113] |
| GPC concrete pavement can withstand elevated temperatures in the range of 1000–1200 °C with slight deterioration due to its mechanical properties, brittleness, weather tolerance, fiber reinforcement, and thermal stability of GPC concrete, among other factors. | [93,136,137] |
|
| [72,77,94] |
|
| [43,71,75] |
|
| [93,94,137,138] |
|
| [33,38,103,139] |
|
| [38,106,107] |
|
| [39,108,140] |
|
| [109,110,141] |
|
| [38,110,142] |
|
| [93,106,143,144] |
| Based on several investigations of GPC’s thermal behavior in concrete compared to Portland cement, GPC shows lower thermal conductivity due to its low calcium content, among other factors, but higher thermal resistance, stability, and insulation than Portland cement under the same conditions or parameters (such as density, temperature, and strength). | [71,145,146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikotun, J.O.; Aderinto, G.E.; Madirisha, M.M.; Katte, V.Y. Geopolymer Cement in Pavement Applications: Bridging Sustainability and Performance. Sustainability 2024, 16, 5417. https://doi.org/10.3390/su16135417
Ikotun JO, Aderinto GE, Madirisha MM, Katte VY. Geopolymer Cement in Pavement Applications: Bridging Sustainability and Performance. Sustainability. 2024; 16(13):5417. https://doi.org/10.3390/su16135417
Chicago/Turabian StyleIkotun, Jacob O., Gbenga E. Aderinto, Makungu M. Madirisha, and Valentine Y. Katte. 2024. "Geopolymer Cement in Pavement Applications: Bridging Sustainability and Performance" Sustainability 16, no. 13: 5417. https://doi.org/10.3390/su16135417
APA StyleIkotun, J. O., Aderinto, G. E., Madirisha, M. M., & Katte, V. Y. (2024). Geopolymer Cement in Pavement Applications: Bridging Sustainability and Performance. Sustainability, 16(13), 5417. https://doi.org/10.3390/su16135417