Large Protected Areas Safeguard Mammalian Functional Diversity in Human-Modified Landscapes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Functional Traits | Trophic Guild | Number of Patches | Number of Records | Threat Categories | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dietary | Physical | Behavioral | IUCN | BR | SP | ||||||||
Diet | Foraging Substrate | Locomotion Form | Body Mass (Kg) | Litter Size | Period of Activity | Social Behavior | |||||||
Artiodactyla | |||||||||||||
Bovidae | |||||||||||||
Bos taurus * | - | - | - | - | - | - | - | - | 1 | 19 | - | - | - |
Cervidae | |||||||||||||
Subulo gouazoubira | Leaves and fruits | Vegetation and soil | Terrestrial | 21 | 1 | Diurnal | No | Herbivore | 11 | 228 | LC | LC | LC |
Suidae | |||||||||||||
Sus scrofa * | - | - | - | - | - | - | - | - | 1 | 22 | - | - | - |
Tayassuidae | |||||||||||||
Dicotyles tajacu | Leaves, invertebrates, and fruits | Vegetation and soil | Terrestrial | 26 | 3 | Diurnal and nocturnal | Yes | Frugivore/Herbivore | 8 | 107 | LC | LC | NT |
Cingulata | |||||||||||||
Chlamyphoridae | |||||||||||||
Euphractus sexcinctus | Leaves, vertebrates, invertebrates, and fruits | Vegetation and soil | Semifossorial | 5 | 2 | Diurnal | No | Omnivore | 3 | 8 | LC | LC | LC |
Dasypodidae | |||||||||||||
Cabassous tatouay | Invertebrates | Soil | Semifossorial | 5 | 1 | Nocturnal | No | Insectivore | 3 | 50 | LC | DD | DD |
Dasypus novemcinctus | Leaves, vertebrates, invertebrates, and fruits | Vegetation and soil | Semifossorial | 4 | 4 | Nocturnal and crepuscular | No | Insectivore | 14 | 367 | LC | LC | LC |
Didelphimorphia | |||||||||||||
Didelphidae | |||||||||||||
Didelphis albiventris | Vertebrates, invertebrates, and fruits | Trees and soil | Terrestrial | 2 | 9 | Nocturnal and crepuscular | No | Omnivore | 17 | 426 | LC | LC | LC |
Rodentia | |||||||||||||
Dasyproctidae | |||||||||||||
Dasyprocta azarae | Leaves, invertebrates, and fruits | Vegetation and soil | Terrestrial | 3 | 2 | Diurnal and crepuscular | No | Frugivore/Herbivore | 15 | 424 | DD | LC | NT |
Caviidae | |||||||||||||
Hydrochoerus hydrochaeris | Leaves | Vegetation and soil | Terrestrial | 50 | 5 | Nocturnal and crepuscular | Yes | Herbivore | 2 | 3 | LC | LC | LC |
Cuniculidae | |||||||||||||
Cuniculus paca | Leaves and fruits | Vegetation and soil | Terrestrial | 9 | 1 | Nocturnal | No | Frugivore/Herbivore | 4 | 196 | LC | NT | LC |
Erethizontidae | |||||||||||||
Coendou spinosus | Leaves and fruits | Trees | Arboreal | 4 | 1 | Nocturnal and crepuscular | No | Herbivore | 1 | 3 | LC | LC | DD |
Carnivora | |||||||||||||
Canidae | |||||||||||||
Canis lupus familiaris * | - | - | - | - | - | - | - | - | 8 | 98 | - | - | - |
Cerdocyon thous | Vertebrates, invertebrates, and fruits | Vegetation and soil | Terrestrial | 7 | 5 | Nocturnal and crepuscular | No | Omnivore | 3 | 77 | LC | LC | LC |
Chrysocyon brachyurus | Leaves, vertebrates, invertebrates, and fruits | Vegetation and soil | Terrestrial | 22 | 2 | Nocturnal and crepuscular | No | Omnivore | 4 | 23 | NT | VU | VU |
Felidae | |||||||||||||
Felis silvestris catus * | - | - | - | - | - | - | - | - | 4 | 6 | - | - | - |
Leopardus pardalis | Vertebrates and invertebrates | Soil | Terrestrial | 10 | 3 | Nocturnal | No | Carnivore | 7 | 75 | LC | LC | VU |
Puma concolor | Vertebrates and invertebrates | Soil | Terrestrial | 46 | 4 | Nocturnal | No | Carnivore | 9 | 38 | LC | VU | VU |
Herpailurus yagouaroundi | Vertebrates and invertebrates | Vegetation and soil | Terrestrial | 5 | 2 | Diurnal and nocturnal | No | Carnivore | 6 | 30 | LC | VU | LC |
Mephitidae | |||||||||||||
Conepatus semistriatus | Vertebrates, invertebrates, and fruits | Vegetation and soil | Terrestrial | 2 | 5 | Nocturnal and crepuscular | No | Omnivore | 4 | 29 | LC | LC | DD |
Mustelidae | |||||||||||||
Eira barbara | Vertebrates, invertebrates, and fruits | Vegetation and soil | Terrestrial | 7 | 3 | Diurnal | No | Omnivore | 8 | 114 | LC | LC | LC |
Lontra longicaudis | Vertebrates | Water | Semiaquatic | 6 | 3 | Diurnal and nocturnal | No | Carnivore | 1 | 6 | NT | NT | NT |
Procyonidae | |||||||||||||
Nasua nasua | Vertebrates, invertebrates, and fruits | Trees and soil | Terrestrial | 5 | 5 | Diurnal | Yes | Omnivore | 8 | 47 | LC | LC | LC |
Procyon cancrivorus | Vertebrates, invertebrates, and fruits | Vegetation and soil | Terrestrial | 5 | 3 | Nocturnal | No | Omnivore | 2 | 28 | LC | LC | LC |
Lagomorpha | |||||||||||||
Leporidae | |||||||||||||
Lepus europaeus * | - | - | - | - | - | - | - | - | 1 | 5 | - | - | - |
Sylvilagus brasiliensis | Leaves | Vegetation and soil | Terrestrial | 1 | 5 | Nocturnal and crepuscular | No | Herbivore | 7 | 84 | EN | NT | NT |
Perissodactyla | |||||||||||||
Tapiridae | |||||||||||||
Tapirus terrestris | Leaves and fruits | Vegetation and soil | Terrestrial | 260 | 1 | Nocturnal | No | Frugivore/Herbivore | 1 | 1 | VU | VU | VU |
Pilosa | |||||||||||||
Myrmecophagidae | |||||||||||||
Myrmecophaga tridactyla | Invertebrates | Soil | Terrestrial | 31 | 1 | Diurnal and nocturnal | No | Insectivore | 8 | 264 | VU | VU | VU |
Tamandua tetradactyla | Invertebrates | Trees and soil | Terrestrial | 5 | 1 | Nocturnal | No | Insectivore | 12 | 51 | LC | LC | LC |
Primates | |||||||||||||
Callitrichidae | |||||||||||||
Callithrix penicillata | Invertebrates and fruits | Trees | Arboreal | 0.5 | 2 | Diurnal | Yes | Omnivore | 1 | 6 | LC | LC | LC |
Cebidae | |||||||||||||
Sapajus nigritus | Leaves, invertebrates, and fruits | Trees | Arboreal | 4 | 1 | Diurnal | Yes | Omnivore | 4 | 27 | NT | NT | NT |
Total | 2862 | 3 | 5 | 5 |
Number of Records | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | BFS | FBJSP | JES | PFSP | ARBR | SBES | SRES | VSP | ||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | |||||
Artiodactyla | ||||||||||||||||||
Bovidae | ||||||||||||||||||
Bos taurus * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 0 |
Cervidae | ||||||||||||||||||
Subulo gouazoubira | 0 | 66 | 53 | 12 | 0 | 0 | 0 | 0 | 40 | 24 | 2 | 1 | 1 | 0 | 17 | 0 | 11 | 1 |
Suidae | ||||||||||||||||||
Sus scrofa * | 0 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Tayassuidae | ||||||||||||||||||
Dicotyles tajacu | 0 | 0 | 40 | 11 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 0 | 0 | 0 | 6 | 4 | 15 | 18 |
Cingulata | ||||||||||||||||||
Chlamyphoridae | ||||||||||||||||||
Euphractus sexcinctus | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Dasypodidae | ||||||||||||||||||
Cabassous tatouay | 0 | 35 | 14 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Dasypus novemcinctus | 27 | 202 | 45 | 16 | 3 | 5 | 39 | 0 | 8 | 2 | 1 | 14 | 1 | 2 | 2 | 0 | 0 | 0 |
Didelphimorphia | ||||||||||||||||||
Didelphidae | ||||||||||||||||||
Didelphis albiventris | 0 | 200 | 53 | 19 | 11 | 4 | 17 | 8 | 2 | 2 | 18 | 20 | 24 | 7 | 9 | 9 | 17 | 6 |
Rodentia | ||||||||||||||||||
Dasyproctidae | ||||||||||||||||||
Dasyprocta azarae | 13 | 2 | 201 | 18 | 3 | 9 | 16 | 2 | 8 | 0 | 0 | 5 | 0 | 20 | 36 | 31 | 37 | 23 |
Caviidae | ||||||||||||||||||
Hydrochoerus hydrochaeris | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cuniculidae | ||||||||||||||||||
Cuniculus paca | 0 | 160 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26 | 0 | 3 | 0 | 0 | 0 | 0 |
Erethizontidae | ||||||||||||||||||
Coendou spinosus | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Carnivora | ||||||||||||||||||
Canidae | ||||||||||||||||||
Canis lupus familiaris * | 4 | 51 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 17 | 4 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
Cerdocyon thous | 0 | 72 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Chrysocyon brachyurus | 0 | 5 | 8 | 9 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Felidae | ||||||||||||||||||
Felis silvestris catus * | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Leopardus pardalis | 0 | 43 | 19 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 7 | 1 | 3 | 0 |
Puma concolor | 0 | 9 | 6 | 8 | 0 | 1 | 1 | 2 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
Herpailurus yagouaroundi | 0 | 19 | 0 | 4 | 0 | 0 | 0 | 0 | 4 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
Mephitidae | ||||||||||||||||||
Conepatus semistriatus | 0 | 2 | 24 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
Mustelidae | ||||||||||||||||||
Eira barbara | 0 | 87 | 14 | 2 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 2 |
Lontra longicaudis | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Procyonidae | ||||||||||||||||||
Nasua nasua | 1 | 15 | 5 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 2 | 7 | 8 | 0 | 0 | 0 | 0 | 4 |
Procyon cancrivorus | 0 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Lagomorpha | ||||||||||||||||||
Leporidae | ||||||||||||||||||
Lepus europaeus * | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sylvilagus brasiliensis | 0 | 1 | 44 | 20 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 9 | 1 |
Perissodactyla | ||||||||||||||||||
Tapiridae | ||||||||||||||||||
Tapirus terrestris | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pilosa | ||||||||||||||||||
Myrmecophagidae | ||||||||||||||||||
Myrmecophaga tridactyla | 0 | 155 | 37 | 0 | 0 | 2 | 0 | 0 | 24 | 10 | 0 | 0 | 0 | 0 | 3 | 0 | 30 | 3 |
Tamandua tetradactyla | 1 | 14 | 19 | 6 | 1 | 0 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 1 | 2 |
Primates | ||||||||||||||||||
Callitrichidae | ||||||||||||||||||
Callithrix penicillata | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cebidae | ||||||||||||||||||
Sapajus nigritus | 0 | 22 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Total records | 42 | 1157 | 593 | 129 | 18 | 21 | 76 | 15 | 126 | 42 | 23 | 75 | 34 | 35 | 90 | 46 | 129 | 61 |
Richness (native species) | 4 | 24 | 19 | 13 | 4 | 5 | 6 | 5 | 17 | 7 | 4 | 8 | 4 | 7 | 10 | 5 | 11 | 10 |
FD | 1.40 | 6.59 | 5.29 | 3.52 | 1.29 | 1.53 | 1.91 | 1.67 | 4.50 | 2.02 | 1.34 | 2.51 | 1.34 | 2.12 | 2.81 | 1.44 | 2.96 | 2.99 |
RAI | 0.004 | 0.120 | 0.061 | 0.013 | 0.002 | 0.002 | 0.008 | 0.001 | 0.013 | 0.004 | 0.002 | 0.008 | 0.003 | 0.004 | 0.009 | 0.005 | 0.013 | 0.006 |
Trait Type | Trait | Category | Number of Species | |
---|---|---|---|---|
Dietary | Diet | Leaves | 12 | |
Fruits | 17 | |||
Vertebrates | 13 | |||
Invertebrates | 19 | |||
Foraging substrate | Water | 1 | ||
Trees | 6 | |||
Vegetation | 15 | |||
Soil | 22 | |||
Physical | Locomotion form | Terrestrial | 19 | |
Semifossorial | 3 | |||
Semiaquatic | 1 | |||
Arboreal | 3 | |||
Behavioral | Period of activity | Diurnal | 11 | |
Nocturnal | 19 | |||
Crepuscular | 9 | |||
Social behavior | Social | 5 | ||
Non-social | 22 | |||
IUCN | Brazil | São Paulo | ||
Threat categories | Data Deficient | 1 | 1 | 3 |
Least Concern | 19 | 16 | 13 | |
Near Threatened | 3 | 4 | 5 | |
Vulnerable | 2 | 5 | 5 | |
Endangered | 1 | 0 | 0 | |
Trophic guild | Carnivores | 4 | ||
Frugivores | 4 | |||
Herbivores | 8 | |||
Insectivores | 4 | |||
Omnivores | 10 |
References
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s Sixth Mass Extinction Already Arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; Chan, K.M.A.; et al. Pervasive Human-Driven Decline of Life on Earth Points to the Need for Transformative Change. Science 2019, 366, eaax3100. [Google Scholar] [CrossRef]
- Koch, P.L.; Barnosky, A.D. Late Quaternary Extinctions: State of the Debate. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 215–250. [Google Scholar] [CrossRef]
- Young, H.S.; McCauley, D.J.; Galetti, M.; Dirzo, R. Patterns, Causes, and Consequences of Anthropocene Defaunation. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 333–358. [Google Scholar] [CrossRef]
- Carmona, C.P.; Tamme, R.; Pärtel, M.; De Bello, F.; Brosse, S.; Capdevila, P.; González, R.M.; González-Suárez, M.; Salguero-Gómez, R.; Vásquez-Valderrama, M.; et al. Erosion of Global Functional Diversity across the Tree of Life. Sci. Adv. 2021, 7, eabf2675. [Google Scholar] [CrossRef]
- Cernansky, R. The Biodiversity Revolution. Nature 2017, 546, 22–24. [Google Scholar] [CrossRef]
- Chichorro, F.; Juslén, A.; Cardoso, P. A Review of the Relation between Species Traits and Extinction Risk. Biol. Conserv. 2019, 237, 220–229. [Google Scholar] [CrossRef]
- Violle, C.; Thuiller, W.; Mouquet, N.; Munoz, F.; Kraft, N.J.B.; Cadotte, M.W.; Livingstone, S.W.; Mouillot, D. Functional Rarity: The Ecology of Outliers. Trends Ecol. Evol. 2017, 32, 356–367. [Google Scholar] [CrossRef]
- Dirzo, R.; Young, H.S.; Galetti, M.; Ceballos, G.; Isaac, N.J.B.; Collen, B. Defaunation in the Anthropocene. Science 2014, 345, 401–406. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical Forests Were the Primary Sources of New Agricultural Land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef]
- Mittermeier, R.A.; Rylands, A.B. Biodiversity Hotspots. In Encyclopedia of the Anthropocene; Dellasala, D.A., Goldstein, M.I., Eds.; Elsevier: Oxford, UK, 2018; pp. 67–75. [Google Scholar]
- Rezende, C.L.; Scarano, F.R.; Assad, E.D.; Joly, C.A.; Metzger, J.P.; Strassburg, B.B.N.; Tabarelli, M.; Fonseca, G.A.; Mittermeier, R.A. From Hotspot to Hopespot: An Opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 2018, 16, 208–214. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Kronka, F.J.N.; Nalon, M.A.; Matsukuma, C.K.; Kanashiro, M.M.; Ywane, M.S.S.I.; Pavão, M.; Durigan, G.; Lima, L.M.P.R.; Guillaumon, J.R.; Baitello, J.B.; et al. Inventário Florestal da Vegetação Natural do Estado de São Paulo; Instituto Florestal: Sao Paulo, Brazil, 2005; pp. 68–137. [Google Scholar]
- Paviolo, A.; De Angelo, C.; Ferraz, K.M.P.M.B.; Morato, R.G.; Pardo, J.M.; Srbek-araujo, A.C.; Beisiegel, B.D.M.; Lima, F.; Sana, D.; Xavier, M.; et al. A Biodiversity Hotspot Losing Its Top Predator: The Challenge of Jaguar Conservation in the Atlantic Forest of South America. Sci. Rep. 2016, 6, 37147. [Google Scholar] [CrossRef]
- Pires, A.S.; Fernandez, F.A.S.; Barros, C.S.; Rocha, C.F.D.; Bergallo, H.G. Vivendo Em Um Mundo Em Pedaços: Efeitos Da Fragmentação Florestal Sobre Comunidades e Populações Animais. In Biologia da Conservação: Essências; Rocha, C.F.D., Bergallo, H.G., Van-Sluys, M., Alves, M.A.S., Eds.; RiMa Editora: São Carlos, Brazil, 2006; pp. 231–260. [Google Scholar]
- Lino, A.; Fonseca, C.; Rojas, D.; Fischer, E.; Ramos Pereira, M.J. A Meta-Analysis of the Effects of Habitat Loss and Fragmentation on Genetic Diversity in Mammals. Mamm. Biol. 2019, 94, 69–76. [Google Scholar] [CrossRef]
- Schlaepfer, D.R.; Braschler, B.; Rusterholz, H.P.; Baur, B. Genetic Effects of Anthropogenic Habitat Fragmentation on Remnant Animal and Plant Populations: A Meta-Analysis. Ecosphere 2018, 9, e02488. [Google Scholar] [CrossRef]
- Kozakiewicz, M. Habitat Isolation and Ecological Barriers—The Effect on Small Mammal Populations and Communities. NCASI Tech. Bull. 1999, 38, 289–290. [Google Scholar] [CrossRef]
- Magioli, M.; Moreira, M.Z.; Fonseca, R.C.B.; Ribeiro, M.C.; Rodrigues, M.G.; De Barros Ferraz, K.M.P.M. Human-Modified Landscapes Alter Mammal Resource and Habitat Use and Trophic Structure. Proc. Natl. Acad. Sci. USA 2019, 116, 18466–18472. [Google Scholar] [CrossRef]
- Ahumada, J.A.; Silva, C.E.F.; Gajapersad, K.; Hallam, C.; Hurtado, J.; Martin, E.; McWilliam, A.; Mugerwa, B.; O’Brien, T.; Rovero, F.; et al. Community Structure and Diversity of Tropical Forest Mammals: Data from a Global Camera Trap Network. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2703–2711. [Google Scholar] [CrossRef]
- Flynn, D.F.B.; Gogol-Prokurat, M.; Nogeire, T.; Molinari, N.; Richers, B.T.; Lin, B.B.; Simpson, N.; Mayfield, M.M.; DeClerck, F. Loss of Functional Diversity under Land Use Intensification across Multiple Taxa. Ecol. Lett. 2009, 12, 22–33. [Google Scholar] [CrossRef]
- Magioli, M.; Ribeiro, M.C.; Ferraz, K.M.P.M.B.; Rodrigues, M.G. Thresholds in the Relationship between Functional Diversity and Patch Size for Mammals in the Brazilian Atlantic Forest. Anim. Conserv. 2015, 18, 499–511. [Google Scholar] [CrossRef]
- Magioli, M.; Ferraz, K.M.P.M.d.B.; Setz, E.Z.F.; Percequillo, A.R.; Rondon, M.V.d.S.S.; Kuhnen, V.V.; Canhoto, M.C.d.S.; dos Santos, K.E.A.; Kanda, C.Z.; Fregonezi, G.d.L.; et al. Connectivity Maintain Mammal Assemblages Functional Diversity within Agricultural and Fragmented Landscapes. Eur. J. Wildl. Res. 2016, 62, 431–446. [Google Scholar] [CrossRef]
- De Coster, G.; Banks-Leite, C.; Metzger, J.P. Atlantic Forest Bird Communities Provide Different but Not Fewer Functions after Habitat Loss. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142844. [Google Scholar] [CrossRef]
- Abra, F.D.; Huijser, M.P.; Magioli, M.; Bovo, A.A.A.; Ferraz, K.M.P.M.d.B. An Estimate of Wild Mammal Roadkill in São Paulo State, Brazil. Heliyon 2021, 7, e06015. [Google Scholar] [CrossRef]
- Magioli, M.; Ferraz, K.M.P.M.d.B.; Chiarello, A.G.; Galetti, M.; Setz, E.Z.F.; Paglia, A.P.; Abrego, N.; Ribeiro, M.C.; Ovaskainen, O. Land-Use Changes Lead to Functional Loss of Terrestrial Mammals in a Neotropical Rainforest. Perspect. Ecol. Conserv. 2021, 19, 161–170. [Google Scholar] [CrossRef]
- Fornitano, L.; Angeli, T.; Costa, R.T.; Olifiers, N.; Bianchi, R.d.C. Medium to Large-Sized Mammals of the Augusto Ruschi Biological Reserve, São Paulo State, Brazil. Oecologia Aust. 2015, 19, 232–243. [Google Scholar] [CrossRef]
- López-Arévalo, H.F.; Liévano-Latorre, L.F.; Díaz, O.L.M. El Papel de Las Pequeñas Reservas En La Conservación de Mamíferos En Colombia the Role of Small Reserves on Mammal Conservation in Colombia. Caldasia 2021, 43, 354–365. [Google Scholar] [CrossRef]
- Magioli, M.; Rios, E.; Benchimol, M.; Casanova, D.C.; Ferreira, A.S.; Rocha, J.; de Melo, F.R.; Dias, M.P.; Narezi, G.; Crepaldi, M.O. The Role of Protected and Unprotected Forest Remnants for Mammal Conservation in a Megadiverse Neotropical Hotspot. Biol. Conserv. 2021, 259, 109173. [Google Scholar] [CrossRef]
- Gheler-Costa, C.; Vettorazzi, C.A.; Pardini, R.; Verdade, L.M. The Distribution and Abundance of Small Mammals in Agroecosystems of Southeastern Brazil. Mammalia 2012, 76, 185–191. [Google Scholar] [CrossRef]
- Umetsu, F.; Pardini, R. Small Mammals in a Mosaic of Forest Remnants and Anthropogenic Habitats—Evaluating Matrix Quality in an Atlantic Forest Landscape. Landsc. Ecol. 2007, 22, 517–530. [Google Scholar] [CrossRef]
- Cremonesi, G.; Bisi, F.; Gaffi, L.; Zaw, T.; Naing, H.; Moe, K.; Aung, Z.; Mazzamuto, M.V.; Gagliardi, A.; Wauters, L.A.; et al. Camera Trapping to Assess Status and Composition of Mammal Communities in a Biodiversity Hotspot in Myanmar. Animals 2021, 11, 880. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Phillips, H.R.P.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Blandon, A.; Butchart, S.H.M.; Booth, H.L.; Day, J.; et al. A Global Model of the Response of Tropical and Sub-Tropical Forest Biodiversity to Anthropogenic Pressures. Proc. R. Soc. B Biol. Sci. 2014, 281, 20141371. [Google Scholar] [CrossRef] [PubMed]
- Brodie, J.F. Carbon Costs and Bushmeat Benefits of Hunting in Tropical Forests. Ecol. Econ. 2018, 152, 22–26. [Google Scholar] [CrossRef]
- Palmeirim, A.F.; Santos-Filho, M.; Peres, C.A. Marked Decline in Forest-Dependent Small Mammals Following Habitat Loss and Fragmentation in an Amazonian Deforestation Frontier. PLoS ONE 2020, 15, e0230209. [Google Scholar] [CrossRef] [PubMed]
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P.; et al. Status and Ecological Effects of the World’s Largest Carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef] [PubMed]
- Ripple, W.J.; Newsome, T.M.; Wolf, C.; Dirzo, R.; Everatt, K.T.; Galetti, M.; Hayward, M.W.; Kerley, G.I.H.; Levi, T.; Lindsey, P.A.; et al. Collapse of the World’s Largest Herbivores. Sci. Adv. 2015, 1, e1400103. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Malvido, J. Impact of Forest Fragmentation on Seedling Abundance in a Tropical Rain Forest. Conserv. Biol. 1998, 12, 380–389. [Google Scholar] [CrossRef]
- Tabarelli, M.; Mantovani, W.; Peres, C.A. Effects of Habitat Fragmentation on Plant Guild Structure in the Montane Atlantic Forest of Southeastern Brazil. Biol. Conserv. 1999, 91, 119–127. [Google Scholar] [CrossRef]
- Turner, I.M.; Corlett, R.T. The Conservation Value of Small, Isolated Fragments of Lowland Tropical Rain Forest. Trends Ecol. Evol. 1996, 11, 330–333. [Google Scholar] [CrossRef]
- Balvanera, P.; Pfisterer, A.B.; Buchmann, N.; He, J.S.; Nakashizuka, T.; Raffaelli, D.; Schmid, B. Quantifying the Evidence for Biodiversity Effects on Ecosystem Functioning and Services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.S.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; Van Ruijven, J.; et al. High Plant Diversity Is Needed to Maintain Ecosystem Services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef]
- Brodie, J.E.; Kroon, F.J.; Schaffelke, B.; Wolanski, E.C.; Lewis, S.E.; Devlin, M.J.; Bohnet, I.C.; Bainbridge, Z.T.; Waterhouse, J.; Davis, A.M. Terrestrial Pollutant Runoff to the Great Barrier Reef: An Update of Issues, Priorities and Management Responses. Mar. Pollut. Bull. 2012, 65, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, J.R.; Clark, C.J.; Palmer, T.M. Ecological Erosion of an Afrotropical Forest and Potential Consequences for Tree Recruitment and Forest Biomass. Biol. Conserv. 2013, 163, 122–130. [Google Scholar] [CrossRef]
- Estes, J.A.; Terborgh, J.; Brashares, J.S.; Power, M.E.; Berger, J.; Bond, W.J.; Carpenter, S.R.; Essington, T.E.; Holt, R.D.; Jackson, J.B.C.; et al. Trophic Downgrading of Planet Earth. Science 2011, 333, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Lande, R. Statistics and Partitioning of Species Diversity, and Similarity among Multiple Communities. Oikos 1996, 76, 5–13. [Google Scholar] [CrossRef]
- Purvis, A.; Gittleman, J.L.; Cowlishaw, G.; Mace, G.M. Predicting Extinction Risk in Declining Species. Proc. Biol. Sci. 2000, 267, 1947–1952. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.H. Evolution and Measurement of Species Diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef]
- Calaça, A.M.; Eduardo, C.; Grelle, V. Diversidade Funcional de Comunidades: Discussões Conceituais e Importantes Avanços Metodológicos. Oecologia 2016, 20, 401–416. [Google Scholar] [CrossRef]
- Cianciaruso, M.V.; Silva, I.A.; Batalha, M.A. Diversidades Filogenética e Funcional: Novas Abordagens Para a Ecologia de Comunidades. Biota Neotrop. 2009, 9, 93–103. [Google Scholar] [CrossRef]
- Díaz, S.; Cabido, M. Vive La Diff é Rence: Plant Functional Diversity Matters to Ecosystem Processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Villéger, S.; Mason, N.W.H.; Mouillot, D. New Multidimensional Functional Diversity Indices for a Multifaceted Framework in Functional Ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef]
- Petchey, O.L.; Gaston, K.J. Functional Diversity (FD), Species Richness and Community Composition. Ecol. Lett. 2002, 5, 402–411. [Google Scholar] [CrossRef]
- Petchey, O.L.; Gaston, K.J. Functional Diversity: Back to Basics and Looking Forward. Ecol. Lett. 2006, 9, 741–758. [Google Scholar] [CrossRef] [PubMed]
- Edwards, F.A.; Edwards, D.P.; Hamer, K.C.; Davies, R.G. Impacts of Logging and Conversion of Rainforest to Oil Palm on the Functional Diversity of Birds in Sundaland. Ibis 2013, 155, 313–326. [Google Scholar] [CrossRef]
- Hidasi-Neto, J.; Loyola, R.D.; Cianciaruso, M.V. Conservation Actions Based on Red Lists Do Not Capture the Functional and Phylogenetic Diversity of Birds in Brazil. PLoS ONE 2013, 8, e73431. [Google Scholar] [CrossRef]
- Lohbeck, M.; Poorter, L.; Paz, H.; Pla, L.; van Breugel, M.; Martínez-Ramos, M.; Bongers, F. Functional Diversity Changes during Tropical Forest Succession. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 89–96. [Google Scholar] [CrossRef]
- Melo, A.C.G.; Durigan, G. Plano de Manejo da Estação Ecológica de Santa Bárbara; Instituto Florestal: São Paulo, Brazil, 2011; p. 221. [Google Scholar]
- Nagako Shida, C.; Pivello, V.R. Caracterização Fisiográfica e de Uso Das Terras Da Região de Luiz Antônio e Santa Rita Do Passa Quatro, SP, Com o Uso de Sensoriamento Remoto e SIG. Investig. Geográficas 2002, 49, 27–42. [Google Scholar] [CrossRef]
- Rocha-Mendes, F.; Bianconi, G.V. Opportunistic Predatory Behavior of Margay, Leopardus Wiedii (Schinz, 1821), in Brazil. Mammalia 2009, 73, 151–152. [Google Scholar] [CrossRef]
- Centro De Pesquisas Meteorológicas E Climáticas Aplicadas A Agricultura. Cepagri Clima Dos Municípios Paulistas; Centro De Pesquisas Meteorológicas E Climáticas Aplicadas A Agricultura: Campinas, Brazil, 2016. [Google Scholar]
- Galetti, M.; Carmignotto, A.P.; Percequillo, A.R.; Santos, M.C.d.O.; de Barros Ferraz, K.M.P.M.; Lima, F.; Vancine, M.H.; Muylaert, R.L.; Bonfim, F.C.G.; Magioli, M.; et al. Mammals in São Paulo State: Diversity, Distribution, Ecology, and Conservation. Biota Neotrop. 2022, 22, e20221363. [Google Scholar] [CrossRef]
- Chiarello, A.G. Density and Population Size of Mammals in Remnants of Brazilian Atlantic Forest. Conserv. Biol. 2000, 14, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Abreu, E.F.; Casali, D.; Costa-Araújo, R.; Garbino, G.S.T.; Libardi, G.S.; Loretto, D.; Loss, A.C.; Marmontel, M.; Moras, L.M.; Nascimento, M.C.; et al. Lista de Mamíferos Do Brasil 2023. Available online: https://zenodo.org/records/5802047 (accessed on 21 November 2023).
- Secretário do Meio Ambiente. Decreto No 68.853, de 27 de Novembro de 2018. Declara as Espécies Da Fauna Silvestre Ameaçadas de Extinção, as Quase Ameaçadas e as Deficientes de Dados Para Avaliação No Estado de São Paulo e Dá Providências Correlatas 2018. Available online: https://www.al.sp.gov.br/repositorio/legislacao/decreto/2018/decreto-63853-27.11.2018.html (accessed on 21 November 2023).
- Ministério do Meio Ambiente/Gabinete do Ministro. Portaria MMA No 148, de 7 de Junho de 2022. Altera Os Anexos Da Portaria No 443, de 17 de Dezembro de 2014, Da Portaria No 444, de 17 de Dezembro de 2014, e Da Portaria No 445, de 17 de Dezembro de 2014, Referentes à Atualização Da Lista Nacional de Espécies 2022. Available online: https://unbciencia.unb.br/images/Noticias/2022/06-Jun/PORTARIA_MMA_No148_7_DE_JUNHO_DE_2022.pdf (accessed on 21 November 2023).
- IUCN. The IUCN Red List of Threatened Species. Version 2022-2; IUCN: Fontainebleau, France, 2022. [Google Scholar]
- de Oliveira, T.G.; Cassaro, K. Guia de Campo dos Felinos do Brasil; Instituto Pró-Carnívoros: Atibaia, Brazil, 2005. [Google Scholar]
- Emmons, L.; Feer, F. Neotropical Rainforest Mammals: A Field Guide; Chicago Press: Chicago, IL, USA, 1997. [Google Scholar]
- Carbone, C.; Christie, S.; Conforti, K.; Coulson, T.; Franklin, N.; Ginsberg, J.R.; Griffiths, M.; Holden, J.; Kawanishi, K.; Kinnaird, M. The Use of Photographic Rates to Estimate Densities of Tigers and Other Cryptic Mammals. Anim. Conserv. 2001, 4, 75–79. [Google Scholar] [CrossRef]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscapemetrics: An Open-source R Tool to Calculate Landscape Metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef]
- Projeto MapBiomas Coleção 8 da Série Anual de Mapas de Cobertura e Uso da Terra do Brasil, Acessado em Setembro de 2023. Available online: http://Mapbiomas.Org/2023 (accessed on 21 November 2023).
- Kembel, S.; Ackerly, D.D.; Blomberg, S.P.; Cowan, P.D.; Helmus, M.R.; Morlon, H.; Webb, C.O.; Picante: R Tools for Integrating Phylogenies and Ecology. R Package Version 1.6.2. 2014. Available online: http://cran.nexr.com/web/packages/picante/index.html (accessed on 21 November 2023).
- Gower, A.J.C. A General Coefficient of Similarity and Some of Its Properties. Society 1971, 27, 857–871. [Google Scholar] [CrossRef]
- Chillo, V.; Ojeda, R.A. Mammal Functional Diversity Loss under Human-Induced Disturbances in Arid Lands. J. Arid Environ. 2012, 87, 95–102. [Google Scholar] [CrossRef]
- de Carvalho, R.A.; Cianciaruso, M.V.; Trindade-Filho, J.; Sagnori, M.D.; Loyola, R.D. Drafting a Blueprint for Functional and Phylogenetic Diversity Conservation in the Brazilian Cerrado. Nat. Conserv. 2010, 8, 171–176. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; Version 4.3.1; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H.; Chang, W.; Wickham, M.H. Package ‘Ggplot2’. In Create Elegant Data Visualisations Using the Grammar of Graphics; R Core Team: Vienna, Austria, 2016; Volume 2, pp. 1–189. [Google Scholar]
- Fischer, J.; Lindenmayer, D.B. Landscape Modification and Habitat Fragmentation: A Synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- MacArthur, R.H.; MacArthur, J.W. On Bird Species Diversity. Ecology 1961, 42, 594–598. [Google Scholar] [CrossRef]
- Tews, J.; Brose, U.; Grimm, V.; Tielbörger, K.; Wichmann, M.C.; Schwager, M.; Jeltsch, F. Animal Species Diversity Driven by Habitat Heterogeneity/Diversity: The Importance of Keystone Structures. J. Biogeogr. 2004, 31, 79–92. [Google Scholar] [CrossRef]
- Bedoya-Durán, M.J.; Murillo-García, O.E.; Branch, L.C. Factors Outside Privately Protected Areas Determine Mammal Assemblages in a Global Biodiversity Hotspot in the Andes. Glob. Ecol. Conserv. 2021, 32, e01921. [Google Scholar] [CrossRef]
- Michalski, F.; Peres, C. A Disturbance-Mediated Mammal Persistence and Abundance-Area Relationships in Amazonian Forest Fragments. Conserv. Biol. 2007, 21, 1626–1640. [Google Scholar] [CrossRef]
- Salom-Perez, R.; Corrales-Gutierrez, D.; Araya-Gamboa, D.; Espinoza-Muñoz, D.; Finegan, B.; Petracca, L.S. Forest Cover Mediates Large and Medium-Sized Mammal Occurrence in a Critical Link of the Mesoamerican Biological Corridor. PLoS ONE 2021, 16, e0249072. [Google Scholar] [CrossRef]
- Magioli, M.; Ferraz, K.M.P.M. de B. Deforestation Leads to Prey Shrinkage for an Apex Predator in a Biodiversity Hotspot. Mammal Res. 2021, 66, 245–255. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J.; Hirota, M.M.; Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J.; Hirota, M.M. The Brazilian Atlantic Forest: How Much Is Left, and How Is the Remaining Forest Distributed? Implications for Conservation. Biol. Conserv. 2009, 142, 1141–1153. [Google Scholar] [CrossRef]
- Uezu, A.; Metzger, J.P.; Vielliard, J.M.E. Effects of Structural and Functional Connectivity and Patch Size on the Abundance of Seven Atlantic Forest Bird Species. Biol. Conserv. 2005, 123, 507–519. [Google Scholar] [CrossRef]
- Magioli, M.; de Barros Ferraz, K.M.P.M.; Rodrigues, M.G. Medium and Large-Sized Mammals of an Isolated Atlantic Forest Remnant, Southeast São Paulo State, Brazil. Check List 2014, 10, 850–856. [Google Scholar] [CrossRef]
- Galetti, M.; Giacomini, H.C.; Bueno, R.S.; Bernardo, C.S.S.; Marques, R.M.; Bovendorp, R.S.; Steffler, C.E.; Rubim, P.; Gobbo, S.K.; Donatti, C.I.; et al. Priority Areas for the Conservation of Atlantic Forest Large Mammals. Biol. Conserv. 2009, 142, 1229–1241. [Google Scholar] [CrossRef]
- Canale, G.R.; Peres, C.A.; Guidorizzi, C.E.; Gatto, C.A.F.; Kierulff, M.C.M. Pervasive Defaunation of Forest Remnants in a Tropical Biodiversity Hotspot. PLoS ONE 2012, 7, e41671. [Google Scholar] [CrossRef]
- Martensen, A.C.; Ribeiro, M.C.; Banks-Leite, C.; Prado, P.I.; Metzger, J.P. Associations of Forest Cover, Fragment Area, and Connectivity with Neotropical Understory Bird Species Richness and Abundance. Conserv. Biol. 2012, 26, 1100–1111. [Google Scholar] [CrossRef]
- Estavillo, C.; Pardini, R.; Da Rocha, P.L.B. Forest Loss and the Biodiversity Threshold: An Evaluation Considering Species Habitat Requirements and the Use of Matrix Habitats. PLoS ONE 2013, 8, e82369. [Google Scholar] [CrossRef]
- Pardini, R.; Nichols, E.; Püttker, T. Biodiversity Response to Habitat Loss and Fragmentation. Encycl. Anthr. 2017, 3, 229–239. [Google Scholar] [CrossRef]
- Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.W.; Gardner, T.A.; Barlow, J.; Peres, C.A.; Bradshaw, C.J.A.; Laurance, W.F.; Lovejoy, T.E.; et al. Primary Forests Are Irreplaceable for Sustaining Tropical Biodiversity. Nature 2011, 478, 378–381. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The Exceptional Value of Intact Forest Ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Meza-Joya, F.L.; Ramos, E.; Cardona, D. Forest Fragmentation Erodes Mammalian Species Richness and Functional Diversity in a Human-Dominated Landscape in Colombia. Mastozool. Neotrop. 2020, 27, 338–348. [Google Scholar] [CrossRef]
- Rios, E.; Benchimol, M.; De Vleeschouwer, K.; Cazetta, E. Spatial Predictors and Species’ Traits: Evaluating What Really Matters for Medium-Sized and Large Mammals in the Atlantic Forest, Brazil. Mamm. Rev. 2021, 52, 236–251. [Google Scholar] [CrossRef]
- Gaudin, T.J.; Hicks, P.; Di Blanco, Y. Myrmecophaga Tridactyla (Pilosa: Myrmecophagidae). Mamm. Species 2018, 50, 1–13. [Google Scholar] [CrossRef]
- Harveson, P.M.; Tewes, M.E.; Anderson, G.L.; Laack, L.L. Habitat Use by Ocelots in South Texas: Implications for Restoration. Wildl. Soc. Bull. 2004, 32, 948–954. [Google Scholar] [CrossRef]
- D’Andrea, P.S.; Gentile, R.; Cerqueira, R.; Grelle, C.E.V.; Horta, C.; Rey, L. Ecology of Small Mammals in a Brazilian Rural Area. Rev. Bras. Zool. 1999, 16, 611–620. [Google Scholar] [CrossRef]
- da Fonseca, G.A.B.; Robinson, J.G.; da Fonseca, G.A.B.; Robinson, J.G. Forest Size and Structure: Competitive and Predatory Effects on Small Mammal Communities. Biol. Conserv. 1990, 53, 265–294. [Google Scholar] [CrossRef]
- Santori, R.T.; Astúa de Moraes, D.; Cerqueira, R. Diet Composition of Metachirus Nudicaudatus and Didelphis Aurita (Marsupialia, Didelphoidea) in Southeastern Brazil. Mammalia 1995, 59, 511–516. [Google Scholar] [CrossRef]
- Harestad, A.S.; Bunnel, F.L. Home Range and Body Weight--A Reevaluation. Ecology 1979, 60, 389–402. [Google Scholar] [CrossRef]
- Milton, K.; May, M.L. Body Weight, Diet and Home Range Area in Primates. Nature 1976, 259, 459–462. [Google Scholar] [CrossRef]
- Pessoa, M.S.; Rocha-Santos, L.; Talora, D.C.; Faria, D.; Mariano-Neto, E.; Hambuckers, A.; Cazetta, E. Fruit Biomass Availability along a Forest Cover Gradient. Biotropica 2016, 49, 45–55. [Google Scholar] [CrossRef]
- Terborgh, J. Maintenance of Diversity in Tropical Forests. Biotropica 1992, 24, 283–292. [Google Scholar] [CrossRef]
- Gentry, A.H.; Emmons, L.H. Geographical Variation in Fertility, Phenology, and Composition of the Understory of Neotropical Forests. Biotropica 1987, 19, 216–227. [Google Scholar] [CrossRef]
- Anacleto, T.C.D.S. Food Habits of Four Armadillo Species in the Cerrado Area, Mato Grosso, Brazil. Zool. Stud. 2007, 46, 529–537. [Google Scholar]
- Anacleto, T.C.S.; Marinho-Filho, J. Hábito Alimentar Do Tatu-Canastra (Xenarthra, Dasypodidae) Em Uma Área de Cerrado Do Brasil Central. Rev. Bras. Zool. 2001, 18, 681–688. [Google Scholar] [CrossRef]
- Medri, Í.M.; Mourão, G.d.M.; Harada, A.Y. Dieta de Tamanduá-Bandeira (Myrmecophaga Tridactyla) No Pantanal Da Nhecolândia, Brasil. Edentata 2003, 5, 30–34. [Google Scholar]
- Medri, I.M.; Mourão, G.d.M.; Rodrigues, F.H.G. Ordem Xenarthra. In Mamíferos do Brasil; dos Reis Nélio, R., Ed.; Federal Rural University of Rio de Janeiro: Seropédica, Brazil, 2006. [Google Scholar]
- Dietz, J.M. Ecology and Social Organization of the Maned Wolf (Chrysocyon brachyurus); Smithsonian Institution Press: Washington, DC, USA, 1984; pp. 1–51. [Google Scholar] [CrossRef]
- Redford, K.H. Feeding and Food Preference in Captive and Wild Giant Anteaters Myrmecophaga Tridactyla. J. Zool. 1985, 205, 559–572. [Google Scholar] [CrossRef]
- Giroux, A.; Ortega, Z.; Oliveira-Santos, L.G.R.; Attias, N.; Bertassoni, A.; Desbiez, A.L.J. Sexual, Allometric and Forest Cover Effects on Giant Anteaters’ Movement Ecology. PLoS ONE 2021, 16, e0253345. [Google Scholar] [CrossRef] [PubMed]
- Giroux, A.; Ortega, Z.; Attias, N.; Desbiez, A.L.J.; Valle, D.; Börger, L.; Oliveira-Santos, L.G.R. Activity Modulation and Selection for Forests Help Giant Anteaters to Cope with Temperature Changes. Anim. Behav. 2023, 201, 191–209. [Google Scholar] [CrossRef]
- Lundgren, E.J.; Ramp, D.; Ripple, W.J.; Wallach, A.D. Introduced Megafauna Are Rewilding the Anthropocene. Ecography 2018, 41, 857–866. [Google Scholar] [CrossRef]
- Lundgren, E.J.; Schowanek, S.D.; Rowan, J.; Middleton, O.; Pedersen, R.; Wallach, A.D.; Ramp, D.; Davis, M.; Sandom, C.J.; Svenning, J.C. Functional Traits of the World’s Late Quaternary Large-Bodied Avian and Mammalian Herbivores. Sci. Data 2021, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Root-Bernstein, M.; Galetti, M.; Ladle, R.J. Rewilding South America: Ten Key Questions. Perspect. Ecol. Conserv. 2017, 15, 271–281. [Google Scholar] [CrossRef]
- Lundgren, E.J.; Ramp, D.; Rowan, J.; Middleton, O.; Schowanek, S.D.; Sanisidro, O.; Carroll, S.P.; Davis, M.; Sandom, C.J.; Svenning, J.C.; et al. Introduced Herbivores Restore Late Pleistocene Ecological Functions. Proc. Natl. Acad. Sci. USA 2020, 117, 7871–7878. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.C.; Foster, G.W.; Forrester, D.J. Hookworms of Feral Cats in Florida. Vet. Parasitol. 2003, 115, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Doherty, T.S.; Glen, A.S.; Nimmo, D.G.; Ritchie, E.G.; Dickman, C.R. Invasive Predators and Global Biodiversity Loss. Proc. Natl. Acad. Sci. USA 2016, 113, 11261–11265. [Google Scholar] [CrossRef] [PubMed]
- Hammer, A.S.; Dietz, H.H.; Andersen, T.H.; Nielsen, L.; Blixenkrone-Moeller, M.; Hammer, A.S.; Dietz, H.H.; Andersen, T.H.; Nielsen, L.; Blixenkrone-Moeller, M. Distemper Virus as a Cause of Central Nervous Disease and Death in Badgers (Meles Meles) in Denmark. Vet. Rec. 2004, 154, 527–530. [Google Scholar] [CrossRef] [PubMed]
- McDonough, M.T.; Ditchkoff, S.S.; Smith, M.D.; Vercauteren, K.C. A Review of the Impacts of Invasive Wild Pigs on Native Vertebrates. Mamm. Biol. 2022, 102, 279–290. [Google Scholar] [CrossRef]
- Pedrosa, F.; Salerno, R.; Padilha, F.V.B.; Galetti, M. Current Distribution of Invasive Feral Pigs in Brazil: Economic Impacts and Ecological Uncertainty. Nat. Conserv. 2015, 13, 84–87. [Google Scholar] [CrossRef]
Protected Area | Classification | Climate | Patch Size (ha) | Fragments | Sampling Points | Sampling Effort (Traps-Day) |
---|---|---|---|---|---|---|
Jataí Ecological Station (JES) | Strict protection | Aw | 10,285 | 1 | 44 | 2902 |
Santa Bárbara Ecological Station (SBES) | Strict protection | Cwa | 2585 | 1 | 19 | 1309 |
1612 | 2 | 8 | 530 | |||
Santa Rita do Passa Quatro Experimental Station (SRES) | 9 | 1 | 1 | 78 | ||
Sustainable use | Cwa | 19 | 2 | 2 | 156 | |
51 | 3 | 2 | 156 | |||
Bebedouro State Forest (BSF) | Strict protection | Aw | 99 | 1 | 2 | 82 |
Furnas do Bom Jesus State Park (FBJSP) | Strict protection | Cwb | 2069 | 1 | 25 | 2021 |
Porto Ferreira State Park (PFSP) | Strict protection | Cwa | 611 | 1 | 9 | 608 |
Vassununga State Park (VSP) | Strict protection | 231 | 1 | 2 | 118 | |
329 | 2 | 5 | 357 | |||
Cwa | 130 | 3 | 2 | 124 | ||
1217 | 4 | 13 | 764 | |||
169 | 5 | 3 | 175 | |||
Augusto Ruschi Biological Reserve (ARBR) | Strict protection | 115 | 1 | 1 | 38 | |
Aw | 56 | 2 | 1 | 34 | ||
189 | 3 | 2 | 115 | |||
124 | 4 | 3 | 75 |
Trait Type | Trait | Category | Data Type |
---|---|---|---|
Dietary | Diet | Leaves | Percentage |
Fruits | Percentage | ||
Vertebrates | Percentage | ||
Invertebrates | Percentage | ||
Foraging substrate | Water | Binary | |
Trees | Binary | ||
Vegetation | Binary | ||
Soil | Binary | ||
Physical | Locomotion form | Terrestrial | Binary |
Semifossorial | Binary | ||
Semiaquatic | Binary | ||
Arboreal | Binary | ||
Body mass | Kg | Continuous | |
Litter size | Average number of puppies | Continuous | |
Behavioral | Period of activity | Diurnal | Binary |
Nocturnal | Binary | ||
Crepuscular | Binary | ||
Social behavior | Social | Binary | |
Threat categories | IUCN Brazil São Paulo | Data Deficient | Categorical |
Least Concern | Categorical | ||
Near Threatened | Categorical | ||
Vulnerable | Categorical | ||
Endangered | Categorical |
Model | SSQ | RSS | AIC |
---|---|---|---|
Start: FD ~ log1p (patch size) + log1p (isolation) + forest + sugarcane | |||
− log1p (isolation) | 0.00 | 106.60 | 40.02 |
− Forest | 0.74 | 107.33 | 40.14 |
− Sugarcane | 0.91 | 107.50 | 40.17 |
No change | 106.59 | 42.02 | |
− log1p (patch size) | 36.52 | 143.11 | 45.32 |
Step 1: FD ~ log1p (patch size) + forest + sugarcane | |||
− Forest | 0.74 | 107.33 | 38.14 |
− Sugarcane | 0.93 | 107.52 | 38.17 |
No change | 106.60 | 40.02 | |
− log1p (patch size) | 39.45 | 146.04 | 43.68 |
Step 2: FD ~ log1p (patch size) + sugarcane | |||
− Sugarcane | 0.47 | 107.80 | 36.22 |
No change | 107.33 | 38.14 | |
− log1p (patch size) | 77.40 | 184.74 | 45.91 |
Step 3 FD ~ log1p (patch size) | |||
No change | 107.80 | 36.22 | |
− log1p (patch size) | 146.32 | 254.12 | 49.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fornitano, L.; Gouvea, J.A.; Costa, R.T.; Magioli, M.; Bianchi, R. Large Protected Areas Safeguard Mammalian Functional Diversity in Human-Modified Landscapes. Sustainability 2024, 16, 5419. https://doi.org/10.3390/su16135419
Fornitano L, Gouvea JA, Costa RT, Magioli M, Bianchi R. Large Protected Areas Safeguard Mammalian Functional Diversity in Human-Modified Landscapes. Sustainability. 2024; 16(13):5419. https://doi.org/10.3390/su16135419
Chicago/Turabian StyleFornitano, Larissa, Jéssica Abonizio Gouvea, Rômulo Theodoro Costa, Marcelo Magioli, and Rita Bianchi. 2024. "Large Protected Areas Safeguard Mammalian Functional Diversity in Human-Modified Landscapes" Sustainability 16, no. 13: 5419. https://doi.org/10.3390/su16135419
APA StyleFornitano, L., Gouvea, J. A., Costa, R. T., Magioli, M., & Bianchi, R. (2024). Large Protected Areas Safeguard Mammalian Functional Diversity in Human-Modified Landscapes. Sustainability, 16(13), 5419. https://doi.org/10.3390/su16135419