Pollution Source and Soil Quality Assessments of Heavily Contaminated Soils by Selected Potentially Toxic Elements in a Human-Degraded Wetland Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Assessment of Soil Quality
2.3.1. Enrichment Factor (EF)
2.3.2. Contamination Factor (CF)
2.3.3. Ecological Risk Index (ERI)
2.3.4. Potential Ecological Risk Index (RI)
3. Results
3.1. Spatial Distribution of Selected Trace Elements in the Degraded Wetland Area
3.2. Vertical Distribution of the Selected Trace Elements in the Soil Sampling Locations
4. Discussion
4.1. Evaluation of Soil Quality in the Study Area
4.2. Characteristics of Zn Processing Plant Solid Waste
4.3. Hydrogeological Assessment of the Hürmetçi Sazlığı Wetland
4.4. Assessment of Potential Remediation Strategies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Güler, C.; Alpaslan, M.; Kurt, M.A.; Temel, A. Deciphering factors controlling trace element distribution in the soils of Karaduvar industrial-agricultural area (Mersin, SE Turkey). Environ. Earth Sci. 2010, 60, 203–218. [Google Scholar] [CrossRef]
- Manoj, K.; Padhy, P.K. Distribution, enrichment and ecological risk assessment of six elements in bed sediments of a tropical river, Chottanagpur Plateau: A spatial and temporal appraisal. J. Environ. Prot. 2014, 5, 1419–1434. [Google Scholar] [CrossRef]
- Arivoli, A.; Mohanraj, R.; Seenivasan, R. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater. Environ. Sci. Pollut. Res. 2015, 22, 13336–13343. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Li, T.; Feng, Y.; Su, H.; Yang, Q. Source apportionment and risk assessment for available occurrence forms of heavy metals in Dongdahe Wetland sediments, southwest of China. Sci. Total Environ. 2022, 815, 152837. [Google Scholar] [CrossRef] [PubMed]
- Grimm, N.B.; Groffman, P.M. “Accidental” urban wetlands: Ecosystem functions in unexpected places. Front. Ecol. Environ. 2017, 15, 248–256. [Google Scholar] [CrossRef]
- Chen, H.L.; Su, H.T.; Guo, P.Y.; Shen, X.B.; Deng, J.; Zhang, Y.; Wu, Y.; Li, Y. Effects of planting patterns on heavy metals (Cd, As) in soils following mangrove wetlands restoration. Int. J. Phytoremediation 2019, 21, 725–732. [Google Scholar] [CrossRef]
- Hu, B.; Guo, P.; Wu, Y.; Deng, J.; Su, H.; Li, Y.; Nan, Y. Study of soil physicochemical properties and heavy metals of a mangrove restoration wetland. J. Clean. Prod. 2021, 291, 125965. [Google Scholar] [CrossRef]
- Ladhar, S.S. Status of ecological health of wetlands in Punjab, India. Aquat. Ecosyst. Health Manag. 2002, 5, 457–465. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Wetland resources: Status, trends, ecosystem services, and restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Brinson, M.M.; Malvarez, A. Temperate freshwater wetlands: Types, status and threats. Environ. Conserv. 2002, 29, 115–133. [Google Scholar] [CrossRef]
- Bai, J.; Xiao, R.; Cui, B.; Zhang, K.; Wang, Q.; Liu, X.; Gao, H.; Huang, L. Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environ. Pollut. 2011, 159, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Bai, J.; Gao, H.; Wang, J.; Huang, L.; Liu, P. Distribution and contamination assessment of heavy metals in water and soils from the college town in the Pearl River Delta, China. CLEAN Soil Air Water 2012, 40, 1167–1173. [Google Scholar] [CrossRef]
- Wang, Q.; Mei, D.; Chen, J.; Lin, Y.; Liu, J.; Lu, H.; Yan, C. Sequestration of heavy metal by glomalin-related soil protein: Implication for water quality improvement in mangrove wetlands. Water Res. 2019, 148, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Shahab, A.; Li, J.; Xi, B.; Sun, X.; He, H.; Yu, G. Distribution, ecological risk assessment and source identification of heavy metals in surface sediments of Huixian karst wetland, China. Ecotoxicol. Environ. Saf. 2019, 185, 109700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zheng, D.; Xue, Z.; Wu, H.; Jiang, M. Identification of anthropogenic contributions to heavy metals in wetland soils of the Karuola Glacier in the Qinghai-Tibetan Plateau. Ecol. Indic. 2019, 98, 678–685. [Google Scholar] [CrossRef]
- Torbati, S.; Kangarloei, B.A.; Khataee, A. Bioconcentration of heavy metals by three plant species growing in Golmarz wetland, in northwestern Iran: The plants antioxidant responses to metal pollutions. Environ. Technol. Innov. 2021, 24, 101804. [Google Scholar] [CrossRef]
- Xia, P.; Ma, L.; Yi, Y.; Lin, T. Assessment of heavy metal pollution and exposure risk for migratory birds—A case study of Caohai wetland in Guizhou Plateau (China). Environ. Pollut. 2021, 275, 116564. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, H.; Liao, X.; Xiao, R.; Liu, K.; Bai, J.; Li, B.; He, Q. Heavy metal pollution in coastal wetlands: A systematic review of studies globally over the past three decades. J. Hazard. Mater. 2022, 424, 127312. [Google Scholar] [CrossRef] [PubMed]
- Nabuyanda, M.M.; Kelderman, P.; Bruggen, J.V.; Irvine, K. Distribution of the heavy metals Co, Cu, and Pb in sediments and Typha spp. and Phragmites mauritianus in three Zambian wetlands. J. Environ. Manag. 2022, 304, 114133. [Google Scholar] [CrossRef]
- da Silva, M.R.; Lamotte, M.; Donard, O.F.X.; Soriano-Sierra, E.J.; Robert, M. Metal contamination in surface sediments of mangroves, lagoons and southern bay in Florianopolis Island. Environ. Technol. 1996, 17, 1035–1046. [Google Scholar] [CrossRef]
- Caeiro, S.; Costa, M.H.; Ramos, T.B.; Fernandes, F.; Silveira, N.; Coimbra, A.; Medeiros, G.; Painho, M. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecol. Indic. 2005, 5, 151–169. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Y.; Ding, M.; Xie, Z. Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China. Environ. Sci. Pollut. Res. 2017, 24, 21902–21916. [Google Scholar] [CrossRef] [PubMed]
- Kurt, M.A. Comparison of trace element and heavy metal concentrations of top and bottom soils in a complex land use area. Carpathian J. Earth Environ. Sci. 2018, 13, 47–56. [Google Scholar] [CrossRef]
- Mondal, P.; Reichelt-Brushett, A.J.; Jonathan, M.P.; Babu, S.S. Pollution evaluation of total and acid-leachable trace elements in surface sediments of Hooghly River Estuary and Sundarban Mangrove Wetland (India). Environ. Sci. Pollut. Res. 2018, 25, 5681–5699. [Google Scholar] [CrossRef] [PubMed]
- Delil, A.D.; Köleli, N. Investigation of a combined continuous flow system for the removal of Pb and Cd from heavily contaminated soil. Chemosphere 2019, 229, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Malekmohammadi, B.; Blouchi, L.R. Ecological risk assessment of wetland ecosystems using Multi Criteria Decision Making and Geographic Information System. Ecol. Indic. 2014, 41, 133–144. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Chen, J.; Lin, H.; Lin, C. Assessment of heavy metal contamination in the surface sediments: A reexamination into the offshore environment in China. Mar. Pollut. Bull. 2016, 113, 132–140. [Google Scholar] [CrossRef]
- Liang, J.; Yang, Z.; Tang, L.; Zeng, G.; Yu, M.; Li, X.; Wu, H.; Qian, Y.; Li, X.; Luo, Y. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 2017, 181, 281–288. [Google Scholar] [CrossRef]
- Zhao, G.Y.S.; Yuan, H.; Ding, X.; Wang, J. Surface sediment properties and heavy metal pollution assessment in the Pearl River Estuary, China. Environ. Sci. Pollut. Res. 2017, 24, 2966–2979. [Google Scholar] [CrossRef]
- Kılıçel, F. Çinkur Çevresindeki Topraklarda Ağır Metal Kirliliğinin (Cu, Ni, Cd, Pb, Mn, Zn) Atomik Absorpsiyon Spektrometri Yöntemiyle Tayini. Master’s Thesis, Erciyes University, Kayseri, Türkiye, 1992. (In Turkish). [Google Scholar]
- Aksoy, A.; Şahin, U. Elaeagnus angustifolia L. as a biomonitor of heavy metal pollution. Turk. J. Bot. 1999, 23, 83–87. Available online: https://journals.tubitak.gov.tr/botany/vol23/iss2/2 (accessed on 10 July 2023).
- Doğan, B.S. İki Farklı Yıkama Çözeltisi (EDTA ve HCl) Ile Ağır Metal Giderimi Sonucu Toprak Yapısındaki Değişimlerin Araştırılması. Master’s Thesis, Mersin University, Mersin, Türkiye, 2012. (In Turkish). [Google Scholar]
- Demir, A. Topraktan Kurşun Ile Kadmiyum Ekstraksiyonu ve Elektrokimyasal Gideriminin Sürekli Akımlı Bir Sistemde Araştırılması. Ph.D. Thesis, Mersin University, Mersin, Türkiye, 2013. (In Turkish). [Google Scholar]
- Çiftçi, A. Çoklu Metal (Kadmiyum, Kurşun ve Çinko) ile Kirlenmiş bir Toprağın Arıtımında Yabani Hint Yağı (Ricinus communis) ve Aspir (Carthamus tinctorius) Bitkilerinin Fitoremediasyon Kapasitesinin Araştırılması. Ph.D. Thesis, Mersin University, Mersin, Türkiye, 2016. (In Turkish). [Google Scholar]
- Delil, A.D.; Köleli, N. The removal of Pb and Cd from heavily contaminated soil in Kayseri, Turkey by a combined process of soil washing and electrodeposition. Soil Sediment Contam. 2018, 27, 469–484. [Google Scholar] [CrossRef]
- MFWM (Ministry of Forestry and Water Management). Hürmetçi Sazlığı Wetland Revised Management Plan; Republic of Türkiye, Ministry of Forestry and Water Management VII; Regional Directorate Kayseri Branch Directorate: Ankara, Türkiye, 2017; (unpublished report, In Turkish).
- Abacı-Bayan, A.A.; Yılmaz, K. Investigation of physical properties of some wetland soils. Nevşehir J. Sci. Technol. 2017, 6, 52–62. [Google Scholar] [CrossRef]
- NIST (National Institute of Standards and Technology). Certificate of Analysis, Standard Reference Material 2710 (Montana Soil); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2003.
- Ferreira, S.L.C.; da Silva Junior, J.B.; dos Santos, I.F.; de Oliveira, O.M.C.; Cerda, V.; Queiroz, A.F.S. Use of pollution indices and ecological risk in the assessment of contamination from chemical elements in soils and sediments—Practical aspects. Trends Environ. Anal. Chem. 2022, 35, e00169. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Soyol-Erdene, T.O.; Lin, S.; Tuuguu, E.; Daichaa, D.; Huang, K.M.; Bilguun, U.; Tseveendorj, E.A. Spatial and temporal variations of sediment metals in the Tuul River, Mongolia. Environ. Sci. Pollut. Res. 2019, 26, 32420–32431. [Google Scholar] [CrossRef]
- Kaya, T.N.A.; Sarı, E.; Kurt, M.A. Sedimentary records of trace elements contamination in sediment core from the Gulf of Gemlik, Marmara Sea, Turkey: History, contamination degree, and sources. Turk. J. Earth Sci. 2022, 31, 452–466. [Google Scholar] [CrossRef]
- Dominech, S.; Albanese, S.; Guarino, A.; Yang, S. Assessment on the source of geochemical anomalies in the sediments of the Changjiang River (China), using a modified enrichment factor based on multivariate statistical analyses. Environ. Pollut. 2022, 313, 120–126. [Google Scholar] [CrossRef]
- Sarı, E.; Gümüş, U.; Çağatay, M.N.; Kurt, M.A.; Kılıç, Ö.; Arslan, T.N. Distribution and environmental risk evaluation of metals in sediment cores from Marmara Ereğlisi shelf, Marmara Sea, Turkey. Arab. J. Sci. Eng. 2020, 45, 261–273. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Balli, C. Çinkur Fabrikası liç Atıklarından Germanyumun Emülsiyon Tipi Sıvı Membranlarla Ayrılması. Master’s Thesis, Sakarya University, Sakarya, Türkiye, 2007. (In Turkish). [Google Scholar]
- Young, G.; Chen, Y.; Yang, M. Concentrations, distribution, and risk assessment of heavy metals in the iron tailings of Yeshan National Mine Park in Nanjing, China. Chemosphere 2021, 271, 129546. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, B.; Ustaoğlu, F.; Arıca, E. Impacts of a garbage disposal facility on the water quality of Çavuşlu Stream in Giresun, Turkey: A health risk assessment study by a validated ICP-MS assay. Aquat. Sci. Eng. 2021, 36, 181–192. [Google Scholar] [CrossRef]
- Kachoueiyan, F.; Karbassi, A.; Nasrabadi, T.; Rashidiyan, M.; De-la-Torre, G.E. Speciation characteristics, ecological risk assessment, and source apportionment of heavy metals in the surface sediments of the Gomishan wetland. Mar. Pollut. Bull. 2024, 198, 115835. [Google Scholar] [CrossRef]
- Klubi, E.; Adotey, D.K.; Addo, S.; Abril, J.M. Assessment of metal levels and pollution indices of the Songor Wetland, Ghana. Reg. Stud. Mar. Sci. 2021, 46, 101875. [Google Scholar] [CrossRef]
- Sreedevi, M.A.; Harikumar, P.S. Occurrence, distribution, and ecological risk of heavy metals and persistent organic pollutants (OCPs, PCBs, and PAHs) in surface sediments of the Ashtamudi wetland, south-west coast of India. Reg. Stud. Mar. Sci. 2023, 64, 103044. [Google Scholar] [CrossRef]
- Rüşen, A. Recovery of Zinc and Lead From Çinkur Leach Residues by Using Hydrometallurgical Techniques. Master’s Thesis, Middle East Technical University, Ankara, Türkiye, 2007. [Google Scholar]
Element | NIST-Certified Value (mg/kg) 1 | Mean Value (mg/kg) 2 | Mean Recovery (%) 2 |
---|---|---|---|
As | 626 | 611 | 97.57 |
Cd | 21.80 | 21.65 | 99.29 |
Pb | 5532 | 4927 | 89.07 |
Zn | 6952 | 6803 | 97.86 |
Potentially Toxic Elements (PTEs) | As | Cd | Pb | Zn | |
---|---|---|---|---|---|
Topsoil samples (0–20 cm) (n = 77) | Mean | 73.96 | 24.8 | 127.32 | 1881 |
Min. | 9.12 | 0.38 | 3.59 | 41.68 | |
Max. | 273.9 | 1119 | 1807 | 77,287 | |
Reference soil sample (0–20 cm) (K76) 1 | 9.64 | 0.61 | 28.92 | 85.97 | |
Zn processing plant solid waste (K43) 1 | 1010 | 223.49 | 11,818 | 96,495 | |
Average shale 2 | 13 | 0.3 | 20 | 95 |
Distance * | Cd | Pb | Zn | |
---|---|---|---|---|
Cd | −0.699 | |||
Pb | −0.697 | 0.867 | ||
Zn | −0.635 | 0.873 | 0.940 | |
As | −0.273 | 0.169 | 0.035 | 0.095 |
Factor or Index | As | Cd | Pb | Zn |
---|---|---|---|---|
EFmean | 53.37 | 71.98 | 9.29 | 50.00 |
EFmin | 1.00 | 0.77 | 0.59 | 0.61 |
EFmax | 482.48 | 3088.73 | 87.79 | 1513.09 |
CFmean | 5.76 | 83.70 | 6.45 | 20.06 |
CFmin | 0.70 | 1.25 | 0.18 | 0.44 |
CFmax | 21.07 | 3731.54 | 90.38 | 813.55 |
ERImean | 57.62 | 2510.88 | 32.24 | 20.06 |
ERImin | 7.01 | 37.54 | 0.90 | 0.44 |
ERImax | 210.69 | 111,946.15 | 451.92 | 813.55 |
RImean | 2622.04 | |||
RImin | 48.54 | |||
RImax | 112,980.35 |
Soil Quality Indicator | Classes | As | Cd | Pb | Zn |
---|---|---|---|---|---|
Enrichment Factor (EF) | Number of samples (n) | ||||
<2 | Minor enrichment | 12 | 4 | 13 | 3 |
2–5 | Moderate enrichment | 8 | 14 | 23 | 12 |
5–20 | Severe enrichment | 19 | 26 | 34 | 34 |
20–40 | Very severe enrichment | 14 | 22 | 6 | 18 |
>40 | Extremely severe enrichment | 24 | 11 | 1 | 10 |
Contamination Factor (CF) | Number of samples (n) | ||||
<2 | Slightly contaminated | 18 | 5 | 38 | 29 |
2–4 | Moderately contaminated | 22 | 16 | 16 | 22 |
4–6 | Significantly contaminated | 11 | 17 | 3 | 5 |
>6 | Very highly contaminated | 26 | 39 | 20 | 21 |
Ecological Risk Index (ERI) | Number of samples (n) | ||||
<20 | Low risk | 18 | 0 | 54 | 68 |
20–40 | Moderate risk | 22 | 1 | 5 | 4 |
40–80 | Significant risk | 16 | 9 | 11 | 2 |
80–160 | High risk | 15 | 23 | 4 | 2 |
>160 | Very high risk | 6 | 44 | 3 | 1 |
Potential Ecological Risk Index (RI) | Number of samples (n) | ||||
<30 | Low risk | 0 | |||
30–60 | Moderate risk | 1 | |||
60–120 | Significant risk | 6 | |||
>120 | High risk | 70 |
Ecological Indicators | As | Cd | Pb | Zn | Wetland | Reference |
---|---|---|---|---|---|---|
EF (Range) | 1.00–482 | 0.77–3089 | 0.59–87.79 | 0.61–1513 | Hürmetçi Sazlığı-Türkiye | This study |
15.58–27.88 | - | - | 1.79–2.12 | Gomishan-Iran | Kachoueiyan et al. [51] | |
0.18–1.18 | 0.15–0.25 | 0.22–1.01 | 2.04–2.49 | Songor-Ghana | Klubi et al. [52] | |
- | 0.15–19.54 | 0.74–3.02 | 0.71–2.35 | Ashtamudi-India | Sreedevi and Harikumar [53] | |
RI (Range) | 48.54–112,980 | Hürmetçi Sazlığı-Türkiye | This study | |||
62.65–97.76 | Gomishan-Iran | Kachoueiyan et al. [51] | ||||
431–634 | Caohai-China | Xia et al. [17] | ||||
161–323 | Huixian Karst-China | Xiao et al. [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurt, M.A.; Yalçın, S.; Güler, C.; Güven, O.; Yıldırım, Ü. Pollution Source and Soil Quality Assessments of Heavily Contaminated Soils by Selected Potentially Toxic Elements in a Human-Degraded Wetland Area. Sustainability 2024, 16, 5477. https://doi.org/10.3390/su16135477
Kurt MA, Yalçın S, Güler C, Güven O, Yıldırım Ü. Pollution Source and Soil Quality Assessments of Heavily Contaminated Soils by Selected Potentially Toxic Elements in a Human-Degraded Wetland Area. Sustainability. 2024; 16(13):5477. https://doi.org/10.3390/su16135477
Chicago/Turabian StyleKurt, Mehmet Ali, Sezen Yalçın, Cüneyt Güler, Onur Güven, and Ümit Yıldırım. 2024. "Pollution Source and Soil Quality Assessments of Heavily Contaminated Soils by Selected Potentially Toxic Elements in a Human-Degraded Wetland Area" Sustainability 16, no. 13: 5477. https://doi.org/10.3390/su16135477
APA StyleKurt, M. A., Yalçın, S., Güler, C., Güven, O., & Yıldırım, Ü. (2024). Pollution Source and Soil Quality Assessments of Heavily Contaminated Soils by Selected Potentially Toxic Elements in a Human-Degraded Wetland Area. Sustainability, 16(13), 5477. https://doi.org/10.3390/su16135477