Environmental Impact of Footwear Using Life Cycle Assessment—Case Study of Professional Footwear
Abstract
:1. Introduction
2. Materials and Methods
2.1. Entry Data and Materials
2.2. Methods and Necessary Steps
- Goal and scope definition—defining a clear goal and scope of the study (a successful result depends on this phase) and selecting a functional unit;
- Inventory Analysis—an inventory of data inputs and environmental releases (life cycle inventory analysis LCI);
- Impact Assessment—evaluating the potential environmental impact based on the identified inputs and releases (life cycle impact assessment LCIA);
- Interpretation—interpreting the results.
2.3. Goal and Scope Definition
2.3.1. Scope
2.3.2. Functional Unit
2.4. Inventory Analysis (LCIA)
2.4.1. Reference Flow
2.4.2. System Boundaries
- Processes for obtaining raw materials and auxiliary materials;
- Production/manufacturing processes;
- Processes regarding the use and disposal of the product.
2.4.3. Inventory Data
2.5. Impact Assessment
2.5.1. Environmental Impact Categories
2.5.2. Assumptions
2.5.3. Limitations
3. Results and Interpretation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Finnvede, G.; Hauschild, M.; Ekvall, T.; Guine, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Papetti, A.; Marconi, M.; Germani, M. Life cycle assessment of a leather shoe supply chain. Int. J. Sustain. Eng. 2021, 14, 686–703. [Google Scholar] [CrossRef]
- Van Rensburg, M.L.; Nkomo, S.L.; Mkhize, N.M. Life cycle and End-of-Life management options in the footwear industry: A review. Waste Manag. Res. 2020, 38, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Cheah, L.; Duque, C.N.; Olivetti, E.; Matsumura, S.; Forterre, D.; Roth, R.; Kirchain, R. Manufacturing-focused emissions reductions in footwear production. J. Clean. Prod. 2013, 44, 18–29. [Google Scholar] [CrossRef]
- Pantazi-Băjenaru, M.; Georgescu, M.; Gurău, D.; Foiași, T. The Environmental Impact of Sustainable Footwear. In Proceedings of the 11th International Conference TEXTEH, Online, 12–13 October 2023; p. 171. [Google Scholar]
- Curran, M.A. Goal and Scope Definition in Life Cycle Assessment; Springer: New York, NY, USA, 2017. [Google Scholar]
- Hertwich, E.G.; Pennington, D.W.; Bare, J.C. Introduction. In Life-Cycle Impact Assessment: Striving towards Best Practice; Society of Environmental Toxicology and Chemistry (SETAC): Brussels, Belgium, 2002. [Google Scholar]
- UNEP Annual Evaluation Report 2004. Available online: http://wedocs.unep.org/handle/20.500.11822/356 (accessed on 14 March 2024).
- Vachon, S. Green supply chain practices and the selection of the environmental technologies. Int. J. Prod. Res. 2007, 45, 4357–4379. [Google Scholar] [CrossRef]
- Bai, C.; Sarkis, J. Integrating sustainability into supplier selection with grey system and rough set methodologies. Int. J. Prod. Econ. 2010, 124, 252–264. [Google Scholar] [CrossRef]
- Koplin, J. Integrating environmental and social standards into supply management—An action research project. In Research Methodologies in Supply Chain Management; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Jacob-Lopes, E.; Queiroz Zepka, L.; Costa Depra, M. Sustainability Metrics and Indicators of Environmental Impact: Industrial and Agricultural Life Cycle Assessment; Elsevier Science: Amsterdam, The Netherlands, 2021; pp. 19–25. [Google Scholar]
- Martín, M. (Ed.) Sustainable Design for Renewable Processes: Principles and Case Studies; Elsevier Science: Amsterdam, The Netherlands, 2021; pp. 102–115, 626. [Google Scholar]
- Maxineasa, S.G.; Isopescu, D.N.; Baciu, I.-R.; Lupu, M.L. Environmental Performances of a Cubic Modular Steel Structure: A Solution for a Sustainable Development in the Construction Sector. Sustainability 2021, 13, 12062. [Google Scholar] [CrossRef]
- Maranghi, S.; Parisi, M.L.; Basosi, R.; Sinicropi, A. Environmental Profile of the Manufacturing Process of Perovskite Photovoltaics: Harmonization of Life Cycle Assessment Studies. Energies 2019, 12, 3746. [Google Scholar] [CrossRef]
- Sonnemann, G.; Castells, F.; Schuhmacher, M. Integrated Life-Cycle and Risk Assessment for Industrial Processes; CRC Press: London, UK, 2003; pp. 8–45. [Google Scholar]
- EN ISO 20345:2021; Personal Protective Equipment. Safety Footwear. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- EN ISO 20346:2021; Personal Protective Equipment. Protective Footwear. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- EN ISO 17249:2013; Safety Footwear with Resistance to Chain Saw Cutting. International Organization for Standardization (ISO): Geneva, Switzerland, 2013.
- EN ISO 20347:2021; Personal Protective Equipment. Occupational Footwear. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- ISO/TR 16178:2021; Footwear Critical Substances Potentially Present in Footwear and Footwear Components. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Griffiths, P.R. Fourier transform infrared spectrometry. Science 1983, 222, 297–302. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Muthu, S.S. (Ed.) Handbook of Life Cycle Assessment (LCA) of Textiles and Clothing; Elsevier Science: Frankfurt, Germany, 2015; pp. 208–219. [Google Scholar]
- Ecoinvent Database. Available online: https://www.ecoinvent.org (accessed on 21 March 2024).
- World Meteorological Organization. Change, on Climate. In Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 1–43. [Google Scholar]
- Yasmin, N.; Jamuda, M.; Panda, A.K.; Samal, K.; Nayak, J.K. Emission of greenhouse gases (GHGs) during composting and vermicomposting: Measurement, mitigation, and perspectives. Elsevier Energy Nexus 2022, 7, 100092. [Google Scholar] [CrossRef]
- Moiceanu, G.; Dinca, M.N. Climate Change-Greenhouse Gas Emissions Analysis and Forecast in Romania. Sustainability 2021, 13, 12186. [Google Scholar] [CrossRef]
- Chłopek, Z.; Lasocki, J.; Melka, K.; Szczepański, K. Equivalent Carbon Dioxide Emission in Useful Energy Generation in the Heat-generating Plant—Application of the Carbon Footprint Methodology. J. Ecol. Eng. 2021, 22, 144–154. [Google Scholar] [CrossRef]
- Stechemesser, K.; Guenther, E. Carbon accounting: A systematic literature review. J. Clean. Prod. 2012, 36, 17–38. [Google Scholar] [CrossRef]
- Milà i Canals, L.; Domènech, X.; Rieradevall, J.; Fullana-i-Palmer, P.; Puig, R. Application of life cycle assessment to footwear. Int. J. Life Cycle Assess. 1998, 3, 203–208. [Google Scholar] [CrossRef]
- Kendall, A. Time-adjusted global warming potentials for LCA and carbon footprints. Int. J. Life Cycle Assess. 2012, 17, 1042–1049. [Google Scholar] [CrossRef]
- Coelho Junior, L.M.; de Lourdes da Costa Martins, K.; Carvalho, M. Carbon Footprint Associated with Firewood Consumption in Northeast Brazil: An Analysis by the IPCC 2013 GWP 100y Criterion. Waste Biomass Valor 2019, 10, 2985–2993. [Google Scholar] [CrossRef]
- Laveglia, A.; Ukrainczyk, N.; De Belie, N.; Koenders, E. Cradle-to-grave environmental and economic sustainability of lime-based plasters manufactured with upcycled materials. J. Clean. Prod. 2024, 452, 142088. [Google Scholar] [CrossRef]
- Roslim, A.; Rahman, M.; Ismawi, Y. End-of-life waste management practices: A brief review. IOP Conf. Ser. Earth Environ. Sci. 2024, 1303, 012012. [Google Scholar] [CrossRef]
- Wu, P.; Xia, B.; Zhao, X. The importance of use and en-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete—A review. Renew. Sustain. Energy Rev. 2014, 37, 360–369. [Google Scholar] [CrossRef]
- Serweta, W.; Gajewski, R.; Olszewski, P.; Zapatero, A.; Lawinska, K. Carbon Footprint of Different Kinds of Footwear—A Comparative Study. Fibres Text. East. Eur. 2019, 27, 140–149. [Google Scholar] [CrossRef]
- W. L. Gore & Associates GmbH. Life Cycle Assessment of a Pair of GORE-TEX® Branded Waterproof and Breathable Hiking Boots, 2014 Summary Report. Available online: https://www.gore-tex.com/sites/default/files/assets/LCA%20Gore%20hiking%20boots%20summary%20report%20-%20Oct14.pdf (accessed on 21 March 2024).
- Fonseca, A.; Ramalho, E.; Gouveia, A.; Henriques, R.; Figueiredo, F.; Nunes, J. Systematic Insights into a Textile Industry: Reviewing Life Cycle Assessment and Eco-Design. Sustainability 2023, 15, 15267. [Google Scholar] [CrossRef]
- Ghimouz, C.; Kenné, J.; Hof, L. On Sustainable Design and Manufacturing for The Footwear Industry—Towards Circular Manufacturing. Mater. Des. 2023, 233, 112224. [Google Scholar] [CrossRef]
- Avadanei, M.; Olaru, S.; Ionescu, I.; Florea, A.; Curteza, A.; Loghin, E.; Dulgheriu, I.; Cezar-Doru, R. Clothing development process towards a circular model. Ind. Textilă 2021, 72, 89–96. [Google Scholar] [CrossRef]
- Bodoga, A.; Costea, M.; Iovan-Dragomir, A.; Nistorac, A. Educational tools used by teachers and students in the field of leather goods design. In Proceedings of the 17th International Technology, Education and Development Conference, Valencia, Spain, 6–8 March 2023; pp. 6995–6999. [Google Scholar] [CrossRef]
- Barros, M.V.; Salvador, R.; do Prado, G.F.; de Francisco, A.C.; Piekarski, C.M. Circular economy as a driver to sustainable businesses. Clean. Environ. Syst. 2021, 2, 100006. [Google Scholar] [CrossRef]
- Vrabič-Brodnjak, U.; Jestratijevic, I. Solutions of sustainable packaging in footwear and apparel industry. In Proceedings of the 11th International Symposium on Graphic Engineering and Design, Novi Sad, Serbia, 3–5 November 2022; pp. 533–538. [Google Scholar] [CrossRef]
- Ding, H.; Zhao, Q.; An, Z.; Tang, O. Collaborative mechanism of a sustainable supply chain with environmental constraints and carbon caps. Int. J. Prod. Econ. 2016, 181, 191–207. [Google Scholar] [CrossRef]
- Martins Tristao, H.; Oprime, P.C.; Jugend, D.; da Silva, S.L. Innovation in Industrial Clusters: A Survey of Footwear Companies in Brazil. J. Technol. Manag. Innov. 2013, 8, 45–56. [Google Scholar] [CrossRef]
- Nistorac, A.; Bodoga, A.; Ailenei, C.; Loghin, M.C. Sustainable Horizons: Exploring Technical Textiles and Environmental Responsibility; Sciendo: Seattle, WA, USA, 2024. [Google Scholar] [CrossRef]
- Aithal, S.; Aithal, S. Importance of Circular Economy for Resource Optimization in Various Industry Sectors—A Review-based Opportunity Analysis. Int. J. Appl. Eng. Manag. Lett. 2023, 7, 191–215. [Google Scholar] [CrossRef]
- Vogiantzi, C.; Tserpes, K. On the Definition, Assessment, and Enhancement of Circular Economy across Various Industrial Sectors: A Literature Review and Recent Findings. Sustainability 2023, 15, 16532. [Google Scholar] [CrossRef]
- Kirchherr, J.; Yang, N.-H.N.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resour. Conserv. Recycl. 2023, 194, 107001. [Google Scholar] [CrossRef]
Footwear Ensemble | Component Highlights | Material | No. of Paired Benchmarks | Benchmark Mass (g) | Paired Mass (g) |
---|---|---|---|---|---|
Superior ensemble | |||||
Outer subassembly | vamp | chrome-tanned cowhide, finished with a polyurethane coating film | 2 | 55.3 | 110.6 |
counter | 2 | 36.1 | 72.2 | ||
upper staple reinforcement | 2 | 2.1 | 4.2 | ||
lower staple reinforcement | 2 | 0.7 | 1.4 | ||
backstay | 4 | 4.2 | 16.8 | ||
shoelace port | 4 | 7.1 | 28.4 | ||
upper quarter | textile material—polyester | 4 | 2.4 | 9.6 | |
lower quarter | 4 | 9.3 | 37.2 | ||
collar | leather substitute—polyurethane | 2 | 4.2 | 8.4 | |
tongue | 2 | 3.2 | 6.4 | ||
bellows tongue | 2 | 11.4 | 22.8 | ||
Intermediate subassembly | rigid counter | polyester and PVC | 2 | 7.9 | 15.8 |
toecap | polyester and plastic | 2 | 8.6 | 17.2 | |
collar reinforcements | cotton | 2 | 2.1 | 4.2 | |
vamp reinforcements | polyester | 2 | 5.4 | 10.8 | |
tongue filling | polyurethane | 2 | 5.1 | 10.2 | |
collar filling | polyurethane | 2 | 5.1 | 10.2 | |
Inner subassembly | quarter inner lining | textile material—polyester | 2 | 7.1 | 14.2 |
quarter outer lining | 2 | 7.1 | 14.2 | ||
vamp lining | 2 | 6.1 | 12.2 | ||
tongue lining | 2 | 3.7 | 7.4 | ||
staple reinforcement lining | 4 | 1.8 | 7.2 | ||
Total superior ensemble | 441.6 | ||||
Inferior ensemble | |||||
Inner subassembly | insole cover | textile material—polyester | 2 | 11.6 | 23.2 |
Intermediate subassembly | insole | anti-puncture composite material | 2 | 81 | 162 |
Outer subassembly | sole | double density polyurethane | 2 | 243.4 | 486.8 |
Total inferior ensemble | 672 | ||||
Auxiliary materials | |||||
thread | polyester | - | - | 3.5 | |
adhesives | natural rubber solution | - | - | 15 | |
finishing products | wax and solvents | - | - | 10 | |
laces | polyester | 2 | 4.8 | 9.6 | |
eyelets | metal | 28 | 0.3 | 8.4 | |
insider packaging | wrapping paper | 1 | 26 | 26 | |
outer packaging | cardboard box | 1 | 188 | 188 | |
Total auxiliary materials including packaging | 260.5 | ||||
Entire packed product | 1374.1 |
Stage | Kg CO2eq |
---|---|
Component manufacture | 79.8 |
Footwear manufacturing (assembling and finishing) | 7.03 |
Primary packaging manufacture | 2.37 |
Distribution to consumer | 2.78 |
End of life (landfill) | 8.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodoga, A.; Nistorac, A.; Loghin, M.C.; Isopescu, D.N. Environmental Impact of Footwear Using Life Cycle Assessment—Case Study of Professional Footwear. Sustainability 2024, 16, 6094. https://doi.org/10.3390/su16146094
Bodoga A, Nistorac A, Loghin MC, Isopescu DN. Environmental Impact of Footwear Using Life Cycle Assessment—Case Study of Professional Footwear. Sustainability. 2024; 16(14):6094. https://doi.org/10.3390/su16146094
Chicago/Turabian StyleBodoga, Alexandra, Andreea Nistorac, Maria Carmen Loghin, and Dorina Nicolina Isopescu. 2024. "Environmental Impact of Footwear Using Life Cycle Assessment—Case Study of Professional Footwear" Sustainability 16, no. 14: 6094. https://doi.org/10.3390/su16146094
APA StyleBodoga, A., Nistorac, A., Loghin, M. C., & Isopescu, D. N. (2024). Environmental Impact of Footwear Using Life Cycle Assessment—Case Study of Professional Footwear. Sustainability, 16(14), 6094. https://doi.org/10.3390/su16146094