Responses of Ecosystem Services to Land Use/Cover Changes in Rapidly Urbanizing Areas: A Case Study of the Shandong Peninsula Urban Agglomeration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Description
2.2.1. Land Use/Cover
2.2.2. Normalized Difference Vegetation Index
2.3. Methodology
2.3.1. Land Use Transition Matrix
2.3.2. Landscape Pattern Metrics
2.3.3. ESV Estimation
2.3.4. Elasticity of ESV Change in Relation to LUCC
3. Results and Discussion
3.1. Characteristics of LUCC in the Shandong Peninsula Urban Agglomeration
3.1.1. Characteristics of Land Use/Cover Scale and Transfer
3.1.2. Characteristics of Land Use/Cover Patterns
3.2. Evolution of ESV
3.3. Response of ESV to Land Use/Cover Changes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Chen, C.; Zhang, Z.; Lu, C.; Wang, L.; He, X.; Chu, Y.; Chen, J. Changes of the spatial and temporal characteristics of land-use landscape patterns using multi-temporal Landsat satellite data: A case study of Zhoushan Island, China. Ocean Coast. Manag. 2021, 213, 105842. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, B.; Devereux, B. Urban landscape pattern analysis based on 3D landscape models. Appl. Geogr. 2014, 55, 82–91. [Google Scholar] [CrossRef]
- Xiao, R.; Su, S.; Wang, J.; Zhang, Z.; Jiang, D.; Wu, J. Local spatial modeling of paddy soil landscape patterns in response to urbanization across the urban agglomeration around Hangzhou Bay, China. Appl. Geogr. 2013, 39, 158–171. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Li, T. Identifying Driving Forces of Built-Up Land Expansion Based on the Geographical Detector: A Case Study of Pearl River Delta Urban Agglomeration. Int. J. Environ. Res. Public Health 2020, 17, 1759. [Google Scholar] [CrossRef] [PubMed]
- Szilassi, P.; Bata, T.; Szabó, S.; Czúcz, B.; Molnár, Z.; Mezősi, G. The link between landscape pattern and vegetation naturalness on a regional scale. Ecol. Indic. 2017, 81, 252–259. [Google Scholar] [CrossRef]
- Abdolalizadeh, Z.; Ebrahimi, A.; Mostafazadeh, R. Landscape pattern change in Marakan protected area, Iran. Reg. Environ. Chang. 2019, 19, 1683–1699. [Google Scholar] [CrossRef]
- Guo, L.; Liu, R.; Men, C.; Wang, Q.; Miao, Y.; Shoaib, M.; Wang, Y.; Jiao, L.; Zhang, Y. Multiscale spatiotemporal characteristics of landscape patterns, hotspots, and influencing factors for soil erosion. Sci. Total Env. 2021, 779, 146474. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Wu, J.; Kang, X.; Yuan, M.; Duan, L. Impacts of Different Land Use Scenarios on Future Global and Regional Climate Extremes. Atmosphere 2022, 13, 995. [Google Scholar] [CrossRef]
- Cao, Q.; Liu, Y.; Georgescu, M.; Wu, J. Impacts of landscape changes on local and regional climate: A systematic review. Landsc. Ecol. 2020, 35, 1269–1290. [Google Scholar] [CrossRef]
- Mcgarigal, K.; Marks, B.J. FRAGSTATS—Spatial Pattern Analysis Program for Quantifying Landscape Structure; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; Volume 351. [Google Scholar]
- Gardner, R.H.; Milne, B.T.; Turnei, M.G.; O”Neill, R.V. Neutral models for the analysis of broad-scale landscape pattern. Landsc. Ecol. 1987, 1, 19–28. [Google Scholar] [CrossRef]
- Ong, B.L. Green plot ratio: An ecological measure for architecture and urban planning. Landsc. Urban Plan. 2003, 63, 197–211. [Google Scholar] [CrossRef]
- Parrott, L.; Proulx, R.; Thibert-Plante, X. Three-dimensional metrics for the analysis of spatiotemporal data in ecology. Ecol. Inform. 2008, 3, 343–353. [Google Scholar] [CrossRef]
- Yu, M.; Huang, Y.; Cheng, X.; Tian, J. An ArcMap plug-in for calculating landscape metrics of vector data. Ecol. Inform. 2019, 50, 207–219. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, S.; Xiao, R.; Jiang, D.; Wu, J. Identifying determinants of urban growth from a multi-scale perspective: A case study of the urban agglomeration around Hangzhou Bay, China. Appl. Geogr. 2013, 45, 193–202. [Google Scholar] [CrossRef]
- Fang, S.; Zhao, Y.; Han, L.; Ma, C. Analysis of Landscape Patterns of Arid Valleys in China, Based on Grain Size Effect. Sustainability 2017, 9, 2263. [Google Scholar] [CrossRef]
- Wang, X.; Blanchet, F.G.; Koper, N.; Tatem, A. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol. Evol. 2014, 5, 634–646. [Google Scholar] [CrossRef]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef]
- Li, S.; He, W.; Wang, L.; Zhang, Z.; Chen, X.; Lei, T.; Wang, S.; Wang, Z. Optimization of landscape pattern in China Luojiang Xiaoxi basin based on landscape ecological risk assessment. Ecol. Indic. 2023, 146, 109887. [Google Scholar] [CrossRef]
- Nadeau, C.P.; Fuller, A.K. Combining landscape variables and species traits can improve the utility of climate change vulnerability assessments. Biol. Conserv. 2016, 202, 30–38. [Google Scholar] [CrossRef]
- Daily, G.C.; Sderqvist, T.; Aniyar, S.; Arrow, K.; Dasgupta, P.; Ehrlich, P.R.; Folke, C.; Jansson, A.M.; Jansson, B.O.; Kautsky, N. The Value of Nature and the Nature of Value. Science 2000, 289, 395–396. [Google Scholar] [CrossRef]
- Egoh, B.; Rouget, M.; Reyers, B.; Knight, A.T.; Cowling, R.M.; van Jaarsveld, A.S.; Welz, A. Integrating ecosystem services into conservation assessments: A review. Ecol. Econ. 2007, 63, 714–721. [Google Scholar] [CrossRef]
- Lautenbach, S.; Kugel, C.; Lausch, A.; Seppelt, R. Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol. Indic. 2011, 11, 676–687. [Google Scholar] [CrossRef]
- Baskent, E.Z. Assessment and valuation of key ecosystem services provided by two forest ecosystems in Turkey. J. Environ. Manag. 2021, 285, 112135. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Schäfer, R.B.; Bundschuh, M.; Rouch, D.A.; Szöcs, E.; von der Ohe, P.C.; Pettigrove, V.; Schulz, R.; Nugegoda, D.; Kefford, B.J. Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services. Sci. Total Environ. 2012, 415, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Examining the potential impact of land use/cover changes on the ecosystem services of Baguio city, the Philippines: A scenario-based analysis. Appl. Geogr. 2012, 35, 316–326. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Li, Z.; Sun, Z.; Tian, Y.; Zhong, J.; Yang, W. Impact of Land Use/Cover Change on Yangtze River Delta Urban Agglomeration Ecosystem Services Value: Temporal-Spatial Patterns and Cold/Hot Spots Ecosystem Services Value Change Brought by Urbanization. Int. J. Environ. Res. Public Health 2019, 16, 123. [Google Scholar] [CrossRef]
- Krausmann, F.; Gingrich, S.; Eisenmenger, N.; Erb, K.-H.; Haberl, H.; Fischer-Kowalski, M. Growth in global materials use, GDP and population during the 20th century. Ecol. Econ. 2009, 68, 2696–2705. [Google Scholar] [CrossRef]
- Lyu, R.; Zhang, J.; Xu, M.; Li, J. Impacts of urbanization on ecosystem services and their temporal relations: A case study in Northern Ningxia, China. Land Use Policy 2018, 77, 163–173. [Google Scholar] [CrossRef]
- Dammag, A.Q.; Dai, J.; Cong, G.; Derhem, B.Q.; Latif, H.Z. Assessing and predicting changes of ecosystem service values in response to land use/land cover dynamics in Ibb City, Yemen: A three-decade analysis and future outlook. Int. J. Digit. Earth 2024, 17, 2323174. [Google Scholar] [CrossRef]
- Haque, M.N.; Mahi, M.M.; Sharif, M.S.; Rudra, R.R.; Sharifi, A. Changes in the economic value of ecosystem services in rapidly growing urban areas: The case of Dhaka, Bangladesh. Environ. Sci. Pollut. Res. 2023, 30, 52321–52339. [Google Scholar] [CrossRef] [PubMed]
- Basu, T.; Das, A.; Das, K.; Pereira, P. Urban expansion induced loss of natural vegetation cover and ecosystem service values: A scenario-based study in the siliguri municipal corporation (Gateway of North-East India). Land Use Policy 2023, 132, 106838. [Google Scholar] [CrossRef]
- van Ginkel, H. Urban Future. Nature 2008, 456, 32–33. [Google Scholar] [CrossRef]
- Tang, J.; Di, L.; Rahman, M.S.; Yu, Z. Spatial–temporal landscape pattern change under rapid urbanization. J. Appl. Remote Sens. 2019, 13, 024503. [Google Scholar] [CrossRef]
- Jiao, L.; Mao, L.; Liu, Y. Multi-order Landscape Expansion Index: Characterizing urban expansion dynamics. Landsc. Urban Plan. 2015, 137, 30–39. [Google Scholar] [CrossRef]
- Alberti, M. The Effects of Urban Patterns on Ecosystem Function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Duan, K. Evolutionary overview of urban expansion based on bibliometric analysis in Web of Science from 1990 to 2019. Habitat Int. 2020, 95, 102100. [Google Scholar] [CrossRef]
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case study of the Phoenix metropolitan region, USA. J. Arid Environ. 2009, 73, 512–520. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Zhu, F.; Song, C.; Wu, J. Spatiotemporal pattern of urbanization in Shanghai, China between 1989 and 2005. Landsc. Ecol. 2013, 28, 1545–1565. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Yanxu, L.; Yi’na, H. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Yang, W.; Peng, Y.; Lin, C.; Yang, H.; Cheng, X.; Wu, X.; Wen, Y.; Liu, Z. Optimal deployment of cultivated land quality monitoring points based on satellite image-driven assessment and improved spatial simulated annealing. Land Degrad. Dev. 2023, 34, 2379–2392. [Google Scholar] [CrossRef]
- Li, T.; Dong, Y. Phased and polarized development of ecological quality in the rapidly-urbanized Pearl River Delta, China. Environ. Sci. Pollut. Res. 2022, 30, 36176–36189. [Google Scholar] [CrossRef]
- Huang, W.; Wang, P.; He, L.; Liu, B. Improvement of water yield and net primary productivity ecosystem services in the Loess Plateau of China since the “Grain for Green” project. Ecol. Indic. 2023, 154, 110707. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, Z.; Guan, Q.; Yan, Y.; Zhang, J. Comprehensive assessment of land degradation in the arid and semiarid area based on the optimal land degradation index model. Catena 2024, 234, 107563. [Google Scholar] [CrossRef]
- Wang, K.; Li, X.; Lyu, X.; Dang, D.; Dou, H.; Li, M.; Liu, S.; Cao, W. Optimizing the Land Use and Land Cover Pattern to Increase Its Contribution to Carbon Neutrality. Remote Sens. 2022, 14, 4751. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Dong, J.; Chi, W.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Huang, X.; Xia, J.; Xiao, R.; He, T. Urban expansion patterns of 291 Chinese cities, 1990–2015. Int. J. Digit. Earth 2017, 12, 62–77. [Google Scholar] [CrossRef]
- Li, P.; Zuo, D.; Xu, Z.; Zhang, R.; Han, Y.; Sun, W.; Pang, B.; Ban, C.; Kan, G.; Yang, H. Dynamic changes of land use/cover and landscape pattern in a typical alpine river basin of the Qinghai-Tibet Plateau, China. Land Degrad. Dev. 2021, 32, 4327–4339. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Effects of thematic resolution on landscape pattern analysis. Landsc. Ecol. 2006, 22, 7–13. [Google Scholar] [CrossRef]
- Liu, D.; Hao, S.; Liu, X.; Li, B.; He, S.; Warrington, D.N. Effects of land use classification on landscape metrics based on remote sensing and GIS. Environ. Earth Sci. 2012, 68, 2229–2237. [Google Scholar] [CrossRef]
- Ruiz, J.; Domon, G. Analysis of landscape pattern change trajectories within areas of intensive agricultural use: Case study in a watershed of southern Québec, Canada. Landsc. Ecol. 2009, 24, 419–432. [Google Scholar] [CrossRef]
- Bojie, F. The spatial pattern analysis of agricultural landscape in the loess area. Acta Ecol. Sin. 1995, 15, 113–120. [Google Scholar]
- Taubenböck, H.; Kraff, N.J. The physical face of slums: A structural comparison of slums in Mumbai, India, based on remotely sensed data. J. Hous. Built Environ. 2013, 29, 15–38. [Google Scholar] [CrossRef]
- Wu, J.; Jenerette, G.D.; Buyantuyev, A.; Redman, C.L. Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 2011, 8, 1–8. [Google Scholar] [CrossRef]
- Kane, K.; Connors, J.P.; Galletti, C.S. Beyond fragmentation at the fringe: A path-dependent, high-resolution analysis of urban land cover in Phoenix, Arizona. Appl. Geogr. 2014, 52, 123–134. [Google Scholar] [CrossRef]
- Ocloo, M.D.; Huang, X.; Fan, M.; Ou, W. Study on the spatial changes in land use and landscape patterns and their effects on ecosystem services in Ghana, West Africa. Environ. Dev. 2024, 49, 100947. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Gao-di, X.; Lin, Z.; Chunxia, L.; Yu, X.; Cao, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China (in Chinese). J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Gao-di, X.; Chun-xia, L.; Yun-fa, L.; Du, Z.; Shuang-cheng, L. Ecological assets valuation of the Tibetan Plateau (in Chinese). J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Zhitao, L.; Shaojian, W.; Chuanglin, F. Spatiotemporal evolution and influencing mechanism of ecosystem service value in the Guangdong-Hong Kong-Macao Greater Bay Area (in Chinese). Acta Geogr. Sin. 2021, 76, 2797–2813. [Google Scholar]
- Yuan, S.; Zhu, C.; Yang, L.; Xie, F. Responses of Ecosystem Services to Urbanization-Induced Land Use Changes in Ecologically Sensitive Suburban Areas in Hangzhou, China. Int. J. Environ. Res. Public Health 2019, 16, 1124. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Y.; Yang, R.; Li, D.; Qiu, Y.; Lu, K.; Cao, X.; Chen, Q. Spatiotemporal Dynamics of Constructed Wetland Landscape Patterns during Rapid Urbanization in Chengdu, China. Land 2024, 13, 806. [Google Scholar] [CrossRef]
- Degefu, M.A.; Argaw, M.; Feyisa, G.L.; Degefa, S. Dynamics of urban landscape nexus spatial dependence of ecosystem services in rapid agglomerate cities of Ethiopia. Sci. Total Environ. 2021, 798, 149192. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Wang, Y.; Li, Z.; Hou, Y. Spatiotemporal Evolution and Influencing Mechanisms of Ecosystem Service Value in the Tarim River Basin, Northwest China. Remote Sens. 2023, 15, 591. [Google Scholar] [CrossRef]
- Yu, G.; Yu, Q.; Hu, L.; Zhang, S.; Fu, T.; Zhou, X.; He, X.; Liu, Y.A.; Wang, S.; Jia, H. Ecosystem health assessment based on analysis of a land use database. Appl. Geogr. 2013, 44, 154–164. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Mononen, L.; Auvinen, A.P.; Ahokumpu, A.L.; Rönkä, M.; Aarras, N.; Tolvanen, H.; Kamppinen, M.; Viirret, E.; Kumpula, T.; Vihervaara, P. National ecosystem service indicators: Measures of social–ecological sustainability. Ecol. Indic. 2016, 61, 27–37. [Google Scholar] [CrossRef]
CLUD | CLCD |
---|---|
Cropland | Cropland |
Forest | Forest, shrub |
Grassland | Grassland |
Water bodies | Water |
Built-up land | Impervious |
Unused land | Barren |
Metrics | Formula | Description |
---|---|---|
Patch Density (PD) | represents the number of patches of type , and A represents the total landscape area. PD > 0, with no upper limit. PD reflects the degree of landscape fragmentation and spatial heterogeneity. | |
Shannon’s Diversity Index (SHDI) | It primarily reflects the heterogeneity of the landscape. The value range is SHDI ≥ 0. | |
Aggregation Index (AI) | The patch aggregation index (AI) describes the degree of patch aggregation in a landscape, reflecting the dispersion of landscape elements within the landscape. The patch AI ranges from 0 to 100. | |
Perimeter Area Ratio_Mean (PARA_MN) | The ratio of the perimeter to the area. |
Ecosystem Services | Forest | Grassland | Cropland | Water Bodies | Unused Land |
---|---|---|---|---|---|
provisioning services | 7068.79 | 1687.11 | 2968.46 | 1879.32 | 128.14 |
regulating services | 30,325.32 | 12,599.96 | 8222.01 | 77,286.86 | 1110.50 |
supporting services | 18,216.55 | 8777.26 | 5317.61 | 8200.65 | 1217.28 |
cultural services | 4442.02 | 1857.96 | 363.05 | 9482.00 | 512.54 |
Period | Item | Cropland | Forest | Grassland | Water Bodies | Built-up Land | Unused Land |
---|---|---|---|---|---|---|---|
1990 | Area (km2) | 122,964.72 | 6456.93 | 4656.78 | 2419.38 | 17,258.58 | 1983.97 |
Proportion (%) | 78.95 | 4.15 | 2.99 | 1.55 | 11.08 | 1.27 | |
2000 | Area (km2) | 118,234.70 | 6762.41 | 3590.28 | 2961.29 | 22,487.88 | 1703.78 |
Proportion (%) | 75.92 | 4.34 | 2.31 | 1.90 | 14.44 | 1.09 | |
2010 | Area (km2) | 112,393.32 | 6650.25 | 2973.56 | 4646.44 | 27,813.68 | 1263.06 |
Proportion (%) | 72.17 | 4.27 | 1.91 | 2.98 | 17.86 | 0.81 | |
2020 | Area (km2) | 106,689.51 | 7831.47 | 2081.00 | 4818.48 | 33,967.67 | 352.21 |
Proportion (%) | 68.50 | 5.03 | 1.34 | 3.09 | 21.81 | 0.23 | |
1990–2000 | Change (km2) | −4730.02 | 305.48 | −1066.50 | 541.90 | 5229.30 | −280.18 |
Change (%) | −3.04 | 0.20 | −0.68 | 0.35 | 3.36 | −0.18 | |
2000–2010 | Change (km2) | −5841.38 | −112.16 | −616.72 | 1685.15 | 5325.80 | −440.72 |
Change (%) | −3.75 | −0.07 | −0.40 | 1.08 | 3.42 | −0.28 | |
2010–2020 | Change (km2) | −5703.82 | 1181.22 | −892.56 | 172.05 | 6153.99 | −910.85 |
Change (%) | −3.66 | 0.76 | −0.57 | 0.11 | 3.95 | −0.58 | |
1990–2020 | Change (km2) | −16,275.22 | 1374.54 | −2575.78 | 2399.10 | 16,709.09 | −1631.76 |
Change (%) | −10.45 | 0.88 | −1.65 | 1.54 | 10.73 | −1.05 |
≤9.73 | 9.74–18.65 | 18.66–28.69 | 28.7–40.85 | ≥40.86 | |
---|---|---|---|---|---|
1990 | 23 | 45 | 37 | 25 | 6 |
2000 | 25 | 44 | 36 | 27 | 4 |
2010 | 25 | 42 | 34 | 28 | 7 |
2020 | 26 | 45 | 34 | 21 | 10 |
City | Average | Maximum | Minimum |
---|---|---|---|
Dongying City | 1.1055 | 2.4231 | 0.2742 |
Qingdao City | 1.0195 | 3.6696 | 0.1624 |
Binzhou City | 0.9436 | 2.8801 | 0.1564 |
Heze City | 0.6389 | 0.7803 | 0.3963 |
Liaocheng City | 0.5932 | 0.9768 | 0.3512 |
Rizhao City | 0.5674 | 0.8550 | 0.3618 |
Weihai City | 0.5202 | 0.6672 | 0.1063 |
Zaozhuang City | 0.4672 | 0.6783 | 0.0735 |
Jining City | 0.4595 | 0.8038 | 0.0811 |
Dezhou City | 0.4441 | 0.6484 | 0.1468 |
Weifang City | 0.4420 | 1.1458 | 0.0371 |
Zibo City | 0.4313 | 0.6348 | 0.0235 |
Linyi City | 0.4013 | 0.7118 | 0.0285 |
Taian City | 0.3947 | 0.5235 | 0.0277 |
Yantai City | 0.3453 | 0.8753 | 0.0497 |
Jinan City | 0.2297 | 0.6625 | 0.0331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, Y. Responses of Ecosystem Services to Land Use/Cover Changes in Rapidly Urbanizing Areas: A Case Study of the Shandong Peninsula Urban Agglomeration. Sustainability 2024, 16, 6100. https://doi.org/10.3390/su16146100
Liu Y, Zhang Y. Responses of Ecosystem Services to Land Use/Cover Changes in Rapidly Urbanizing Areas: A Case Study of the Shandong Peninsula Urban Agglomeration. Sustainability. 2024; 16(14):6100. https://doi.org/10.3390/su16146100
Chicago/Turabian StyleLiu, Yongwei, and Yao Zhang. 2024. "Responses of Ecosystem Services to Land Use/Cover Changes in Rapidly Urbanizing Areas: A Case Study of the Shandong Peninsula Urban Agglomeration" Sustainability 16, no. 14: 6100. https://doi.org/10.3390/su16146100
APA StyleLiu, Y., & Zhang, Y. (2024). Responses of Ecosystem Services to Land Use/Cover Changes in Rapidly Urbanizing Areas: A Case Study of the Shandong Peninsula Urban Agglomeration. Sustainability, 16(14), 6100. https://doi.org/10.3390/su16146100