Are We Back to Normal? A Bike Sharing Systems Mobility Analysis in the Post-COVID-19 Era
Abstract
:1. Introduction
2. Theory and Hypotheses
2.1. Bike Sharing Systems Analysis
2.2. Barcelona Bike Sharing System Description
2.3. COVID-19 Measures in Barcelona
3. Research Methodology
3.1. Commuting Trips in Barcelona
3.2. Data Collection
- The company that provided the bike service in Barcelona was changed in 2019. This change took place gradually from March 2019. The bikes were replaced, and the stations resized during 2019, causing a lack of continuity in the data. The service was also affected as some stations were closed for a few days during this change.
- With the previous company operator, there were specific stations where Bicing users could rent electrical bikes, while others were used only for mechanical bikes. This situation changed with the new company as the current stations can support both types of bikes.
3.3. Data Processing
3.4. Methodology
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamargianni, M.; Li, W.; Matyas, M.; Schäfer, A. A Critical Review of New Mobility Services for Urban Transport. Transp. Res. Procedia 2016, 14, 3294–3303. [Google Scholar] [CrossRef]
- Meddin, R.; DeMaio, P.; O’Brien, O.; Rabello, R.; Yu, C.; Seamon, J. The Meddin Bike-sharing World Map. Available online: https://bikesharingworldmap.com/#/all/5.3/103.96/1.17/ (accessed on 24 November 2020).
- Fuller, D.; Gauvin, L.; Kestens, Y.; Daniel, M.; Fournier, M.; Morency, P.; Drouin, L. Use of a new public bicycle share program in Montreal, Canada. Am. J. Prev. Med. 2011, 41, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Ricci, M. Bike sharing: A review of evidence on impacts and processes of implementation and operation. Res. Transp. Bus. Manag. 2015, 15, 28–38. [Google Scholar] [CrossRef]
- Zheng, L.; Li, Y. The Development, Characteristics and Impact of Bike Sharing Systems:. A Literature Review. Int. Rev. Spat. Plan. Sustain. Dev. 2020, 8, 37–52. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Eluru, N.; El-Geneidy, A.M.; Rabbat, M.; Haq, U. How does land-use and urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal. J. Transp. Geogr. 2014, 41, 306–314. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Eluru, N. Analysing bicycle-sharing system user destination choice preferences: Chicago’s Divvy system. J. Transp. Geogr. 2015, 44, 53–64. [Google Scholar] [CrossRef]
- Kim, I.; Pelechrinis, K.; Lee, A.J. The Anatomy of the Daily Usage of Bike Sharing Systems: Elevation, Distance and Seasonality. In Proceedings of the ACM SIGKDD workshop on Urban Computing, San Diego, CA, USA, 24 August 2020. [Google Scholar]
- Wang, B.; Kim, I. Short-term prediction for bike-sharing service using machine learning. Transp. Res. Procedia 2018, 34, 171–178. [Google Scholar] [CrossRef]
- Talavera-Garcia, R.; Romanillos, G.; Arias-Molinares, D. Examining spatio-temporal mobility patterns of bike-sharing systems: The case of BiciMAD (Madrid). J. Maps 2021, 17, 7–13. [Google Scholar] [CrossRef]
- Navarrete-Hernandez, P.; Rennert, L.; Balducci, A. An evaluation of the impact of COVID-19 safety measures in public transit spaces on riders’ Worry of virus contraction. Transp Policy 2023, 131, 1–12. [Google Scholar] [CrossRef]
- Ozbilen, B.; Slagle, K.M.; Akar, G. Perceived risk of infection while traveling during the COVID-19 pandemic: Insights from Columbus, OH. Transp. Res. Interdiscip. Perspect. 2021, 10, 100326. [Google Scholar] [CrossRef]
- Papazek, P.; Raidl, G.R.; Rainer-Harbach, M.; Hu, B. A Pilot/Vnd/Grasp Hybrid for the Static Balancing of Public Bicycle Sharing Systems; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2013; Volume 8111. [Google Scholar] [CrossRef]
- Raidl, G.R.; Hu, B.; Rainer-Harbach, M.; Papazek, P. Balancing bicycle sharing systems: Improving a VNS by efficiently determining optimal loading operations. in International Workshop on Hybrid Metaheuristics. Hybrid Metaheuristics 2013, 7919, 130–143, Lecture Notes in Computer Science. [Google Scholar]
- Shu, J.; Chou, M.C.; Liu, Q.; Teo, C.-P.; Wang, I.-L. Models for effective deployment and redistribution of bicycles within public bicycle-sharing systems. Oper. Res. 2013, 61, 1346–1359. [Google Scholar] [CrossRef]
- Xie, X.-F.; Wang, Z. Combining Physical and Participatory Sensing in Urban Mobility Networks. In Proceedings of the Workshop on Big Data and Urban Informatics (BDUIC), Chicago, IL, USA, 11–12 August 2014. [Google Scholar] [CrossRef]
- Xie, X.-F.; Wang, Z. Examining Travel Patterns and Characteristics in a Bikesharing Network and Implications for Data-Driven Decision Supports: Case Study in the Washington DC Area. J. Transp. Geogr. 2018, 71, 84–102. [Google Scholar] [CrossRef]
- Frade, I.; Ribeiro, A. Bicycle sharing systems demand. Procedia-Soc. Behav. Sci. 2014, 111, 518–527. [Google Scholar] [CrossRef]
- Cortez, A.; Vázquez, P.-P. Advanced Visual Interaction with Public Bicycle Sharing Systems. J. WSCG 2021, 29, 207–216. [Google Scholar]
- Borgnat, P.; Fleury, É.; Robardet, C.; Scherrer, A. Spatial analysis of dynamic movements of Vélo’v, Lyon’s shared bicycle program. In Proceedings of the ECCS’09, Warwick, UK, 21–25 September 2009. [Google Scholar]
- Borgnat, P.; Abry, P.; Flandrin, P.; Robardet, C.; Rouquier, J.-B. Fleury. Shared bicycles in a city: A signal processing and data analysis perspective. Adv. Complex. Syst. 2011, 14, 415–438. [Google Scholar] [CrossRef]
- Bhat, C.R.; Astroza, S.; Hamdi, A.S. A spatial generalized ordered-response model with skew normal kernel error terms with an application to bicycling frequency. Transp. Res. Part. B Methodol. 2017, 95, 126–148. [Google Scholar] [CrossRef]
- Cortez-Ordoñez, A.; Tulcanaza-Prieto, A.B. The Effect of Gender and Age in Small Bicycle Sharing Systems: Case Study from Logroño, Spain. Sustainability 2023, 15, 7925. [Google Scholar] [CrossRef]
- Wood, J.; Beecham, R.; Dykes, J. Moving beyond sequential design: Reflections on a rich multi-channel approach to data visualization. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2171–2180. [Google Scholar] [CrossRef]
- Wang, K.; Akar, G. Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City. J. Transp. Geogr. 2018, 76, 1–9. [Google Scholar] [CrossRef]
- Eren, E.; Uz, V.E. A review on bike-sharing: The factors affecting bike-sharing demand. Sustain. Cities Soc. 2020, 54, 101882. [Google Scholar] [CrossRef]
- Froehlich, J.E.; Neumann, J.; Oliver, N. Sensing and predicting the pulse of the city through shared bicycling. In Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence (IJCAI’09), Messe Wien, Vienna, Austria, 23–29 July 2022; pp. 1420–1426. [Google Scholar]
- Shi, X.; Wang, Y.; Lv, F.; Liu, W.; Seng, D. Lin. Finding communities in bicycle sharing system. J. Vis. 2019, 22, 1177–1192. [Google Scholar] [CrossRef]
- Noussan, M.; Carioni, G.; Sanvito, F.D.; Colombo, E. Urban mobility demand profiles: Time series for cars and bike-sharing use as a resource for transport and energy modeling. Data 2019, 4, 108. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, X.; Li, M.; Philip, S.Y. Bicycle-sharing system analysis and trip prediction. In Proceedings of the 2016 17th Ieee International Conference on Mobile Data Management (MDM), Porto, Portugal, 13–16 June 2016; pp. 174–179. [Google Scholar]
- Holmgren, J.; Aspegren, S.; Dahlströma, J. Prediction of bicycle counter data using regression. Procedia Comput. Sci. 2017, 113, 502–507. [Google Scholar] [CrossRef]
- Holmgren, J.; Moltubakk, G.; O’Neill, J. Regression-based evaluation of bicycle flow trend estimates. Procedia Comput. Sci. 2018, 130, 518–525. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y.; Zhang, H.; Chen, L. Traffic prediction in a bike-sharing system. In Proceedings of the 23rd International Conference Advances in Geographic Information Systems (SIGSPATIAL ‘15), Seattle, WA, USA, 3–6 November 2015; pp. 1–10. [Google Scholar] [CrossRef]
- Lin, L.; He, Z.; Peeta, S. Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach. Transp. Res. Part. C: Emerg. Technol. 2018, 97, 258–276. [Google Scholar] [CrossRef]
- Lozano, Á.; De Paz, J.F.; González, G.V.; De La Iglesia, D.H.; Bajo, J. Multi-agent system for demand prediction and trip visualization in bike sharing systems. Appl. Sci. 2018, 8, 67. [Google Scholar] [CrossRef]
- Yin, Y.; Lee, C.; Wong, Y. Demand Prediction of Bicycle Sharing Systems. Engineering 2014, 1–5. Available online: https://api.semanticscholar.org/CorpusID:3333800 (accessed on 11 July 2024).
- Feng, Y.; Wang, S. A forecast for bicycle rental demand based on random forests and multiple linear regression. In Proceedings of the Proceedings—16th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2017, Wuhan, China, 24–26 May 2017; pp. 101–105. [Google Scholar] [CrossRef]
- Hulot, P.; Aloise, D.; Jena, S.D. Towards station-level demand prediction for effective rebalancing in bike-sharing systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 378–386. [Google Scholar] [CrossRef]
- Scott, D.M.; Ciuro, C. What factors influence bike share ridership? An investigation of Hamilton, Ontario’s bike share hubs. Sustain. Cities Soc. 2019, 54, 101882. [Google Scholar] [CrossRef]
- El-Assi, W.; Mahmoud, M.S.; Habib, K.N. Effects of built environment and weather on bike sharing demand: A station level analysis of commercial bike sharing in Toronto. Sustain. Cities Soc. 2019, 54, 101882. [Google Scholar] [CrossRef]
- Rixey, R.A. Station-Level Forecasting of Bikesharing Ridership: Station Network Effects in Three U.S. Syst. Transp. Res. Rec. 2013, 2387, 46–55. [Google Scholar] [CrossRef]
- DIas, G.M.; Bellalta, B.; Oechsner, S. Predicting occupancy trends in Barcelona’s bicycle service stations using open data. In Proceedings of the 2015 SAI Intelligent Systems Conference (IntelliSys), London, UK, 10–11 November 2015; pp. 439–445. [Google Scholar] [CrossRef]
- Cortez-Ordoñez, A.; Vázquez, P.-P.; Sanchez-Espigares, J.A. Scalability evaluation of forecasting methods applied to bicycle sharing systems. Heliyon 2023, 9, e20129. [Google Scholar] [CrossRef]
- Vogel, P.; Greiser, T.; Mattfeld, D.C. Understanding bike-sharing systems using Data Mining: Exploring activity patterns. Procedia Soc. Behav. Sci. 2011, 20, 514–523. [Google Scholar] [CrossRef]
- Cortez-Ordoñez, A.; Sanchez-Espigares, J.A.; Vázquez, P.-P. A visual tool for the analysis of usage trends of small and medium bicycle sharing systems. Comput. Graph. 2022, 109, 30–41. [Google Scholar] [CrossRef]
- Beecham, R.; Wood, J. Bowerman. Studying commuting behaviours using collaborative visual analytics. Comput. Environ. Urban. Syst. 2014, 47, 5–15. [Google Scholar] [CrossRef]
- O’Brien, O.; Cheshire, J.; Batty, M.; O’Brien, O.; Cheshire, J.; Batty, M. Mining bicycle sharing data for generating insights into sustainable transport systems. J. Transp. Geogr. 2014, 34, 262–273. [Google Scholar] [CrossRef]
- Oppermann, M.; Möller, T.; Sedlmair, M. Bike sharing Atlas: Visual analysis of bike-sharing networks. Int. J. Transp. 2018, 6, 1–14. [Google Scholar] [CrossRef]
- Dai, H.; Tao, Y.; Lin, H. Visual analytics of urban transportation from a bike-sharing and taxi perspective. J. Vis. 2020, 23, 1053–1070. [Google Scholar] [CrossRef]
- Muller, S.; Balmer, M.; Neumann, A.; Nagel, K. Mobility traces and spreading of COVID-19. medrxiv 2020. [Google Scholar] [CrossRef]
- Simić, V.; Ivanović, I.; Đorić, V.; Torkayesh, A.E. Adapting Urban Transport Planning to the COVID-19 Pandemic: An Integrated Fermatean Fuzzy Model. Sustain. Cities Soc. 2022, 79, 103669. [Google Scholar] [CrossRef]
- Rotaris, L.; Intini, M.; Gardelli, A. Impacts of the COVID-19 Pandemic on Bike-Sharing: A Literature Review. Sustainability 2022, 14, 13741. [Google Scholar] [CrossRef]
- Bucsky, P. Modal share changes due to COVID-19: The case of Budapest. Transp. Res. Interdiscip. Perspect. 2020, 8, 100141. [Google Scholar] [CrossRef] [PubMed]
- Nikiforiadis, A.; Ayfantopoulou, G.; Assessing, A.S. the Impact of COVID-19 on Bike-Sharing Usage: The Case of Thessaloniki, Greece. Sustainability 2020, 12, 8215. [Google Scholar] [CrossRef]
- Heydari, S.; Konstantinoudis, G.; Behsoodi, A.W. Effect of the COVID-19 pandemic on bike-sharing demand and hire time: Evidence from Santander Cycles in London. PLoS ONE 2021, 16, e0260969. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Y.; Zhu, M.; Ren, G. Impacts of COVID-19 on the usage of public bicycle share in London. Transp. Res. Part A Policy Pract. 2021, 150, 140–155. [Google Scholar] [CrossRef]
- Kubaľák, S.; Kalašová, A.; Hájnik, A. The Bike-Sharing System in Slovakia and the Impact of COVID-19 on This Shared Mobility Service in a Selected City. Sustainability 2021, 13, 6544. [Google Scholar] [CrossRef]
- Wang, H.; Noland, R.B. Bikeshare and subway ridership changes during the COVID-19 pandemic in New York City. Transp. Policy 2021, 106, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, X.; Federo, R.; Fernández-i-Marin, X. Riding the wave: Predicting the use of the bike-sharing system in Barcelona before and during COVID-19. Sustain. Cities Soc. 2022, 83, 103929. [Google Scholar] [CrossRef] [PubMed]
- Seifert, R.; Pellicer-Chenoll, M.; Antón-González, L.; Pans, M.; Devís-Devís, J.; González, L.-M. Who changed and who maintained their urban bike-sharing mobility after the COVID-19 outbreak? A within-subjects study. Cities 2023, 137, 104343. [Google Scholar] [CrossRef]
- Barcelona.cat. Movilidad y Transportes. Available online: https://www.barcelona.cat/mobilitat/en/about-us/urban-mobility-plan (accessed on 11 July 2024).
- Barcelona City Hall. Bicing. Available online: https://www.bicing.barcelona/dades-bicing##reference-1 (accessed on 11 July 2024).
- Barcelona.cat. Movilidad y Transportes. Bicicleta. Available online: https://www.barcelona.cat/mobilitat/es/medios-de-transporte/bicicleta/red-ciclistaciclable (accessed on 11 July 2024).
- Infotrànsit. Un año de Pandemia, un año de (no)Movilidad. Available online: https://infotransit.blog.gencat.cat/2021/03/10/un-ano-de-pandemia-un-ano-de-nomovilidad/ (accessed on 24 June 2024).
- InfoBarcelona. Se Levantan la Mayoría de Restricciones de Aforo Vigentes por la COVID-19. Available online: https://www.barcelona.cat/infobarcelona/es/tema/informacion-sobre-la-gestion-del-covid-19/se-levantan-la-mayoria-de-restricciones-de-aforo-que-habia-vigentes-por-la-covid-19_1110126.html (accessed on 24 June 2024).
- Chen, Y.; Sun, X.; Deveci, M.; Coffman, D. The impact of the COVID-19 pandemic on the behaviour of bike sharing users. Sustain. Cities Soc. 2022, 84, 104003. [Google Scholar] [CrossRef]
- Hossain, S.; Loa, P.; Ong, F.; Habib, K.N. Exploring the spatiotemporal factors affecting bicycle-sharing demand during the COVID-19 pandemic. Transportation 2023, 40, 1–36. [Google Scholar] [CrossRef]
- Teixeira, J.F.; Silva, C.; e Sá, F.M. Potential of Bike Sharing During Disruptive Public Health Crises: A Review of COVID-19 Impacts. Transp. Res. Rec. J. Transp. Res. Board 2023, 03611981231160537. [Google Scholar] [CrossRef]
- Gil-Alonso, F.; López-Villanueva, C.; Thiers-Quintana, J. Transition towards a Sustainable Mobility in a Suburbanising Urban Area: The Case of Barcelona. Sustainability 2022, 14, 2560. [Google Scholar] [CrossRef]
- European Consortium For Mathematics in Industry (ECMI). Barcelona. The Future of Urban Transport: The On-Demand Bus Service in Barcelona. Available online: https://ecmiindmath.org/2024/05/14/the-future-of-urban-transport-the-on-demand-bus-service-in-barcelona/ (accessed on 11 July 2024).
- Barcelona City Hall. Open Data BCN. Available online: https://opendata-ajuntament.barcelona.cat/en/open-data-bcn (accessed on 4 November 2022).
- Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K. Probability & Statistics for Engineers & Scientist, 9th ed.; Pearson: London, UK, 2012. [Google Scholar]
- Rérat, P.; Haldimann, L.; Widmer, H. Cycling in the era of COVID-19: The effects of the pandemic and pop-up cycle lanes on cycling practices. Transp. Res. Interdiscip. Perspect. 2022, 15, 100677. [Google Scholar] [CrossRef]
- López-Pérez, M.E.; Reyes-García, M.E.; López-Sanz, M.E. Smart Mobility and Smart Climate: An Illustrative Case in Seville, Spain. Int. J. Environ. Res. Public Health 2023, 20, 1404. [Google Scholar] [CrossRef]
Variables | Type of Variable |
---|---|
Station ID | String |
Total number of bikes (mechanical and electrical) available | Numerical |
Mechanical bikes available | Numerical |
Electrical bikes available | Numerical |
Docks available | Numerical |
Date and hour when the information was captured | Datetime |
If the station can charge electrical bikes (1 or 0) | Dummy |
If the station is properly installed (1 or 0) | Dummy |
If the station provided bikes without problems (1 or 0) | Dummy |
If bikes can be properly returned to the station (1 or 0) | Dummy |
Station status (in service or closed) | Dummy |
2020 | 2023 | Difference | t-Value | p-Value | |
---|---|---|---|---|---|
January | 18,893.87 | 26,293.94 | −7400.07 | −3.74 *** | 0.0004 |
February | 24,222.72 | 29,903.68 | −5680.96 | −6.24 *** | 1.04 × 10−7 |
March | 11,191.13 | 31,723.10 | −20,532.00 | −8.22 *** | 1.42 × 10−10 |
April | 829.06 | 27,821.40 | −26,992.30 | −12.28 *** | 3.3 × 10−13 |
May | 12,969.03 | 32,325.87 | −19,356.80 | −11.65 *** | 2.2 × 10−16 |
June | 24,109.37 | 33,323.20 | −9213.83 | −8.72 *** | 1.17 × 10−11 |
July | 25,871.35 | 33,026.13 | −7154.78 | −9.44 *** | 2.38 × 10−13 |
August | 19,923.45 | 20,001.00 | −77.55 | −0.03 | 0.978 |
September | 24,669.27 | 30,163.70 | −5494.43 | −2.32 ** | 0.026 |
October | 25,979.97 | 33,996.84 | −8016.87 | −9.11 *** | 6.55 × 10−13 |
November | 20,895.47 | 30,295.13 | −9399.66 | −5.91 *** | 5.09 × 10−7 |
December | 21,172.94 | 27,113.16 | −5940.22 | −4.69 *** | 1.61 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortez-Ordoñez, A.; Tulcanaza-Prieto, A.B. Are We Back to Normal? A Bike Sharing Systems Mobility Analysis in the Post-COVID-19 Era. Sustainability 2024, 16, 6209. https://doi.org/10.3390/su16146209
Cortez-Ordoñez A, Tulcanaza-Prieto AB. Are We Back to Normal? A Bike Sharing Systems Mobility Analysis in the Post-COVID-19 Era. Sustainability. 2024; 16(14):6209. https://doi.org/10.3390/su16146209
Chicago/Turabian StyleCortez-Ordoñez, Alexandra, and Ana Belén Tulcanaza-Prieto. 2024. "Are We Back to Normal? A Bike Sharing Systems Mobility Analysis in the Post-COVID-19 Era" Sustainability 16, no. 14: 6209. https://doi.org/10.3390/su16146209
APA StyleCortez-Ordoñez, A., & Tulcanaza-Prieto, A. B. (2024). Are We Back to Normal? A Bike Sharing Systems Mobility Analysis in the Post-COVID-19 Era. Sustainability, 16(14), 6209. https://doi.org/10.3390/su16146209