A Sustainable Rental Price Prediction Model Based on Multimodal Input and Deep Learning—Evidence from Airbnb
Abstract
:1. Introduction
2. Literature Review
2.1. Peer-to-Peer Residential Rentals
2.2. Price Determinants in the Sharing Economy
2.3. Price Prediction in Accommodations
3. Research Design, Data Set, and Methodology
3.1. Research Design
- (1)
- Necessary data, including influential factors, textual descriptions, and host-provided images, were retrieved from Airbnb. The influential factors were further categorized into five groups;
- (2)
- Three data sources were preprocessed to satisfy the various DL model requirements;
- (3)
- To demonstrate the uniqueness of each branch, a different neural network was used for each data source;
- (4)
- To represent a full characteristic, the three branches were concatenated. To produce an output, a dense (i.e., fully connected neural network) regressor was applied on top of the concatenated representations to predict the price;
- (5)
- The proposed model was compared with several baseline approaches. Models’ performance was verified through different evaluation metrics and multiple combinations of data sources.
3.2. Data Collection
3.3. Methodology
3.3.1. Multimodal Source
3.3.2. Data Preprocessing
3.3.3. Model Development
3.3.4. Model Comparison
3.3.5. Model Evaluation
4. Findings
4.1. Descriptive Analysis
4.2. Feature Correlation Analysis
4.3. Model Performance Analysis
5. Discussion
5.1. Theoretical Insights
5.2. Managerial Implications
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Factor | Variable | Mean | S.D. | 25% | 50% | 75% | Min | Max |
---|---|---|---|---|---|---|---|---|
Host factors | host_is_superhost | 0.20 | 0.40 | 0 | 0 | 0 | 0 | 1 |
host_has_profile | 0.99 | 0.11 | 1 | 1 | 1 | 0 | 1 | |
host_identity_verified | 0.97 | 0.17 | 1 | 1 | 1 | 0 | 1 | |
host_since_delta | 2770.42 | 1082.11 | 2217 | 2988.50 | 3563 | 1 | 5456 | |
host_response_rate | 0.69 | 0.44 | 0 | 1 | 1 | 0 | 1 | |
host_acceptance_rate | 0.66 | 0.38 | 0.39 | 0.83 | 1 | 0 | 1 | |
host_total_listings_count | 6.22 | 57.63 | 1 | 1 | 3 | 1 | 1555 | |
host_listings_count | 3.49 | 26.56 | 1 | 1 | 1 | 1 | 672 | |
Function factors | accommodates | 2.90 | 1.33 | 2 | 2 | 4 | 1 | 16 |
room_type | 0.45 | 0.84 | 0 | 0 | 0 | 0 | 3 | |
entire home/apartment | 1.10 | 1.70 | 1 | 1 | 1 | 0 | 16 | |
private room | 0.66 | 1.99 | 0 | 0 | 0 | 0 | 21 | |
shared room | 0.03 | 0.38 | 0 | 0 | 0 | 0 | 8 | |
bedrooms | 1.55 | 0.89 | 1 | 1 | 2 | 1 | 17 | |
beds | 1.82 | 1.44 | 1 | 1 | 2 | 1 | 33 | |
calculated_host_listings_count | 1.83 | 2.86 | 1 | 1 | 1 | 1 | 27 | |
calculated_host_listings_count_entire_homes | 1.10 | 1.70 | 1 | 1 | 1 | 0 | 16 | |
calculated_host_listings_count_private_rooms | 0.66 | 1.99 | 0 | 0 | 0 | 0 | 21 | |
calculated_host_listings_count_shared_rooms | 0.03 | 0.38 | 0 | 0 | 0 | 0 | 8 | |
Reputation factors | number_of_reviews | 45.44 | 107.35 | 3 | 10 | 36 | 0 | 3199 |
reviews_per_month | 1.18 | 2.14 | 0.3 | 0.68 | 1.18 | 0.01 | 120.11 | |
review_scores_rating | 4.83 | 0.26 | 4.79 | 4.88 | 5 | 0 | 5 | |
review_scores_accuracy | 4.85 | 0.23 | 4.81 | 4.9 | 5 | 1 | 5 | |
review_scores_cleanliness | 4.77 | 0.31 | 4.7 | 4.83 | 5 | 1 | 5 | |
review_scores_check-in | 4.88 | 0.22 | 4.87 | 4.94 | 5 | 1 | 5 | |
review_scores_communication | 4.90 | 0.21 | 4.90 | 4.97 | 5 | 1 | 5 | |
review_scores_location | 4.79 | 0.25 | 4.71 | 4.83 | 5 | 1 | 5 | |
review_scores_value | 4.64 | 0.31 | 4.53 | 4.67 | 4.81 | 1 | 5 | |
number_of_reviews_ltm | 10.85 | 30.82 | 0 | 3 | 8 | 0 | 1689 | |
number_of_reviews_l30d | 1.00 | 2.59 | 0 | 0 | 1 | 0 | 150 | |
first_review_delta | 1224.50 | 1157.43 | 160 | 767.50 | 2170.75 | −1 | 5269 | |
last_review_delta | 218.04 | 440.71 | 6 | 31 | 156 | −1 | 3666 | |
reviews_per_month | 1.18 | 2.14 | 0.30 | 0.68 | 1.18 | 0.01 | 120.11 | |
Location factors | latitude | 52.37 | 0.02 | 52.36 | 52.37 | 52.38 | 52.29 | 52.43 |
longitude | 4.89 | 0.04 | 4.87 | 4.89 | 4.91 | 4.76 | 5.03 | |
miscellaneous factors | minimum_nights | 5.05 | 34.71 | 2 | 3 | 4 | 1 | 1001 |
maximum_nights | 392.11 | 468.42 | 20 | 60 | 1125 | 1 | 1125 | |
minimum_minimum_nights | 4.88 | 34.71 | 2 | 2 | 3 | 1 | 1001 | |
maximum_minimum_nights | 5.50 | 34.90 | 2 | 3 | 4 | 1 | 1001 | |
minimum_maximum_nights | 500.62 | 504.72 | 21 | 365 | 1125 | 1 | 1125 | |
maximum_maximum_nights | 516.42 | 505.88 | 27 | 365 | 1125 | 1 | 1125 | |
minimum_nights_avg_ntm | 5.13 | 34.78 | 2 | 3 | 4 | 1 | 1001 | |
maximum_nights_avg_ntm | 511.90 | 503.94 | 27 | 365 | 1125 | 1 | 1125 | |
instant_bookable | 0.18 | 0.39 | 0 | 0 | 0 | 0 | 1 | |
has_availability | 0.96 | 0.19 | 1 | 1 | 1 | 0 | 1 | |
availability_30 | 4.32 | 7.35 | 0 | 0 | 5 | 0 | 30 | |
availability_60 | 9.85 | 15.38 | 0 | 2 | 13 | 0 | 60 | |
availability_90 | 17.30 | 25.34 | 0 | 3 | 28 | 0 | 90 | |
availability_365 | 82.83 | 113.57 | 0 | 18 | 142 | 0 | 365 | |
source | 0.38 | 0.48 | 0 | 0 | 1 | 0 | 1 |
References
- Baute-Díaz, N.; Gutiérrez-Taño, D.; Díaz-Armas, R.J. What Drives Guests to Misreport Their Experiences on Airbnb? A Structural Equation Modelling Approach. Curr. Issues Tour. 2022, 25, 3443–3460. [Google Scholar] [CrossRef]
- Ert, E.; Fleischer, A.; Magen, N. Trust and Reputation in the Sharing Economy: The Role of Personal Photos in Airbnb. Tour. Manag. 2016, 55, 62–73. [Google Scholar] [CrossRef]
- Zervas, G. The Rise of the Sharing Economy: Estimating the Impact of Airbnb on the Hotel Industry. J. Mark. Res. 2017, 54, 687–705. [Google Scholar] [CrossRef]
- So, K.K.F.; Oh, H.; Min, S. Motivations and Constraints of Airbnb Consumers: Findings from a Mixed-Methods Approach. Tour. Manag. 2018, 67, 224–236. [Google Scholar] [CrossRef]
- Toader, V.; Negrușa, A.L.; Bode, O.R.; Rus, R.V. Analysis of Price Determinants in the Case of Airbnb Listings. Econ. Res.-Ekon. Istraživanja 2022, 35, 2493–2509. [Google Scholar] [CrossRef]
- Guttentag, D.A.; Litvin, S.W.; Smith, W.W. To Airbnb or Not to Airbnb: Does Airbnb Feel Safer than Hotels during a Pandemic? Int. J. Hosp. Manag. 2023, 114, 103550. [Google Scholar] [CrossRef]
- Wang, D.; Nicolau, J.L. Price Determinants of Sharing Economy Based Accommodation Rental: A Study of Listings from 33 Cities on Airbnb.Com. Int. J. Hosp. Manag. 2017, 62, 120–131. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, Y.; Chen, Y.; Chen, G. Multiscale Effects of Hedonic Attributes on Airbnb Listing Prices Based on MGWR: A Case Study of Beijing, China. Sustainability 2023, 15, 1703. [Google Scholar] [CrossRef]
- Hung, W.-T.; Shang, J.-K.; Wang, F.-C. Pricing Determinants in the Hotel Industry: Quantile Regression Analysis. Int. J. Hosp. Manag. 2010, 29, 378–384. [Google Scholar] [CrossRef]
- Sánchez-Franco, M.J.; Troyano, J.A.; Alonso-Dos-Santos, M. Fuzzy Metatopics Predicting Prices of Airbnb Accommodations. J. Intell. Fuzzy Syst. 2021, 40, 1879–1891. [Google Scholar] [CrossRef]
- Alharbi, Z.H. A Sustainable Price Prediction Model for Airbnb Listings Using Machine Learning and Sentiment Analysis. Sustainability 2023, 15, 13159. [Google Scholar] [CrossRef]
- Kalehbasti, P.R.; Nikolenko, L.; Rezaei, H. Airbnb Price Prediction Using Machine Learning and Sentiment Analysis. In International Cross-Domain Conference for Machine Learning and Knowledge Extraction; Springer International Publishing: Cham, Switzerland, 2021; Volume 12844, pp. 173–184. [Google Scholar]
- Cai, Y.; Zhou, Y.; Ma, J.; Scott, N. Price Determinants of Airbnb Listings: Evidence from Hong Kong. Tour. Anal. 2019, 24, 227–242. [Google Scholar] [CrossRef]
- Chang, C.; Li, S. Study of Price Determinants of Sharing Economy-Based Accommodation Services: Evidence from Airbnb.Com. J. Theor. Appl. Electron. Commer. Res. 2020, 16, 584–601. [Google Scholar] [CrossRef]
- Teubner, T.; Hawlitschek, F.; Dann, D. Price Determinants on Airbnb: How Reputation Pays Off in the Sharing Economy. J. Self-Gov. Manag. Econ. 2017, 5, 53–80. [Google Scholar] [CrossRef]
- Kanakaris, N.; Karacapilidis, N. Predicting Prices of Airbnb Listings via Graph Neural Networks and Document Embeddings: The Case of the Island of Santorini. Procedia Comput. Sci. 2023, 219, 705–712. [Google Scholar] [CrossRef]
- Bi, J.-W.; Han, T.-Y.; Yao, Y.; Yang, T. Tourism Demand Forecasting under Conceptual Drift during COVID-19: An Ensemble Deep Learning Model. Curr. Issues Tour. 2023, 1–20. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Huang, L.; Zheng, W. Tourism Demand Forecasting: A Deep Learning Model Based on Spatial-Temporal Transformer. Tour. Rev. 2023; in press. [Google Scholar]
- Priambodo, F.; Sihabuddin, A. An Extreme Learning Machine Model Approach on Airbnb Base Price Prediction. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 179–185. [Google Scholar] [CrossRef]
- Zhang, H.; Zach, F.J.; Xiang, Z. Multi-Level Differentiation of Short-Term Rental Properties: A Deep Learning-Based Analysis of Aesthetic Design. Tour. Manag. 2024, 100, 104832. [Google Scholar] [CrossRef]
- Yang, S.-B. In Airbnb We Trust_ Understanding Consumers’ Trust-Attachment Building Mechanisms in the Sharing Economy. Int. J. Hosp. Manag. 2019, 83, 198–209. [Google Scholar] [CrossRef]
- Tong, B.; Gunter, U. Hedonic Pricing and the Sharing Economy: How Profile Characteristics Affect Airbnb Accommodation Prices in Barcelona, Madrid, and Seville. Curr. Issues Tour. 2022, 25, 3309–3328. [Google Scholar] [CrossRef]
- Birinci, H.; Berezina, K.; Cobanoglu, C. Comparing Customer Perceptions of Hotel and Peer-to-Peer Accommodation Advantages and Disadvantages. Int. J. Contemp. Hosp. Manag. 2018, 30, 1190–1210. [Google Scholar] [CrossRef]
- Nieuwland, S.; Van Melik, R. Regulating Airbnb: How Cities Deal with Perceived Negative Externalities of Short-Term Rentals. Curr. Issues Tour. 2020, 23, 811–825. [Google Scholar] [CrossRef]
- Perez-Sanchez, V.; Serrano-Estrada, L.; Marti, P.; Mora-Garcia, R.-T. The What, Where, and Why of Airbnb Price Determinants. Sustainability 2018, 10, 4596. [Google Scholar] [CrossRef]
- Gibbs, C.; Guttentag, D.; Gretzel, U.; Yao, L.; Morton, J. Use of Dynamic Pricing Strategies by Airbnb Hosts. Int. J. Contemp. Hosp. Manag. 2018, 30, 2–20. [Google Scholar] [CrossRef]
- Zhang, T.C.; Jahromi, M.F.; Kizildag, M. Value Co-Creation in a Sharing Economy: The End of Price Wars? Int. J. Hosp. Manag. 2018, 71, 51–58. [Google Scholar] [CrossRef]
- Cheng, M. Sharing Economy: A Review and Agenda for Future Research. Int. J. Hosp. Manag. 2016, 57, 60–70. [Google Scholar] [CrossRef]
- Fang, Z.; Huang, L.; Wierman, A. Prices and Subsidies in the Sharing Economy. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3 April 2017; International World Wide Web Conferences Steering Committee: Perth, Australia, 2017; pp. 53–62. [Google Scholar]
- Suciu, A.M. The Impact of Airbnb on Local Labour Markets in the Hotel Industry in Germany. SSRN J. 2016, 2874861. [Google Scholar] [CrossRef]
- Nakamura, S.; Baskaran, A.; Selvarajan, S.K. Impact of Airbnb on the Hotel Industry in Japan. J. Destin. Mark. Manag. 2024, 31, 100841. [Google Scholar] [CrossRef]
- Gyódi, K.; Nawaro, Ł. Determinants of Airbnb Prices in European Cities: A Spatial Econometrics Approach. Tour. Manag. 2021, 86, 104319. [Google Scholar] [CrossRef]
- Lampinen, A.; Cheshire, C. Hosting via Airbnb: Motivations and Financial Assurances in Monetized Network Hospitality. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7 May 2016; ACM: San Jose, CA, USA, 2016; pp. 1669–1680. [Google Scholar]
- Zhang, Z.; Chen, R.; Han, L.; Yang, L. Key Factors Affecting the Price of Airbnb Listings: A Geographically Weighted Approach. Sustainability 2017, 9, 1635. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, K. Consumer Valuation of Airbnb Listings: A Hedonic Pricing Approach. Int. J. Contemp. Hosp. Manag. 2017, 29, 2405–2424. [Google Scholar] [CrossRef]
- Wang, R.; Rasouli, S. Contribution of Streetscape Features to the Hedonic Pricing Model Using Geographically Weighted Regression: Evidence from Amsterdam. Tour. Manag. 2022, 91, 104523. [Google Scholar] [CrossRef]
- Tang, J.; Cheng, J.; Zhang, M. Forecasting Airbnb Prices through Machine Learning. Manag. Decis. Econ. 2024, 45, 148–160. [Google Scholar] [CrossRef]
- Hong, I.; Yoo, C. Analyzing Spatial Variance of Airbnb Pricing Determinants Using Multiscale GWR Approach. Sustainability 2020, 12, 4710. [Google Scholar] [CrossRef]
- Gibbs, C.; Guttentag, D.; Gretzel, U.; Morton, J.; Goodwill, A. Pricing in the Sharing Economy: A Hedonic Pricing Model Applied to Airbnb Listings. J. Travel Tour. Mark. 2018, 35, 46–56. [Google Scholar] [CrossRef]
- Voltes-Dorta, A.; Sánchez-Medina, A. Drivers of Airbnb Prices According to Property/Room Type, Season and Location: A Regression Approach. J. Hosp. Tour. Manag. 2020, 45, 266–275. [Google Scholar] [CrossRef]
- Kwok, L.; Xie, K.L. Pricing Strategies on Airbnb: Are Multi-Unit Hosts Revenue Pros? Int. J. Hosp. Manag. 2019, 82, 252–259. [Google Scholar] [CrossRef]
- Hunold, M.; Kesler, R.; Laitenberger, U.; Schlütter, F. Evaluation of Best Price Clauses in Online Hotel Bookings. Int. J. Ind. Organ. 2018, 61, 542–571. [Google Scholar] [CrossRef]
- Al Shehhi, M.; Karathanasopoulos, A. Forecasting Hotel Room Prices in Selected GCC Cities Using Deep Learning. J. Hosp. Tour. Manag. 2020, 42, 40–50. [Google Scholar] [CrossRef]
- Mohammed, I.; Guillet, B.D.; Law, R.; Rahaman, W.A. Predicting the Direction of Dynamic Price Adjustment in the Hong Kong Hotel Industry. Tour. Econ. 2021, 27, 346–364. [Google Scholar] [CrossRef]
- Abrate, G.; Sainaghi, R.; Mauri, A.G. Dynamic Pricing in Airbnb: Individual versus Professional Hosts. J. Bus. Res. 2022, 141, 191–199. [Google Scholar] [CrossRef]
- Gunter, U.; Önder, I. Determinants of Airbnb Demand in Vienna and Their Implications for the Traditional Accommodation Industry. Tour. Econ. 2018, 24, 270–293. [Google Scholar] [CrossRef]
- Benítez-Aurioles, B. Why Are Flexible Booking Policies Priced Negatively? Tour. Manag. 2018, 67, 312–325. [Google Scholar] [CrossRef]
- Shapoval, V.; Wang, M.C.; Hara, T.; Shioya, H. Data Mining in Tourism Data Analysis: Inbound Visitors to Japan. J. Travel Res. 2018, 57, 310–323. [Google Scholar] [CrossRef]
- Lee, C. Predicting land prices and measuring uncertainty by combining supervised and unsupervised learning. Int. J. Strateg. Prop. Manag. 2021, 25, 169–178. [Google Scholar] [CrossRef]
- Binesh, F.; Belarmino, A.M.; van der Rest, J.P.; Singh, A.K.; Raab, C. Forecasting Hotel Room Prices When Entering Turbulent Times: A Game-Theoretic Artificial Neural Network Model. Int. J. Contemp. Hosp. Manag. 2023; in press. [Google Scholar]
- Islam, M.D.; Li, B.; Islam, K.S.; Ahasan, R.; Mia, M.R.; Haque, M.E. Airbnb Rental Price Modeling Based on Latent Dirichlet Allocation and MESF-XGBoost Composite Model. Mach. Learn. Appl. 2022, 7, 100208. [Google Scholar] [CrossRef]
- Zhu, A.; Li, R.; Xie, Z. Machine Learning Prediction of New York Airbnb Prices. In Proceedings of the 2020 Third International Conference on Artificial Intelligence for Industries (AI4I), Irvine, CA, USA, 21–23 September 2020; IEEE: Irvine, CA, USA, 2020; pp. 1–5. [Google Scholar]
- Ghosh, I.; Sanyal, M.K.; Pamucar, D. Modelling Predictability of Airbnb Rental Prices in Post COVID-19 Regime: An Integrated Framework of Transfer Learning, PSO-Based Ensemble Machine Learning and Explainable AI. Int. J. Info. Technol. Dec. Mak. 2023, 22, 917–955. [Google Scholar] [CrossRef]
- Sengupta, P.; Biswas, B.; Kumar, A.; Shankar, R.; Gupta, S. Examining the Predictors of Successful Airbnb Bookings with Hurdle Models: Evidence from Europe, Australia, USA and Asia-Pacific Cities. J. Bus. Res. 2021, 137, 538–554. [Google Scholar] [CrossRef]
- Hong, W.; Thong, J.Y.L.; Tam, K.Y. Designing Product Listing Pages on E-Commerce Websites: An Examination of Presentation Mode and Information Format. Int. J. Hum.-Comput. Stud. 2004, 61, 481–503. [Google Scholar] [CrossRef]
- Ma, Y.; Xiang, Z.; Du, Q.; Fan, W. Effects of User-Provided Photos on Hotel Review Helpfulness: An Analytical Approach with Deep Leaning. Int. J. Hosp. Manag. 2018, 71, 120–131. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Honolulu, HI, USA, 2017; pp. 2261–2269. [Google Scholar]
- Xu, H.; Liu, B.; Shu, L.; Yu, P.S. BERT Post-Training for Review Reading Comprehension and Aspect-Based Sentiment Analysis. arXiv 2019, arXiv:1904.02232. [Google Scholar]
- Xu, S.; Barbosa, S.E.; Hong, D. BERT Feature Based Model for Predicting the Helpfulness Scores of Online Customers Reviews. In Advances in Information and Communication; Arai, K., Kapoor, S., Bhatia, R., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2020; Volume 1130, pp. 270–281. ISBN 978-3-030-39441-7. [Google Scholar]
- Qin, Z.; Zhang, Z.; Chen, X.; Peng, Y. FD-MobileNet: Improved MobileNet with a Fast Downsampling Strategy. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 11 February 2018; pp. 1363–1367. [Google Scholar]
- Zheng, T.; Lin, Z.; Zhang, Y.; Jiao, Q.; Su, T.; Tan, H.; Fan, Z.; Xu, D.; Law, R. Revisiting Review Helpfulness Prediction: An Advanced Deep Learning Model with Multimodal Input from Yelp. Int. J. Hosp. Manag. 2023, 114, 103579. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.; Lieu, Q.X.; Lee, J. CNN-Based Image Recognition for Topology Optimization. Knowl.-Based Syst. 2020, 198, 105887. [Google Scholar] [CrossRef]
- Adler, J.; Parmryd, I. Quantifying Colocalization by Correlation: The Pearson Correlation Coefficient Is Superior to the Mander’s Overlap Coefficient. Cytom. Part A 2010, 77A, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Sung, E.; Kim, H.; Lee, D. Why Do People Consume and Provide Sharing Economy Accommodation?—A Sustainability Perspective. Sustainability 2018, 10, 2072. [Google Scholar] [CrossRef]
- Kwon, W.; Lee, M.; Back, K.-J.; Lee, K.Y. Assessing Restaurant Review Helpfulness through Big Data: Dual-Process and Social Influence Theory. J. Hosp. Tour. Technol. 2021, 12, 177–195. [Google Scholar] [CrossRef]
- Lawani, A.; Reed, M.R.; Mark, T.; Zheng, Y. Reviews and Price on Online Platforms: Evidence from Sentiment Analysis of Airbnb Reviews in Boston. Reg. Sci. Urban Econ. 2019, 75, 22–34. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, H.; Cao, X.; Wei, G.; Yang, Y. How to Better Incorporate Geographic Variation in Airbnb Price Modeling? Tour. Econ. 2023, 29, 1181–1203. [Google Scholar] [CrossRef]
- Chi, M.; Pan, M.; Huang, R. Examining the Direct and Interaction Effects of Picture Color Cues and Textual Cues Related to Color on Accommodation-Sharing Platform Rental Purchase. Int. J. Hosp. Manag. 2021, 99, 103066. [Google Scholar] [CrossRef]
- Chi Maomao, P.M. Impacts of Cue Consistency on Shared Accommodation Bookings: Interaction Between Texts and Images. Data Anal. Knowl. Discov. 2020, 4, 74–83. [Google Scholar] [CrossRef]
- Beltagy, I.; Peters, M.E.; Cohan, A. Longformer: The Long-Document Transformer. arXiv 2020, arXiv:2004.05150. [Google Scholar] [CrossRef]
Factors | Segmentation Variables | Type | Definition | References |
---|---|---|---|---|
Host factors | host_is_superhost | Boolean | The host attains superhost status or not | [5,8,45,51] |
host_has_profile | Boolean | The host provides profile pictures or not | ||
host_identity_verified | Boolean | The host’s identity was verified on Airbnb or not | ||
host_since_delta | Integer | The time elapsed from the date of the host was created to the collection date | ||
host_response_rate | Float | The speed at which a host replies to reservations | ||
host_acceptance_rate | Float | The frequency at which a host accepts reservations | ||
host_total_listings_count | Integer | The total number of listings’ shared rooms | ||
host_listings_count | Integer | The host’s listing count (as per unidentified calculations on Airbnb) | ||
Function factors | accommodates | Integer | The quantity of individuals who can fit in | [5,7,8,13,14,16,32,46,51] |
room type | Category | The three sorts of accommodations that are offered are the following: independent place, private room, and shared room | ||
entire home/apartment | Integer | The quantity of complete house/apartment listings that the host currently has | ||
private room | Integer | The quantity of private room listings that the host currently has in the scraping | ||
shared room | Integer | The quantity of shared room listings that the host currently has in the scraping | ||
bedrooms | Integer | How many bedrooms there are | ||
beds | Integer | The quantity of beds | ||
calculated_host_listings_count | Integer | The total number of listings that the host has | ||
calculated_host_listings_count_entire_homes | Integer | The quantity of entire house listings that the host owns | ||
calculated_host_listings_count_private_rooms | Integer | The quantity of private rooms listings that the host has | ||
calculated_host_listings_count_shared_rooms | Integer | The quantity of shared rooms listings that the host has | ||
Reputation factors | number of reviews | Integer | The total amount of reviews the listing got | [8,13,16,51] |
reviews_per_month | Numeric | The amount of reviews the listing receives each month | ||
review_scores_rating | Float | The listing’s rating based on review scores | ||
review_scores_accuracy | Float | The listing’s reviews’ accuracy scores | ||
review_scores_cleanliness | Float | The listing’s cleanliness ratings | ||
review_scores_check-in | Float | The scores for check-in in the listing | ||
review_scores_communication | Float | The scores for communication in the listing | ||
review_scores_location | Float | The scores for location in the listing | ||
review_scores_value | Float | The scores for value in the listing | ||
number_of_reviews_ltm | Integer | The quantity of reviews that the listing has gotten during the previous 12 months | ||
number_of_reviews_l30d | Integer | The quantity of evaluations the listing has gotten in the previous 30 days | ||
first_review_delta | Integer | The time interval between the first review date and the collection date | ||
last_review_delta | Integer | The time elapsed between the last review date and the collection date | ||
reviews_per_month | Numeric | The average monthly number of reviews throughout its existence | ||
Location factors | latitude | Numeric | Latitude location | [16] |
longitude | Numeric | Longitude location | ||
Miscellaneous Factors | minimum_nights | Integer | The listing indicated the least number of nights stayed | [5,12] |
maximum_nights | Integer | The listing displayed the most nights stayed | ||
minimum_minimum_nights | Integer | The calendar’s smallest minimum_night value | ||
maximum_minimum_nights | Integer | The calendar’s largest minimum_night value | ||
minimum_maximum_nights | Integer | The calendar’s smallest maximum_night value | ||
maximum_maximum_nights | Integer | The calendar’s biggest maximum_night value | ||
minimum_nights_avg_ntm | Numeric | The calendar’s average minimum_night value | ||
maximum_nights_avg_ntm | Numeric | The calendar’s average maximum_night value | ||
has_availability | Boolean | The listing indicates if it is available or not | ||
availability_30 | Integer | The calendar indicates the listing’s availability thirty days in advance | ||
availability_60 | Integer | The calendar indicates the listing’s availability sixty days in advance | ||
availability_90 | Integer | The calendar indicates the listing’s availability ninety days in advance | ||
availability_365 | Integer | The calendar indicates that the offering will be available for purchase 365 days in advance | ||
instant_bookable | Boolean | The host offers instant booking or not | ||
source | category | The search sources are divided into categories: “neighbourhood search”; “previous scrape”. |
Input Pattern | Operator | t | c | n | s |
---|---|---|---|---|---|
2242 × 3 | Conv2d | - | 32 | 1 | 2 |
1122 × 32 | bottleneck | 1 | 16 | 1 | 1 |
1122 × 16 | bottleneck | 6 | 24 | 2 | 2 |
562 × 24 | bottleneck | 6 | 32 | 3 | 2 |
282 × 32 | bottleneck | 6 | 64 | 4 | 2 |
142 × 64 | bottleneck | 6 | 96 | 3 | 1 |
142 × 96 | bottleneck | 6 | 160 | 3 | 2 |
72 × 160 | bottleneck | 6 | 320 | 1 | 1 |
72 × 320 | Conv2d 1 × 1 | - | 1280 | 1 | 1 |
72 × 1280 | Avgpool 7 × 7 | - | - | 1 | - |
12 × 1280 | Conv2d 1 × 1 | - | k | - | - |
Set | Source | Models | RMSE | MSE | MAPE (%) | MAAPE | MAE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | Train | Test | Train | Test | |||
1 | MD | Dense | 0.3947 | 0.4057 | 0.1558 | 0.1645 | 5.6428 | 5.8390 | 0.0561 | 0.0581 | 0.2988 | 0.3069 |
2 | TC | BERT | 0.5719 | 0.5436 | 0.3271 | 0.2955 | 8.3825 | 7.8991 | 0.0830 | 0.0784 | 0.4412 | 0.4188 |
LSTM | 1.5321 | 0.8431 | 0.8348 | 0.7109 | 8.5067 | 9.4072 | 0.1864 | 0.0903 | 1.0531 | 0.4991 | ||
3 | HPI | CNN | 0.5792 | 0.5473 | 0.3355 | 0.2995 | 8.5410 | 7.9475 | 0.0846 | 0.0788 | 0.4498 | 0.4217 |
Mobile | 0.5601 | 0.5443 | 0.3137 | 0.2962 | 8.2096 | 7.8549 | 0.0813 | 0.0779 | 0.4319 | 0.4187 | ||
4 | MD + TC | Dense + BERT | 0.4033 | 0.4206 | 0.1627 | 0.1769 | 5.8095 | 6.1208 | 0.0578 | 0.0609 | 0.3079 | 0.3239 |
Dense + LSTM | 0.3469 | 0.4736 | 0.1203 | 0.2243 | 4.9301 | 6.8409 | 0.0491 | 0.0680 | 0.2613 | 0.3634 | ||
5 | MD + HPI | Dense + CNN | 0.4078 | 0.4081 | 0.1663 | 0.1665 | 5.8057 | 5.7080 | 0.0577 | 0.0568 | 0.3076 | 0.3065 |
Dense + Mobile | 0.4413 | 0.4089 | 0.1948 | 0.1672 | 6.3875 | 5.7724 | 0.0635 | 0.0574 | 0.3380 | 0.3090 | ||
6 | TC + HPI | BERT + CNN | 0.5814 | 0.5447 | 0.3380 | 0.2967 | 8.5522 | 7.8438 | 0.0847 | 0.0778 | 0.4499 | 0.4187 |
BERT + Mobile | 0.5876 | 0.5471 | 0.3453 | 0.2993 | 8.6176 | 7.8247 | 0.0853 | 0.0777 | 0.4532 | 0.4198 | ||
LSTM + CNN | 0.6667 | 0.7741 | 0.4445 | 0.5992 | 9.7783 | 11.152 | 0.0967 | 0.1101 | 0.5198 | 0.6070 | ||
7 | MD + TC + HPI | Dense + BERT + CNN | 0.4431 | 0.3991 | 0.1963 | 0.1593 | 6.4452 | 5.6852 | 0.0641 | 0.0566 | 0.3408 | 0.3024 |
Dense + BERT + Mobile | 0.2245 | 0.4045 | 0.0504 | 0.1637 | 3.1148 | 5.5682 | 0.0311 | 0.0554 | 0.1657 | 0.3030 | ||
Dense + LSTM + CNN | 0.2241 | 0.6455 | 0.0502 | 0.4167 | 3.1773 | 9.3923 | 0.0317 | 0.0932 | 0.1687 | 0.5171 | ||
Dense + LSTM + Mobile | 0.5623 | 0.5556 | 0.3161 | 0.3087 | 8.1836 | 7.8857 | 0.0811 | 0.0783 | 0.4330 | 0.4243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, H.; Su, T.; Wu, X.; Cheng, P.; Zheng, T. A Sustainable Rental Price Prediction Model Based on Multimodal Input and Deep Learning—Evidence from Airbnb. Sustainability 2024, 16, 6384. https://doi.org/10.3390/su16156384
Tan H, Su T, Wu X, Cheng P, Zheng T. A Sustainable Rental Price Prediction Model Based on Multimodal Input and Deep Learning—Evidence from Airbnb. Sustainability. 2024; 16(15):6384. https://doi.org/10.3390/su16156384
Chicago/Turabian StyleTan, Hongbo, Tian Su, Xusheng Wu, Pengzhan Cheng, and Tianxiang Zheng. 2024. "A Sustainable Rental Price Prediction Model Based on Multimodal Input and Deep Learning—Evidence from Airbnb" Sustainability 16, no. 15: 6384. https://doi.org/10.3390/su16156384
APA StyleTan, H., Su, T., Wu, X., Cheng, P., & Zheng, T. (2024). A Sustainable Rental Price Prediction Model Based on Multimodal Input and Deep Learning—Evidence from Airbnb. Sustainability, 16(15), 6384. https://doi.org/10.3390/su16156384