Development and Sensitivity Analysis of an Improved Harmony Search Algorithm with a Multiple Memory Structure for Large-Scale Optimization Problems in Water Distribution Networks
Abstract
:1. Introduction
2. Problem Descriptions
2.1. Formulation of Optimal Pipe Design
2.2. Studied Networks
2.2.1. Balerma Network
2.2.2. Saemangeum Networks
3. Maisonette-Type Harmony Search Algorithm
3.1. Description of the Proposed Algorithm
3.2. Model Parameters
3.3. Procedure of the Proposed Algorithm
Algorithm 1. Pseudo code of MTHSA. |
Begin Objective function f(x), x = (x1,x2,…,xd)T Generate initial harmonies (Define HMS & SHMS) Define harmony memory considering rate (HMCR) Define pitch adjusting rate (PAR), pitch limits and band width (BW) while (t ≤ Max number of iterations) Generate new harmonies by accepting best harmonies in first floor Adjust pitch to get new harmonies (solutions) if (rand < HMCR), choose an existing harmony randomly in each of sub harmony memories else if (rand < PAR), adjust the pitch randomly within limits else generate new harmonies via randomization end if Accept the new harmonics (solutions) if better Gathering best harmonics in each of sub harmony memories Generate new harmony by accepting best harmony in second floor Adjust pitch to get new harmony (solution) if (rand < HMCR), choose an existing harmony randomly else if (rand < PAR), adjust the pitch randomly within limits else generate new harmony via randomization end if Accept the new harmonics (solutions) if better end while Find the current best solutions End |
4. Application Results
4.1. Sensitivity Analysis of Parameters
4.2. Optimization Results
4.2.1. Results of Balerma Network
4.2.2. Results of Saemangeum Network
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Glover, F. Heuristics for Integer Programming Using Surrogate Constraints. Decis. Sci. 1977, 8, 156–166. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Dorigo, M. Optimization, Learning, and Natural Algorithms. Ph.D. Thesis, Politecnico di Milano, Milan, Italy, 1992. [Google Scholar]
- Eberhart, R.C.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; Volume 1, pp. 39–43. [Google Scholar]
- Storn, R.; Price, K.V. Minimizing the Real Functions of the ICEC’96 Contest by Differential Evolution. In Proceedings of the International Conference on Evolutionary Computation, Nagoya, Japan, 20–22 May 1996; pp. 842–844. [Google Scholar]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Kim, J.H.; Geem, Z.W.; Kim, E.S. Parameter Estimation of the Nonlinear Muskingum Model Using Harmony Search. J. Am. Water Resour. Assoc. 2001, 37, 1131–1138. [Google Scholar] [CrossRef]
- Nakrani, S.; Tovey, C. On Honey Bees and Dynamic Server Allocation in Internet Hosting Centers. Adapt. Behav. 2004, 12, 223–240. [Google Scholar] [CrossRef]
- Yang, X.S. Firefly Algorithm, Levy Flights and Global Optimization. In Research and Development in Intelligent Systems XXVI; Springer: London, UK, 2010; pp. 209–218. [Google Scholar]
- Yang, X.S.; Deb, S. Engineering Optimisation by Cuckoo Search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343. [Google Scholar] [CrossRef]
- Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water Cycle Algorithm—A Novel Metaheuristic Optimization Method for Solving Constrained Engineering Optimization Problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine Blast Algorithm for Optimization of Truss Structures with Discrete Variables. Comput. Struct. 2012, 102, 49–63. [Google Scholar] [CrossRef]
- Paik, K.; Kim, J.H.; Kim, H.S.; Lee, D.R. A Conceptual Rainfall-Runoff Model Considering Seasonal Variation. Hydrol. Process. 2005, 19, 3837–3850. [Google Scholar]
- Geem, Z.W. Improved Harmony Search from Ensemble of Music Players. In Knowledge-Based Intelligent Information and Engineering Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 86–93. [Google Scholar]
- Wang, C.M.; Huang, Y.F. Self-Adaptive Harmony Search Algorithm for Optimization. Expert Syst. Appl. 2010, 37, 2826–2837. [Google Scholar] [CrossRef]
- Pan, Q.K.; Suganthan, P.N.; Tasgetiren, M.F.; Liang, J.J. A Self-Adaptive Global Best Harmony Search Algorithm for Continuous Optimization Problems. Appl. Math. Comput. 2010, 216, 830–848. [Google Scholar] [CrossRef]
- Geem, Z.W.; Sim, K.B. Parameter-Setting-Free Harmony Search Algorithm. Appl. Math. Comput. 2010, 217, 3881–3889. [Google Scholar] [CrossRef]
- Yildiz, A.R. Hybrid Taguchi-Harmony Search Algorithm for Solving Engineering Optimization Problems. Int. J. Ind. Eng. Theory Appl. Pract. 2008, 15, 286–293. [Google Scholar]
- Fesanghary, M.; Mahdavi, M.; Minary-Jolandan, M.; Alizadeh, Y. Hybridizing Harmony Search Algorithm with Sequential Quadratic Programming for Engineering Optimization Problems. Comput. Methods Appl. Mech. Eng. 2008, 197, 3080–3091. [Google Scholar] [CrossRef]
- Kaveh, A.; Talatahari, S. Particle Swarm Optimizer, Ant Colony Strategy and Harmony Search Scheme Hybridized for Optimization of Truss Structures. Comput. Struct. 2009, 87, 267–283. [Google Scholar] [CrossRef]
- Wang, L.; Pan, Q.K.; Tasgetiren, M.F. Minimizing the Total Flow Time in a Flow Shop with Blocking by Using Hybrid Harmony Search Algorithms. Expert Syst. Appl. 2010, 37, 7929–7936. [Google Scholar] [CrossRef]
- Wang, L.; Yang, R.; Xu, Y.; Niu, Q.; Pardalos, P.M.; Fei, M. An Improved Adaptive Binary Harmony Search Algorithm. Inf. Sci. 2013, 232, 58–87. [Google Scholar] [CrossRef]
- Yuan, X.; Zhao, J.; Yang, Y.; Wang, Y. Hybrid Parallel Chaos Optimization Algorithm with Harmony Search Algorithm. Appl. Soft Comput. 2014, 17, 12–22. [Google Scholar] [CrossRef]
- Sivasubramani, S.; Swarup, K.S. Multi-Objective Harmony Search Algorithm for Optimal Power Flow Problem. Int. J. Electr. Power Energy Syst. 2011, 33, 745–752. [Google Scholar] [CrossRef]
- Mahdavi, M.; Fesanghary, M.; Damangir, E. An Improved Harmony Search Algorithm for Solving Optimization Problems. Appl. Math. Comput. 2007, 188, 1567–1579. [Google Scholar] [CrossRef]
- dos Santos Coelho, L.; Mariani, V.C. An Improved Harmony Search Algorithm for Power Economic Load Dispatch. Energy Convers. Manag. 2009, 50, 2522–2526. [Google Scholar] [CrossRef]
- Jaberipour, M.; Khorram, E. Two Improved Harmony Search Algorithms for Solving Engineering Optimization Problems. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3316–3331. [Google Scholar] [CrossRef]
- Gupta, C.; Jain, S. New Approach for Function Optimization: Amended Harmony Search. In Advances in Intelligent Informatics; Springer International Publishing: Cham, Switzerland, 2015; pp. 643–653. [Google Scholar]
- Yadav, P.; Kumar, R.; Panda, S.K.; Chang, C.S. An Intelligent Tuned Harmony Search Algorithm for Optimisation. Inf. Sci. 2012, 196, 47–72. [Google Scholar] [CrossRef]
- Arul, R.; Ravi, G.; Velusami, S. An Improved Harmony Search Algorithm to Solve Economic Load Dispatch Problems with Generator Constraints. Electr. Eng. 2014, 96, 55–63. [Google Scholar] [CrossRef]
- Ashrafi, S.M.; Dariane, A.B. Performance Evaluation of an Improved Harmony Search Algorithm for Numerical Optimization: Melody Search (MS). Eng. Appl. Artif. Intell. 2013, 26, 1301–1321. [Google Scholar] [CrossRef]
- Savic, D.A.; Walters, G.A. Genetic Algorithms for Least-Cost Design of Water Distribution Networks. J. Water Resour. Plan. Manag. 1997, 123, 67–77. [Google Scholar] [CrossRef]
- Dandy, G.C.; Simpson, A.R.; Murphy, L.J. An Improved Genetic Algorithm for Pipe Network Optimization. Water Resour. Res. 1996, 32, 449–458. [Google Scholar] [CrossRef]
- Reca, J.; Martinez, J.; Gil, C.; Banos, R. Application of Several Meta-Heuristic Techniques to the Optimization of Real Looped Water Distribution Networks. Water Resour. Manag. 2008, 22, 1367–1379. [Google Scholar] [CrossRef]
- Simpson, A.R.; Maier, H.R.; Foong, W.K.; Phang, K.Y.; Seah, H.Y.; Tan, C.L. Selection ff Parameters for Ant Colony Optimization Applied to the Optimal Design of Water Distribution Systems. In Proceedings of the International Congress on Modeling and Simulation, Canberra, Australia, 10–13 December 2001; pp. 1931–1936. [Google Scholar]
- Maier, H.R.; Simpson, A.R.; Zecchin, A.C.; Foong, W.K.; Phang, K.Y.; Seah, H.Y.; Tan, C.L. Ant Colony Optimization for Design of Water Distribution Systems. J. Water Resour. Plan. Manag. 2003, 129, 200–209. [Google Scholar] [CrossRef]
- Cunha, M.; Sousa, J. Water Distribution Network Design Optimization: Simulated Annealing Approach. J. Water Resour. Plan. Manag. 1999, 125, 215–221. [Google Scholar] [CrossRef]
- Eusuff, M.M.; Lansey, E.K. Optimisation of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm. J. Water Resour. Plan. Manag. 2003, 129, 210–225. [Google Scholar] [CrossRef]
- Geem, Z.W. Particle-Swarm Harmony Search for Water Network Design. Eng. Optim. 2009, 41, 297–311. [Google Scholar] [CrossRef]
- Sedki, A.; Ouazar, D. Hybrid Particle Swarm Optimization and Differential Evolution for Optimal Design of Water Distribution Systems. Adv. Eng. Inform. 2012, 26, 582–591. [Google Scholar] [CrossRef]
- Sadollah, A.; Yoo, D.G.; Kim, J.H. Improved Mine Blast Algorithm for Optimal Cost Design of Water Distribution Systems. Eng. Optim. 2014, 47, 1602–1618. [Google Scholar] [CrossRef]
- Lee, H.M.; Yoo, D.G.; Sadollah, A.; Kim, J.H. Optimal cost design of water distribution networks using a decomposition approach. Eng. Optim. 2016, 48, 2141–2156. [Google Scholar] [CrossRef]
- Schwartz, R.; Housh, M.; Ostfeld, A. Least-cost robust design optimization of water distribution systems under multiple loading. J. Water Resour. Plan. Manag. 2016, 142, 04016031. [Google Scholar] [CrossRef]
- El-Ghandour, H.A.; Elbeltagi, E. Comparison of five evolutionary algorithms for optimization of water distribution networks. J. Comput. Civ. Eng. 2017, 32, 04017066. [Google Scholar] [CrossRef]
- Lee, E.H.; Lee, H.M.; Yoo, D.G.; Kim, J.H. Application of a meta-heuristic optimization algorithm motivated by a vision correction procedure for civil engineering problems. KSCE J. Civ. Eng. 2018, 22, 2623–2636. [Google Scholar] [CrossRef]
- Yoo, D.G.; Lee, H.M.; Sadollah, A.; Kim, J.H. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area. Sci. World J. 2015, 2015, 651763. [Google Scholar] [CrossRef] [PubMed]
- Rossman. EPANET 2.0 User’s Manual; EPA: Washington, DC, USA, 2000.
- Reca, J.; Martínez, J. Genetic algorithms for the design of looped irrigation water distribution networks. Water Resour. Res. 2006, 42, W05416. [Google Scholar] [CrossRef]
- K-Water. Water Facilities Construction Cost Estimation Report; K-water: Daejeon, Republic of Korea, 2010. [Google Scholar]
- Bolognesi, A.; Bragalli, C.; Marchi, A.; Artina, S. Genetic Heritage Evolution by Stochastic Transmission in the Optimal Design of Water Distribution Networks. Adv. Eng. Softw. 2010, 41, 792–801. [Google Scholar] [CrossRef]
- Zheng, F.; Simpson, A.R.; Zecchin, A.C. A Decomposition and Multistage Optimization Approach Applied to the Optimization of Water Distribution Systems with Multiple Supply Sources. Water Resour. Res. 2013, 49, 380–399. [Google Scholar] [CrossRef]
- Tolson, B.A.; Asadzadeh, M.; Maier, H.R.; Zecchin, A. Hybrid Discrete Dynamically Dimensioned Search (HD-DDS) Algorithm for Water Distribution System Design Optimization. Water Resour. Res. 2009, 45, W12416. [Google Scholar] [CrossRef]
Pipe No. | Pipe Diameter (mm) | Cost (EUR/m) |
---|---|---|
1 | 113 | 7.22 |
2 | 126.6 | 9.1 |
3 | 144.6 | 11.92 |
4 | 162.8 | 14.84 |
5 | 180.8 | 18.38 |
6 | 226.2 | 28.6 |
7 | 285 | 45.39 |
8 | 361.8 | 76.32 |
9 | 452.2 | 124.64 |
10 | 581.8 | 215.85 |
Pipe No. | Pipe Diameter (mm) | Cost (KRW/m) | ||
---|---|---|---|---|
Construction Costs | Material Costs | Maintenance Costs | ||
1 | 80 | 65,000 | 15,000 | 6500 |
2 | 100 | 65,999 | 27,583 | 6600 |
3 | 150 | 76,410 | 40,686 | 7641 |
4 | 200 | 86,028 | 58,716 | 8603 |
5 | 250 | 96,135 | 81,160 | 9614 |
6 | 300 | 105,325 | 103,231 | 10,533 |
7 | 350 | 113,818 | 125,107 | 11,382 |
8 | 400 | 126,797 | 148,836 | 12,680 |
9 | 450 | 136,250 | 155,522 | 13,625 |
10 | 500 | 147,792 | 181,823 | 14,779 |
11 | 600 | 171,991 | 211,396 | 17,199 |
12 | 700 | 211,413 | 273,528 | 21,141 |
13 | 800 | 307,640 | 339,740 | 30,764 |
14 | 900 | 359,048 | 384,619 | 35,905 |
15 | 1000 | 415,702 | 451,932 | 41,570 |
16 | 1100 | 482,074 | 547,224 | 48,207 |
17 | 1200 | 576,736 | 606,962 | 57,674 |
18 | 1350 | 687,390 | 716,075 | 68,739 |
Results | SHMS = 20 | ||||
Maximum NFEs = 45,400 | |||||
HMCR = 0.90 | |||||
PAR = 0.02 | |||||
HMS | |||||
20 (MTHSA (II)) | 60 (MTHSA (I)) | 80 | 140 | 180 | |
Best cost | 2,084,844 | 2,148,740 | 2,173,799 | 2,257,771 | 2,258,333 |
Average cost | 2,172,283 | 2,241,856 | 2,296,899 | 2,398,990 | 2,357,524 |
Worst cost | 2,275,710 | 2,337,867 | 2,387,676 | 2,511,507 | 2,419,805 |
Results | HMS = 60 | ||
Maximum NFEs = 45,400 | |||
HMCR = 0.90 | |||
PAR = 0.02 | |||
SHMS | |||
15 | 20 (MTHSA (I)) | 60 | |
Best cost | 2,189,682 | 2,148,740 | 2,092,939 |
Average cost | 2,256,933 | 2,241,856 | 2,182,203 |
Worst cost | 2,339,495 | 2,337,867 | 2,235,220 |
Results | HMS = 60 | ||||
SHMS = 20 | |||||
Maximum NFEs = 45,400 | |||||
PAR = 0.02 | |||||
HMCR | |||||
0.60 | 0.70 | 0.80 | 0.90 (MTHSA (I)) | 0.95 | |
Best Cost | 2,254,143 | 2,249,941 | 2,152,485 | 2,148,740 | 2,149,149 |
Average Cost | 2,364,283 | 2,310,543 | 2,259,354 | 2,241,856 | 2,236,766 |
Worst Cost | 2,497,447 | 2,421,521 | 2,377,791 | 2,337,867 | 2,309,875 |
Results | HMS = 60 | ||||
SHMS = 20 | |||||
Maximum NFEs = 45,400 | |||||
HMCR = 0.90 | |||||
PAR | |||||
0.02 (MTHSA (I)) | 0.05 | 0.10 | 0.20 | 0.30 | |
Best Cost | 2,148,740 | 2,328,460 | 2,577,756 | 2,932,669 | 3,305,492 |
Average Cost | 2,241,856 | 2,415,894 | 2,661,436 | 3,097,695 | 3,505,115 |
Worst Cost | 2,337,867 | 2,516,348 | 2,732,518 | 3,229,648 | 3,785,797 |
Control Parameter | Case | ||
---|---|---|---|
MTHSA (I) | MTHSA (II) | MTHSA (III) | |
HMS | 60 | 20 | 60 |
SHMS | 20 | 20 | 20 |
HMCR | 0.90 | 0.90 | 0.90 |
PAR | 0.02 | 0.02 | 0.02 |
NFEs | 45,400 | 45,400 | 1,000,000 |
Method | Best Cost | Average Cost | Worst Cost | Maximum NFEs |
---|---|---|---|---|
Decompose-DE | 1.923 | 1.931 | 1.935 | N/A |
GA | 3.738 | N/A 1 | N/A | 45,400 |
SA | 3.475 | N/A | N/A | 45,400 |
MSATS | 3.298 | N/A | N/A | 45,400 |
HAS (I) | 2.601 | N/A | N/A | 45,400 |
PSHS | 2.633 | N/A | N/A | 45,400 |
GHEST | 2.178 | N/A | N/A | 45,400 |
MBA | 2.211 | 2.384 | 2.433 | 45,400 |
IMBA (I) | 2.064 | 2.202 | 2.338 | 45,400 |
MTHSA (I) | 2.149 | 2.241 | 2.334 | 45,400 |
MTHSA (II) | 2.085 | 2.172 | 2.275 | 45,400 |
IMBA (II) | 2.013 | N/A | N/A | 250,000 |
MTHSA (III) | 1.932 | 2.029 | 2.078 | 1,000,000 |
NLP-DE1 | 1.956 | 1.957 | 1.959 | 1,000,000 |
NLP-DE2 | 1.923 | 1.927 | 1.934 | 2,000,000 |
HAS (II) | 2.018 | N/A | N/A | 10,000,000 |
DE3 | 1.982 | 1.986 | 1.989 | 10,000,000 |
GANOME | 2.302 | 2.334 | 2.350 | 10,000,000 |
HD-DDS-2 | 1.956 | N/A | N/A | 10,000,000 |
HD-DDS-1 | 1.941 | N/A | N/A | 30,000,000 |
Target Network | Optimal Design Costs (KRW) | ||
---|---|---|---|
HSA (Yoo et al. [48]) | MTHSA | Improved (%) | |
Branched Type (Plan 1) | 10,044,962,405 | 9,823,580,100 | (−) 2.20 |
Looped Type (Plan 2) | 10,182,733,295 | 9,898,369,770 | (−) 2.79 |
Pumped Type (Plan 3) | 11,586,379,380 | 11,380,850,160 | (−) 1.77 |
Target Network | Method | Best Cost | Average Cost | Worst Cost | Maximum NFEs |
---|---|---|---|---|---|
Branched Type (Plan 1) | HSA | 10,044,962,405 | N/A | N/A | N/A |
MTHSA | 9,823,580,100 | 9,867,502,032 | 10,030,934,665 | 15,500,000 | |
Looped Type (Plan 2) | HSA | 10,182,733,295 | N/A | N/A | N/A |
MTHSA | 9,898,369,770 | 10,080,620,691 | 10,264,994,760 | 15,500,000 | |
Pumped Type (Plan 3) | HSA | 11,586,379,380 | N/A | N/A | N/A |
MTHSA | 11,380,850,160 | 11,443,353,944 | 11,559,108,070 | 15,500,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-M.; Sadollah, A.; Choi, Y.-H.; Joo, J.-G.; Yoo, D.-G. Development and Sensitivity Analysis of an Improved Harmony Search Algorithm with a Multiple Memory Structure for Large-Scale Optimization Problems in Water Distribution Networks. Sustainability 2024, 16, 6689. https://doi.org/10.3390/su16156689
Lee H-M, Sadollah A, Choi Y-H, Joo J-G, Yoo D-G. Development and Sensitivity Analysis of an Improved Harmony Search Algorithm with a Multiple Memory Structure for Large-Scale Optimization Problems in Water Distribution Networks. Sustainability. 2024; 16(15):6689. https://doi.org/10.3390/su16156689
Chicago/Turabian StyleLee, Ho-Min, Ali Sadollah, Young-Hwan Choi, Jin-Gul Joo, and Do-Guen Yoo. 2024. "Development and Sensitivity Analysis of an Improved Harmony Search Algorithm with a Multiple Memory Structure for Large-Scale Optimization Problems in Water Distribution Networks" Sustainability 16, no. 15: 6689. https://doi.org/10.3390/su16156689
APA StyleLee, H. -M., Sadollah, A., Choi, Y. -H., Joo, J. -G., & Yoo, D. -G. (2024). Development and Sensitivity Analysis of an Improved Harmony Search Algorithm with a Multiple Memory Structure for Large-Scale Optimization Problems in Water Distribution Networks. Sustainability, 16(15), 6689. https://doi.org/10.3390/su16156689