Experimental Study on the Properties of Basalt Fiber–Cement-Stabilized Expansive Soil
Abstract
:1. Introduction
2. Test Materials and Methods
2.1. Test Materials
2.1.1. Expansive Soil
2.1.2. Basalt Fiber (BF) and Cement
2.2. Test Methods
2.2.1. Compaction Test
2.2.2. Swelling and Shrinkage Test
2.2.3. Unconfined Compressive Strength (UCS) Test
2.2.4. Undrained and Consolidation (CU) Shear Test
2.2.5. Dry–Wet Cycle Test
2.2.6. Scanning Electron Microscope (SEM) Test
3. Test Results and Analyses
3.1. Compaction Property
3.2. Swelling and Shrinkage Property
3.2.1. No Loading–Swelling Ratio
3.2.2. Shrinkage Ratio
3.3. Mechanical Properties
3.3.1. Unconfined Compressive Strength (UCS)
3.3.2. Partial Stress–Strain Curve
3.3.3. Shear Strength
3.3.4. Cohesion and Internal Friction Angle
3.4. Dry–Wet Cycle Durability
3.5. Microstructure
3.5.1. Microscopic Morphology and Mechanisms of BF Reinforcement
3.5.2. Microcosmic Mechanisms of Dry–Wet Cycle Deterioration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Wu, Z.; Garg, A.; Qin, Y.; Mei, G.; Lv, C.; Zhang, H. Experimental investigation for dynamic propertys of paraffin-graphite based CPCM (composite phase change material) amended expansive soil under dry-wet cycles. Constr. Build. Mater. 2023, 404, 133170. [Google Scholar] [CrossRef]
- Wu, Y.; Li, D.; Hu, X.; Han, T.; Yu, J.; Shi, K.; Wang, H.; Cao, Y. Experimental Study on Strength Propertys of Expansive Soil Improved by Steel Slag Powder and Cement Under Dry–Wet Cycles. Iran. J. Sci. Technol. Trans. Civ. Eng. 2020, 45, 941–952. [Google Scholar] [CrossRef]
- Miao, L.; Wang, F.; Ye, W.-m.; Jiang, M.; Li, J.; Shi, S. Combined method limiting shrinkage–swelling behaviours of expansive soils in Huai’an, China. Environ. Geotech. 2021, 8, 334–344. [Google Scholar] [CrossRef]
- Zhen, H.; Sun, H.-Y.; Dai, Y.-M.; Hou, P.-B.; Zhou, W.-Z.; Bian, L.-L. A study on the shear strength and dry-wet cracking behaviour of waste BF-reinforced expansive soil. Case Stud. Constr. Mater. 2022, 16, e01142. [Google Scholar]
- He, P.; Li, S.-C.; Xiao, J.; Zhang, Q.-Q.; Xu, F.; Zhang, J. Shallow Sliding Failure Prediction Model of Expansive Soil Slope based on Gaussian Process Theory and Its Engineering Application. KSCE J. Civ. Eng. 2018, 22, 1709–1719. [Google Scholar] [CrossRef]
- Rosenbalm, D.; Zapata, E.C. Effect of Wetting and Drying Cycles on the Behavior of Compacted Expansive Soils. J. Mater. Civ. Eng. 2016, 29, 04016191. [Google Scholar] [CrossRef]
- Liu, C.; Lu, K.; Wu, Z.; Liu, X.; Garg, A.; Qin, Y.; Mei, G.; Lv, C. Expansive soil improvement using industrial bagasse and low-alkali ecological cement. Constr. Build. Mater. 2024, 423, 135806. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, S.; Zhang, Y.; Li, Z.; Xu, L. Freeze-thaw performance of a cement-treated expansive soil. Cold Reg. Sci. Technol. 2020, 170, 102926. [Google Scholar] [CrossRef]
- Yan, J.; Li, T.; Kong, L.-W.; Luo, X.; Zhou, Z.; Wang, J. Nonlinear decay behavior of small strain dynamic shear modulus of lime-treated expansive soil. J. Soils Sediments 2023, 23, 3310–3325. [Google Scholar] [CrossRef]
- Festugato, L.; Menger, E.; Benezra, F.; Kipper, E.A.E.; Consoli, N.C. BF-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotext. Geomembr. 2017, 45, 77–82. [Google Scholar] [CrossRef]
- Yang, B.-H.; Weng, X.-Z.; Liu, J.-Z.; Kou, Y.-N.; Jiang, L.; Li, H.-L.; Yan, X.-C. Strength propertys of modified polypropylene fiber and cement-reinforced loess. J. Cent. South Univ. 2017, 24, 560–568. [Google Scholar] [CrossRef]
- Tariq, M.W.; Israr, J.; Farooq, K.; Mujtaba, H. Strength Mechanism of a Swelling Soil Improved with Jute Fibers: A Laboratory Treatment. Geotech. Geol. Eng. 2023, 41, 4367–4380. [Google Scholar] [CrossRef]
- Pourakbar, S.; Fasihnikoutalab, M.; Ball, R.; Cristelo, N.; Huat, B. Soil reinforcement through addition and subsequent carbonation of wollasonite microfibres. Geosynth. Int. 2017, 24, 554–564. [Google Scholar] [CrossRef]
- Kanchi, G.M.; Neeraja, V.S.; Babu, G.L.S. Effect of Anisotropy of Fibers on the Stress-Strain Response of Fiber-Reinforced Soil. Int. J. Geomech. 2014, 15, 06014016. [Google Scholar] [CrossRef]
- Adhikari, B.; Khattak, M.J.; Adhikari, S. Mechanical and durability propertys of flyash-based soil-geopolymer mixtures for pavement base and subbase layers. Int. J. Pavement Eng. 2021, 22, 1193–1212. [Google Scholar] [CrossRef]
- Abdullah, H.H.; Shahin, A.M.; Sarker, P. Use of Fly-Ash Geopolymer Incorporating Ground Granulated Slag for Stabilisation of Kaolin Clay Cured at Ambient Temperature. Geotech. Geol. Eng. 2019, 37, 721–740. [Google Scholar] [CrossRef]
- Chowdary, V.B.; Ramanamurty, V.; Pillai, R.J. Experimental evaluation of strength and durability propertys of geopolymer stabilised soft soil for deep mixing applications. Innov. Infrastruct. Solut. 2020, 6, 40. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, T.; Cui, Y.; Wang, Z.; Wang, W.; Zheng, J. Compression and shear properties of OPC-MCA and basalt fiber cured shield waste mud after dry-wet cycles. Constr. Build. Mater. 2024, 426, 136153. [Google Scholar] [CrossRef]
- Shu, H.; Yu, Q.; Niu, C.; Sun, D.; Wang, Q. The coupling effects of wet-dry and freeze–thaw cycles on the mechanical properties of saline soil synergistically solidified with sulfur-free lignin, basalt fiber and hydrophobic polymer. Catena 2024, 238, 107832. [Google Scholar] [CrossRef]
- Nguyen, L.; Fatahi, B. Behaviour of clay treated with cement & fibre while capturing cementation degradation and fibre failure—C3F Model. Int. J. Plast. 2016, 81, 168–195. [Google Scholar]
- Xu, Y.; Han, Y.; Zhao, G.; Meng, S. Enhancing geotechnical reinforcement: Exploring molybdenum tailings and basalt BF-modified composites for sustainable construction. Constr. Build. Mater. 2024, 411, 134452. [Google Scholar] [CrossRef]
- Ralegaonkar, R.; Gavali, H.; Aswath, P.; Abolmaali, S. Application of chopped basalt fibers in reinforced mortar: A review. Constr. Build. Mater. 2018, 164, 589–602. [Google Scholar] [CrossRef]
- Xue, G.; Liang, H.; Pu, Y.; Wang, D.; Wang, Y. Enhancing thermal stability and tensile performance of short basalt fiber-reinforced PLA composites with PBAT and nano-silica. Compos. Commun. 2024, 48, 101894. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Ding, L.; Jiang, K.; Su, C.; Ben, Q.; Wu, Z. Effects of macro basalt fibers on the tensile behavior of ultra-high performance concrete. J. Build. Eng. 2024, 89, 109277. [Google Scholar] [CrossRef]
- Sun, Z.; Kou, C.; Lu, Y.; Wu, Z.; Kang, A.; Xiao, P. A Study of the Bond Strength and Mechanism between Basalt Fibers and Asphalt Binders. Appl. Sci. 2024, 14, 2471. [Google Scholar] [CrossRef]
- GB/T 50123; Geotechnical Test Standard. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2019.
- GB 50112; Technical Code for Building in Expansive Soil Region. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2013.
- Ibraim, E.; Camenen, J.; Diambra, A.; Kairelis, K.; Visockaite, L.; Consoli, N.C. Energy efficiency of BF reinforced soil formation at small element scale: Laboratory and numerical investigation. Geotext. Geomembr. 2018, 46, 497–510. [Google Scholar] [CrossRef]
- Dai, Z.; Huang, K.; Chi, Z.; Chen, S. Model test study on the deformation and stability of rainfall-induced expansive soil slope with weak interlayer. Bull. Eng. Geol. Environ. 2024, 83, 76. [Google Scholar] [CrossRef]
- Chang, J.; Xu, Y.-F.; Xiao, J.; Wang, L.; Jiang, J.-Q.; Guo, J.-X. Influence of acid rain climate environment on deterioration of shear strength parameters of natural residual expansive soil. Transp. Geotech. 2023, 42, 101017. [Google Scholar] [CrossRef]
Maximum Dry Density (g/cm3) | Specific Gravity | Liquid Limit/% | Plastic Limit/% | Plasticity Index | Sticky Grain Content/% | |
---|---|---|---|---|---|---|
<0.005 mm | <0.0025 mm | |||||
1.98 | 2.68 | 54.3 | 24.2 | 30.1 | 55.03 | 53.3 |
BF Length (mm) | Monofilament Diameter (μm) | Densities (g/cm3) | Modulus of Elasticity (GPa) | Tensile Strength (MPa) |
---|---|---|---|---|
6 | 7~15 | 2.64 | 90~110 | 3000~4800 |
Packing Density (g/m3) | Specific Surface Area (m2/kg) | Solidification Time (min) | Compressive Strength (GPa) | ||
---|---|---|---|---|---|
Initial Condensation | Final Condensation | 3 d | 28 d | ||
1.60 | 300 | 175 | 231 | 23.7 | 45.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Mu, J.; Chen, A.; Long, Y.; Zhang, Y.; Zou, J. Experimental Study on the Properties of Basalt Fiber–Cement-Stabilized Expansive Soil. Sustainability 2024, 16, 7579. https://doi.org/10.3390/su16177579
Chen J, Mu J, Chen A, Long Y, Zhang Y, Zou J. Experimental Study on the Properties of Basalt Fiber–Cement-Stabilized Expansive Soil. Sustainability. 2024; 16(17):7579. https://doi.org/10.3390/su16177579
Chicago/Turabian StyleChen, Junhua, Jiejie Mu, Aijun Chen, Yao Long, Yanjiang Zhang, and Jinfeng Zou. 2024. "Experimental Study on the Properties of Basalt Fiber–Cement-Stabilized Expansive Soil" Sustainability 16, no. 17: 7579. https://doi.org/10.3390/su16177579
APA StyleChen, J., Mu, J., Chen, A., Long, Y., Zhang, Y., & Zou, J. (2024). Experimental Study on the Properties of Basalt Fiber–Cement-Stabilized Expansive Soil. Sustainability, 16(17), 7579. https://doi.org/10.3390/su16177579