Inventory and Evaluation of Geosites: Case Studies of the Slovak Karst as a Potential Geopark in Slovakia
Abstract
:1. Introduction
2. Study Area
2.1. The Slovak Karst
2.2. Geosites of the Territory
2.3. Jasovská Cave and Its Surroundings (Figure 3)
2.4. Gombasecká Cave and Its Surroundings (Figure 7)
2.5. Domica Cave and Its Surroundings (Figure 10)
3. Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadry, B.N. The Geotourism Industry in the 21st Century—The Origin, Principles, and Futuristic Approach; Apple Academic Press: Point Pleasant, NJ, USA, 2021; p. 596. [Google Scholar]
- Chen, A.; Lu, Y.; Ng, Y. The Principles of Geotourism; Springer: Berlin/Heidelberg, Germany, 2015; p. 264. [Google Scholar]
- Hose, T.A. (Ed.) Appreciating Physical Landscapes—Three Hundred Years of Geotourism; Geological Society: London, UK, 2016; p. 248. [Google Scholar]
- Gamkrelidze, I.; Okrostsvaridze, A.; Koiava, K.; Maisadze, F. Geotourism Potential of Georgia, the Caucasus—History, Culture, Geology, Geotourist Routes and Geoparks; Geoheritage, Geoparks and Geotourism; Springer: Berlin/Heidelberg, Germany, 2021; p. 81. [Google Scholar]
- Carcavilla, L.; Díaz-Martínez, E.; García-Cortés, A.; Vegas, J. Geoheritage and Geodiversity; Instituto Geológico y Minero de España: Madrid, Spain, 2019; p. 22. [Google Scholar]
- Gray, J.M. Geodiversity-Valuing and Conserving Abiotic Nature; Wiley and Sons: Hoboken, NJ, USA, 2004; p. 451. [Google Scholar]
- Drinia, H.; Voudouris, P.; Antonarakou, A. (Eds.) Geoheritage and Geotourism Resources—Education, Recreation, Sustainability; Special Issue in Geosciences; MDPI-Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2022; p. 346. [Google Scholar]
- Reynard, E.; Brilha, J. (Eds.) Geoheritage. Assessment, Protection, and Management; Elsevier: Amsterdam, The Netherlands, 2018; p. 455. [Google Scholar]
- Konečný, V.; Pachinger, P. Geotopes of the Banská Štiavnica Geopark–Volcanism and Structure of the Territory; SAŽP: Banská Bystrica, Slovakia, 2023; p. 282.
- Schüppel, K.; Wrede, V. Nationaler GeoPark Ruhrgebiet; Geoparks; Springer: Berlin/Heidelberg, Germany, 2022; p. 215. [Google Scholar]
- Goudie, A.S. (Ed.) Encyclopedia of Geomorphology 2 Vol Set; Routledge: London, UK; New York, NY, USA, 2004; p. 1202. [Google Scholar]
- Available online: https://www.unesco.org/en/iggp/geoparks/about (accessed on 1 July 2024).
- Available online: https://www.europeangeoparks.org/?page_id=165 (accessed on 1 July 2024).
- Ilie, G.C.; Grecu, F. Analysis of the Scientific Importance and Vulnerability of the Sarea lui Buzău Geosite Within the Buzău Land UNESCO Global Geopark, Romania. Geoheritage 2023, 15, 35. [Google Scholar] [CrossRef]
- Oppizzi, P.; Pasquaré Mariotto, F.; Stockar, R.; Stella, A.; Corti, N.; Pedicini, M.; Andò, S.; Vezzoli, G.; Bonali, F.L. Geosites in the Gole della Breggia Geopark, Ticino, Southern Switzerland. Resources 2023, 12, 122. [Google Scholar] [CrossRef]
- Fuad, H.; Intan, H.N. Exploration of the Potential Geosite of Ijen Geopark Bondowoso Region as an Educational Tourism. J. Kepariwisataan-Destin. Hosp. Perjalanan 2023, 7, 196–205. [Google Scholar]
- Perotti, L.; Bollati, I.M.; Viani, C.; Zanoletti, E.; Caironi, V.; Pelfini, M.; Giardino, M. Fieldtrips and Virtual Tours as Geotourism Resources—Examples from the Sesia Val Grande UNESCO Global Geopark (NW Italy). Resources 2020, 9, 63. [Google Scholar] [CrossRef]
- Testa, B.; Aldighieri, B.; Bertini, A.; Blendinger, W.; Caielli, G.; Franco, R.; Giordano, D.; Kustatscher, E. Geomorphodiversity of the San Lucano Valley (Belluno Dolomites, Italy)—A Well-Preserved Heritage. Geoheritage 2013, 5, 151–172. [Google Scholar] [CrossRef]
- Coratza, P.; Ghinoi, A.; Piacentini, D.; Valdati, J. Management of geomorphosites in high tourist vocation area—An example of Geo-Hiking maps in the Alpe di Fanes (Italian Dolomites). Geoj. Tour. Geosites 2008, 2, 106–117. [Google Scholar]
- Reynard, E.; Coratza, P. The importance of mountain geomorphosites for environmental education—Examples from the Italian Dolomites and the Swiss Alps. Acta Geogr. Slov. 2016, 56, 291–303. [Google Scholar] [CrossRef]
- Chrobak, A.; Witkowski, K.; Szmańda, J. Assessment of the Educational Values of Geomorphosites Based on the Expert Method, Case Study—The Białka and Skawa Rivers, the Polish Carpathians. Quaest. Geogr. Sciendo 2020, 39, 45–57. [Google Scholar] [CrossRef]
- Neches, I.M. From Geomorphosite Evaluation to Geotourism Interpretation. Case Study—The Sphinx of Romania’s Southern Carpathians. Geoj. Tour. Geosites 2013, 12, 145–162. [Google Scholar]
- Tomić, N.; Marković, S.B.; Antić, A.; Tešić, D. Exploring the potential for geotourism development in the Danube region of Serbia. Int. J. Geoheritage Parks 2020, 8, 123–139. [Google Scholar] [CrossRef]
- Ilinca, V.; Milu, V.; Peligrad, S.; Gheuca, I. The Albeşti Limestone—A geoheritage and cultural heritage in Romania. J. Maps 2023, 19, 2135465. [Google Scholar] [CrossRef]
- Božić, S.; Tomić, N. Canyons and gorges as potential geotourism destinations in Serbia. Open Geosci. 2015, 7, 531–546. [Google Scholar] [CrossRef]
- Telbisz, T.; Gruber, P.; Mari, L.; Kőszegi, M.; Bottlik, Z.; Standovár, T. Geological Heritage, Geotourism and Local Development in Aggtelek National Park (NE Hungary). Geoheritage 2020, 12, 5. [Google Scholar] [CrossRef]
- Panizza, M. The Geomorphodiversity of the Dolomites (Italy)—A Key of Geoheritage Assessment. Geoheritage 2009, 1, 33–42. [Google Scholar] [CrossRef]
- Dolma, M. Canyons of Albania and geotourism development. Acta Geoturistica 2018, 9, 28–34. [Google Scholar] [CrossRef]
- Ghosh, A.; Mukhopadhyay, S.; Chatterjee, S. Assessment of geoheritage and prospects of geotourism—An approach to geoconservation of important geological and geomorphological sites of Puruliya district, West Bengal, India. IJoGaP 2021, 9, 264–283. [Google Scholar] [CrossRef]
- Ivanović, M.; Lukić, T.; Milentijević, N.; Bojović, V.; Valjarević, A. Assessment of geosites as a basis for geotourism development—A case study of the Toplica District, Serbia. Open Geosci. 2023, 15, 20220589. [Google Scholar] [CrossRef]
- Navarrete, E.; Morante-Carballo, F.; Dueñas-Tovar, J.; Carrión-Mero, P.; Jaya-Montalvo, M.; Berrezueta, E. Assessment of Geosites within a Natural Protected Area—A Case Study of Cajas National Park. Sustainability 2022, 14, 3120. [Google Scholar] [CrossRef]
- Ruiz-Pedrosa, R.M.; González-Amuchástegui, M.J.; Serrano, E. Geomorphosites as Geotouristic Resources—Assessment of Geomorphological Heritage for Local Development in the Río Lobos Natural Park. Land 2024, 13, 128. [Google Scholar] [CrossRef]
- Suryawanshi, R.S.; Ranyewale, S.K. Tourism potential of Geomorphosites—A comparative assessment of selected beach sites in Malvan Tahsil, Sindhudurg coast of Maharashtra (India). Transactions 2018, 40, 285–292. [Google Scholar]
- Tamang, L.; Mandal, U.K.; Karmakar, M.; Banerjee, M.; Ghosh, D. Geomorphosite evaluation for geotourism development using geosite assessment model (GAM)—A study from a Proterozoic terrain in eastern India. IJoGaP 2023, 11, 82–99. [Google Scholar] [CrossRef]
- Beraaouz, M.; Macadam, J.; Bouchaou, L.; Ikenne, M.; Ernst, R.; Tagma, T.; Masrour, M. An inventory of geoheritage sites in the Draa Valley (Morocco): A contribution to promotion of Geotourism and sustainable development. Geoheritage 2019, 11, 241–255. [Google Scholar] [CrossRef]
- Baadi, K.; Sabaoui, A.; Tekiout, B. Methodological Proposal for Assessment Geosites: Its Application in Bou-Iblane Region (Middle Atlas, Morocco). Geoheritage 2020, 12, 55. [Google Scholar] [CrossRef]
- Diniz, M.T.M.; Araújo, I.G.D.; Chagas, M.D. Comparative study of quantitative assessment of the geomorphological heritage of the coastal zone of Icapuí—Ceará, Brazil. Int. J. Geoheritage Parks 2022, 10, 124–142. [Google Scholar] [CrossRef]
- Pál, M.; Albert, G. Refinement Proposals for Geodiversity Assessment—A Case Study in the Bakony–Balaton Unesco Global Geopark, Hungary. ISPRS Int. J. Geo-Inf. 2021, 10, 566. [Google Scholar] [CrossRef]
- An, L.T.; Markowski, J.; Bartos, M.; Rzenca, A.; Namiecinski, P. An Evaluation of Destination Attractiveness for Nature-Based Tourism: Recommendations for the Management of National Parks in Vietnam. Nat. Conserv. 2019, 32, 51–80. [Google Scholar] [CrossRef]
- Bayrak, G.; Teodorovych, L. Assesment of the Attractiveness of Geotouristic Areas of the Ukrainian Charpathians Beskid Mountains. Gpc 2023, 15, 154–171. [Google Scholar] [CrossRef]
- Ahmed, E.A. Assessment of the geosites and geodiversity in the prospective geopark in Siwa in the Western Desert of Egypt. Int. J. Geoheritage Parks 2023, 11, 182–201. [Google Scholar] [CrossRef]
- Belij, M.; Đurđić, S.; Stojković, S. The Evaluation of Geoheritage for Geotourism Development—Case Study on the Potential Geopark Djerdap. Collect. Pap.-Fac. Geogr. Univ. Belgrade 2018, 66, 121–132. [Google Scholar] [CrossRef]
- Diniz, M.T.M.; de Oliveira Terto, M.L.; da Silva, F.E.B. Assessment of the Geomorphological Heritage of the Costa Branca Area, a Potential Geopark in Brazil. Resources 2023, 12, 13. [Google Scholar] [CrossRef]
- Hose, T.A. The English Peak District (as a potential geopark)—Mining geoheritage and historical geotourism. Acta Geoturistica 2017, 8, 32–49. [Google Scholar] [CrossRef]
- Hussain, A.I. Geodiversity of Smaquli area as a potential geopark in Kurdistan region, Iraq. Int. J. Geoheritage Parks 2022, 10, 477–490. [Google Scholar] [CrossRef]
- Kasiński, J.R.; Koźma, J.; Gawlikowska, E. Geotopes of the proposed Muskau Arc Geopark—Inventory, classification and evaluation. Pol. Geol. Inst. Spec. Pap. 2004, 13, 73–88. [Google Scholar]
- Molokáč, M.; Babicová, Z.; Pachinger, P.; Kornecká, E. Evaluation of Geosites from the Perspective of Geopark Management—The Example of Proposed Zemplín Geopark. Geoheritage 2023, 15, 129. [Google Scholar] [CrossRef]
- Nyulas, J.; Dezsi, Ș.; Haidu, I.; Magyari-Sáska, Z.; Niță, A. Attractiveness Assessment Model for Evaluating an Area for a Potential Geopark—Case Study—Hațeg UNESCO Global Geopark (Romania). Land 2024, 13, 148. [Google Scholar] [CrossRef]
- Petrovic, A.S.; Nikolić, D.; Trnavac Bogdanović, D.; Carević, I. Assessment of karst geomorphosites on Kučaj and Beljanica mountains as a resource for the development of karst-based geopark. Acta Carsologica 2020, 49, 179–190. [Google Scholar] [CrossRef]
- Pimentel, N.; Pereira, B.; Reis Silva, M. From Geoheritage to Geosites at the Oeste Aspiring Geopark (Portugal). Geoheritage 2024, 16, 31. [Google Scholar] [CrossRef]
- Sengupta, D.; Dutt, S.; Daly, B.D.K.; Panda, S. Development of Geopark for Protecting Karst Region of Nongkhlieh Area, Meghalaya. Geoheritage 2024, 16, 6. [Google Scholar] [CrossRef]
- Sachkov, D.; Tsvetkova, I.; Atanasova, N. Geomorphosite Characterization Method for the Purpose of an Aspiring Geopark Application Dossier on the Example of Maritsa Cirque Complex in Geopark Rila, Rila Mountain, SW Bulgaria. Geoheritage 2020, 12, 26. [Google Scholar]
- Mehdioui, S.; El Hadi, H.; Tahiri, A.; Brilha, J.; El Haibi, H.; Tahiri, M. Inventory and Quantitative Assessment of Geosites in Rabat-Tiflet Region (North Western Morocco): Preliminary Study to Evaluate the Potential of the Area to Become a Geopark. Geoheritage 2020, 12, 35. [Google Scholar] [CrossRef]
- Hapsari, D.M.; Ardiansyah, B.K. Prospek Geopark Nasional Karangsambung- Karangbolong Terhadap Lima Kawasan Ekowisata Di Kabupaten Kebumen Provinsi Jawa Tengah. J-3P (J. Pembang. Pemberdaya. Pemerintah.) 2020, 5, 67–82. [Google Scholar] [CrossRef]
- Valentini, L.; Guerra, V.; Nesci, O. The Mt. Catria–Mt. Nerone Ridge in the North-Marchean Apennines (Central Italy): A Potential Geopark? Sustainability 2023, 15, 11382. [Google Scholar] [CrossRef]
- Tropeano, M.; Caldara, M.A.; De Santis, V.; Festa, V.; Parise, M.; Sabato, L.; Spalluto, L.; Francescangeli, R.; Iurilli, V.; Mastronuzzi, G.A.; et al. Geological Uniqueness and Potential Geotouristic Appeal of Murge and Premurge, the First Territory in Puglia (Southern Italy) Aspiring to Become a UNESCO Global Geopark. Geosciences 2023, 13, 131. [Google Scholar] [CrossRef]
- Marjanović, M.; Milenković, J.; Lukić, M.; Tomić, N.; Antić, A.; Marković, R.; Atanasijević, J.; Božić, D.; Buhmiler, S.; Radaković, M.; et al. Geomorphological and hydrological heritage of Mt. Stara Planina in SE Serbia: From river protection initiative to potential geotouristic destination. Open Geosci. 2022, 14, 275–293. [Google Scholar] [CrossRef]
- Antić, A.; Dragović, N.; Tomić, N. Show cave websites in Serbia—Evaluation and potential improvements. Hotel. Tour. Manag. 2021, 9, 11–25. [Google Scholar] [CrossRef]
- Antić, A.; Tomić, N. Assessing the speleotourism potential together with archaeological and palaeontological heritage in Risovača cave (central Serbia). Acta Geoturistica 2019, 10, 1–11. [Google Scholar]
- Antić, A.; Marković, S.B.; Marković, R.S.; Cai, B.; Nešić, D.; Tomić, N.; Mihailović, D.; Plavšić, S.; Radakovic, M.G.; Radivojević, A.; et al. Towards Sustainable Karst-Based Geotourism of the Mount Kalafat in Southeastern Serbia. Geoheritage 2020, 14, 16. [Google Scholar] [CrossRef]
- Antić, A.; Tomić, N.; Marković, S. Applying the show cave assessment model (SCAM) on cave tourism destinations in Serbia. Int. J. Geoheritage Parks 2022, 10, 616–634. [Google Scholar] [CrossRef]
- Ballesteros, D.; Fernández-Martínez, E.; Carcavilla, L.; Jiménez-Sánchez, M. Karst Cave Geoheritage in Protected Areas—Characterisation and Proposals of Management of Deep Caves in the Picos de Europa National Park (Spain). Geoheritage 2019, 11, 4. [Google Scholar] [CrossRef]
- Čech, V.; Gregorová, B.; Hronček, P.; Fogaš, A. Caves of the Low Tatras National Park and Its Neighbourhood as Objects of Speleotourism. Acta Montan. Slovaca 2021, 26, 375–393. [Google Scholar]
- Imrani, Z.T.; Zeynalova, K.Z.; Hidayatli, G.A. A study of caves and their speleotourism potential in Azerbaijan. ANAS Trans. Earth Sci. 2023, 1, 100–110. [Google Scholar] [CrossRef]
- Kim, S.S.; Kim, M.; Park, J.; Guo, Y. Cave Tourism—Tourists Characteristics, Motivations to Visit, and the Segmentation of Their Behavior. Asia Pac. J. Tour. Res. 2008, 13, 299–318. [Google Scholar] [CrossRef]
- Maksoud, K.M.A.; Baghdadi, M.I.; Ruban, D.A. Caves as geoheritage resource in remote desert areas—A preliminary evaluation of Djara Cave in the Western Desert of Egypt. Geologos 2021, 27, 105–113. [Google Scholar] [CrossRef]
- Rindam, M. Cave Tourism—The Potential of Asar Cave as a Natural Tourism Asset at Lenggong Valley, Perak. SHS Web Conf. 2014, 12, 01014. [Google Scholar] [CrossRef]
- Ríos-Reyes, C.A.; Manco-Jaraba, D.C.; Castellanos-Alarcón, O.M. Geotourism in caves of Colombia as a novel strategy for the protection of natural and cultural heritage associated to underground ecosystems. Biodivers. Int. J. 2018, 2, 464–474. [Google Scholar]
- Rohani, E.D.; Baiquni, M.; Wijono, D.; Suprihanto, J. Potential Tourism Attraction of Cokro Cave Gunungkidul Regency as a Special Interest Tourism Development. Indones. J. Geogr. 2023, 55, 332–338. [Google Scholar] [CrossRef]
- Sanna, L.; Chiarini, V.; De Waele, J. Underground Geodiversity of Italian Show Caves—An Overview. Geoheritage 2023, 15, 126. [Google Scholar] [CrossRef]
- Tičar, J.; Tomić, N.; Breg Valjavec, M.; Zorn, M.; Marković, S.B.; Gavrilov, M.B. Speleotourism in Slovenia—Balancing between mass tourism and geoheritage protection. Open Geosci. 2018, 10, 344–357. [Google Scholar] [CrossRef]
- omić, N.; Antić, A.; Marković, S.B.; Đorđević, T.; Zorn, M.; Valjavec, M.B. Exploring the Potential for Speleotourism Development in Eastern Serbia. Geoheritage 2018, 11, 359–369. [Google Scholar]
- Vuković, S.; Antić, A. Speleological Approach for Geotourism Development in Zlatibor County (West Serbia). Turizam 2019, 23, 53–68. [Google Scholar] [CrossRef]
- Zieliński, A.; Marek, A.; Zwoliński, Z. Geotourism potential of show caves in Poland. Quaest. Geogr. 2022, 41, 169–181. [Google Scholar] [CrossRef]
- Telbisz, T.; Mari, L. The significance of karst areas in European national parks and geoparks. Open Geosci. 2020, 12, 117–132. [Google Scholar] [CrossRef]
- Andrusov, D. Stratigrafie Triasu Slovenských Karpat; Věstník státního geologického ústavu: Praha, Czech Republic, 1935; p. 11. [Google Scholar]
- Jakál, J.; Bella, P. (Eds.) Caves of the World Heritage in Slovakia; Slovak Caves Administration: Liptovský Mikuláš, Slovakia, 2008; p. 168.
- Droppa, A. Príspevok k vývoju jaskyne Domica. Ceskoslov. Kras 1972, 22, 65–72. [Google Scholar]
- Erdös, M.; Lalkovič, M. Jaskyne, priepasti a vyvieračky južnej časti Silickej planiny. Slov. Kras 1996, 34, 157–158. [Google Scholar]
- Roth, Z. Vývoj jeskyně Domica; Nákladem Učené Společnosti Šafaříkovy: Praha, Czech Republic, 1937; p. 43. [Google Scholar]
- Ford, D.C. Caves Branch, Belize, and the Baradla–Domica System, Hungary and Slovakia. In Speleogenesis. Evolution of Karst Aquifers; Klimchuk, A.B., Ford, D.C., Palmer, A.N., Dreybrodt, W., Eds.; National Speleological Society: Huntsville, AL, USA, 2000; pp. 391–396. [Google Scholar]
- Bystrický, J. Príspevok ku geológii Slovenského krasu (územie medzi Silicou a Domicou). Geol. Práce Zprávy Bratisl. 1960, 17, 20. [Google Scholar]
- Bella, P. Geomorfologické pomery okolia jaskyne Domica. Aragonit 2004, 6, 5–11. [Google Scholar]
- Gaál, Ľ. Geodynamika a Vývoj Jaskýň Slovenského Krasu; Slovak Caves Administration: Liptovský Mikuláš, Slovakia, 2008; p. 166.
- Jakál, J. Príspevok k poznaniu vzniku krasových priehlbní v Slovenskom krase. Geogr. Časopis 1971, 4, 27–35. [Google Scholar]
- Jakál, J. Kras Silickej Planiny; Osveta: Martin, Slovakia, 1975; p. 152. [Google Scholar]
- Bella, P. Geografický výskum krasovej krajiny a jej ochrana. Pamiatky–Príroda 1988, 19, 32–34. [Google Scholar]
- Bella, P.; Borzsák, S.; Gaál, Ľ.; Gruber, P.; Haviarová, D.; Kilík, J.; Papáč, V.; Zelinka, J. Svetové Dedičstvo, Jaskyne Slovenského a Aggtelekského Krasu; Slovak Caves Administration: Liptovský Mikuláš, Slovakia, 2015; p. 124. [Google Scholar]
- Orvan, J. Hydrologické pomery krasovej vyvieračky Buzgó v Bohúňove. Slov. Kras 1979, 17, 77–84. [Google Scholar]
- Háberová, I.; Karasová, E. Hydroséria vegetácie Jašteričieho jazera na Silickej planine. Ochr. Prírody 1991, 11, 298–307. [Google Scholar]
- Haviarová, D.; Gavurník, J. Základné zhodnotenie výsledkov monitoringu hydrologického režimu v jaskyni Domica za obdobie 2016–2021. Aragonit 2021, 26, 51–63. [Google Scholar]
- Čech, V. Geografické Aspekty Ochrany Prírody a Krajiny; Prešovská univerzita v Prešove: Prešov, Slovakia, 2015; p. 221. [Google Scholar]
- Ambros, M. Hraboš močiarny (Microtus agrestis Linnaeus) v Slovenskom krase. Lynx 1984, 26, 1–21. [Google Scholar]
- Rozložník, M.; Karasová, E. Slovenský Kras, Chránená Krajinná Oblasť–Biosférická Rezervácia; Osveta: Martin, Slovakia, 1994; p. 479. [Google Scholar]
- Baruš, V. Červená Kniha Ohrožených a Vzácných Druhú Rostlin a Zivočichú ČSSR 2; Státní zemědělské nakladatelství: Praha, Czech Republic, 1989; p. 136. [Google Scholar]
- Čejchan, A. Orthopteroidní hmyz statní přírodní rezervace Zádiel a nejbližšího kolí. Časopis Slez. Muz. 1959, 8, 97–114. [Google Scholar]
- Danko, Š.; Deneš, B. Nálezy niektorých vzácnejších druhov netopierov na východnom Slovensku. Časopis Slez. Muz. 1976, 15, 179–183. [Google Scholar]
- Dostál, J. Geobotanický přehled vegetace Slovenského krasu. Věstník Královské České Společnosti 1933, 2, 1–44. [Google Scholar]
- Gulička, J. Fauna slovenských jaskýň. Slovenský Kras 1975, 13, 37–85. [Google Scholar]
- Gulička, J. K otázke výskytu pravekých troglobiontov v slovenských jaskyniach. Slovenský Kras 1977, 15, 23–77. [Google Scholar]
- Gulička, J. K otázke pôvodu troglobiontov a klasifikácie jaskynných spoločenstiev. Slovenský Kras 1978, 16, 69–93. [Google Scholar]
- Háberová, I.; Dzubinová, Z.; Fajmonová, E.; Jančová, M.; Karasová, E.; Lisická, E.; Petrík, A.; Uhlířová, J. Flóra a vegetácia Plešiveckej planiny. Výskumné Práce Ochr. Prírody 1988, 6, 5–96. [Google Scholar]
- Mucina, L.; Maglocký, Š. A list of vegetation units of Slovakia. Doc. Phytosoc. 1985, 9, 175–220. [Google Scholar]
- Kučera, B.; Hromas, J.; Skřivánek, F. Jeskyně a Propasti v Československu; Academia: Praha, Czech Republic, 1981; p. 252. [Google Scholar]
- Prikryl, Ľ.V. Dejiny Speleológie na Slovensku; Veda SAV: Bratislava, Slovakia, 1985; p. 158. [Google Scholar]
- Ložek, V.; Horáček, I. Slovenský kras ve světle kvartérní geologie. Slovenský Kras 1992, 30, 29–56. [Google Scholar]
- Barjadze, S.; Parimuchov, A.; Raschmanov, N.; Maghradze, E.; Kov, U. Two new species of Plutomurus Yosii (Collembola: Tomoceridae) from the Caucasus and central Europe. Zootaxa 2022, 69, 252–266. [Google Scholar] [CrossRef] [PubMed]
- Balega, A. Jasov, Kostol a Kláštor Premonštrátov; Pallas: Bratislava, Slovakia, 1991; p. 22. [Google Scholar]
- Bella, P.; Hlaváčová, I.; Holúbek, P. Zoznam Jaskýň Slovenskej Republiky; Slovenské múzeum ochrany prírody a jaskyniarstva: Liptovský Mikuláš, Slovakia, 2018; p. 528. [Google Scholar]
- Bella, P.; Haviarová, D. Typy jaskynných jazier na Slovensku podl’a geologických a geomorfologických podmienok a procesov ich vzniku. Aragonit 2017, 22, 49–56. [Google Scholar]
- Suchý, T.; Suchý, Ľ.; Hetesi, J.; Šichula, M. Newly discovered passages in the Gombasecká Cave. Bull. Slovak Speleol. Soc. 2017, 17–19. [Google Scholar]
- Bella, P.; Vlček, L. Show Caves of Slovakia. Bull. Slovak Speleol. Soc. 2017, 6–12. [Google Scholar]
- Mello, J.; Snopková, P. Vrchnokriedový vek výplní v dutinách triasových vápencov gombaseckého lomu. Geol. Práce 1973, 61, 239–253. [Google Scholar]
- Pandula, P.; Kondela, J.; Konček, M.; Farkašovský, R. Optimalizácia vplyvu trhacích prác v lome Gombasek na Gombaseckú jaskyňu. Aragonit 2021, 26, 64–69. [Google Scholar]
- Botoš, A.; Mordovin, M.; Bešina, D. Archeologický výskum zaniknutého paulínskeho kláštora v Slavci–Gombaseku. Zborník Gotická Cesta III 2018, 115–126. [Google Scholar]
- Bella, P. Kras a jaskyne Slovenského krasu. Krásy Slov. 2012, 59, 16–19. [Google Scholar]
- Lalkovič, M. Ján Majko-Životné Osudy Jaskyniara; Slovenské múzeum ochrany prírody a jaskyniarstva: Liptovský Mikuláš, Slovakia, 2001; p. 183. [Google Scholar]
- Lichardus, J. Domica–Jaskyňa pravekých tajov. Svet Vedy 1965, 12, 24–29. [Google Scholar]
- Majko, J. Ako bola objavená jaskyňa Domica. Krásy Slov. 1932, 11, 44–48. [Google Scholar]
- Čeklovský, T.; Orvošová, M.; Biroň, A.; Tóth, C.; Soják, M.; Šupinský, J. Nálezy fauny mamutej stepi z novoobjavených častí jaskyne Domica–Kľúčová dierka (Slovenský kras): Interdisciplinárny prístup. Slovenský Kras 2022, 60, 19–50. [Google Scholar]
- Hochmuth, Z. Kečovská chodba—Objav severného prítoku v Domici. Sprav. SSS 2020, 51, 14–17. [Google Scholar]
- Audra, P.; De Waele, J.H.A.; Bentaleb, I.; Chroňáková, A.; Krištůfek, V.; D’Angeli, I.M.; Carbone, C.; Madonia, G.; Vattano, M.; Scopelliti, G.; et al. Guano-related phosphate-rich minerals in European caves. Int. J. Speleol. 2019, 48, 75–105. [Google Scholar] [CrossRef]
- Bella, P.; Bosák, P.; Braucher, R.; Pruner, P.; Hercman, H.; Minár, J.; Veselský, M.; Holec, J.; Léanni, L. Multi-level Domica-Baradla cave system (Slovakia, Hungary): Middle Pliocene-Pleistocene evolution and implications for the denudation chronology of the Western Carpathians. Geomorphology 2019, 327, 62–79. [Google Scholar] [CrossRef]
- Bella, P.; Bosák, P. Ceiling erosion in caves: Early studies and Zdeněk Roth as author of the concept. Acta Carsologica 2015, 44, 139–144. [Google Scholar] [CrossRef]
- Laučík, P. Nové trendy v jaskynnej epigrafii a ikonografii v prvých decéniách 21. storočia. Sinter 2017, 25, 14–25. [Google Scholar]
- Danko, M.; Šupinský, J. New discoveries in Domica-Čertova diera, Slovak Karst National Park. Bull. Slovak Speleol. Soc. 2022, 49–51. [Google Scholar]
- Gaál, Ľ. Projekt Interreg zameraný na prípravu speleoterapie v jaskynnom systéme Domica-Baradla. Aragonit 2021, 26, 78–92. [Google Scholar]
- Gaál, Ľ.; Gruber, P. Liečivé Podzemie Jaskynného Systému Domica-Baradla Naša Spoločná Hodnota; ŠOP SR, SSJ and Aggteleki Nemzeti Park: Liptovský Mikuláš, Slovakia, 2020; p. 64. [Google Scholar]
- Vujičić, M.D.; Vasiljević, D.A.; Marković, S.B.; Hose, T.A.; Lukić, T.; Hadžić, O.; Janićević, S. Preliminary geosite assessment model (gam) and its application on Fruška gora mountain, potential geotourism destination of Serbia. Acta Geogr. Slov. 2011, 51, 361–376. [Google Scholar] [CrossRef]
- Hose, T.A. Geotourism—Selling the earth to Europe. In Engineering Geology and the Environment; CRC Press: Boca Raton, FL, USA, 1997; pp. 2949–2960. [Google Scholar]
- Pralong, J.P. A method for assessing the tourist potential and use of geomorphological sites. Géomorphologie. Relief Process. Environ. 2005, 11, 189–196. [Google Scholar] [CrossRef]
- Reynard, E.; Fontana, G.; Kozlik, L.; Scapozza, C. A method for assessing “scientific” and “additional values” of geomorphosites. Geogr. Helv. 2007, 62, 148–158. [Google Scholar] [CrossRef]
- Pereira, P.; Pereira, D.; Caetano Alves, M.I. Geomorphosite assessment in Montesinho Natural Park (Portugal). Geogr. Helv. 2007, 62, 159–168. [Google Scholar] [CrossRef]
- Zouros, N.C. Geomorphosite assessment and management in protected areas of Greece Case study of the Lesvos island—Coastal geomorphosites. Geogr. Helv. 2007, 62, 169–180. [Google Scholar] [CrossRef]
- Serrano, E.; González-Trueba, J.J. Assessment of geomorphosites in natural protected areas: The Picos de Europa National Park (Spain). Geomorphol. Relief Process. Environ. 2005, 11, 197–208. [Google Scholar] [CrossRef]
- Rivas, V.; Rix, K.; Francés, E.; Cendrero, A.; Brunsden, D. Geomorphological indicators for environmental impact assessment: Consumable and non-consumable geomorphological resources. Geomorphology 1997, 18, 3–4, 169–182. [Google Scholar] [CrossRef]
- Bonachea, J.; Bruschi, V.; Remondo, J.; González-Díez, A.; Salas, L.; Bertens, J.; Cendrero, A.; Otero, C.; Giusti, C.; Fabbri, A.; et al. An approach for quantifying geomorphological impacts for EIA of transportation infrastructures: A case study in northern Spain. Geomorphology 2005, 66, 95–117. [Google Scholar] [CrossRef]
- Coratza, P.; Giusti, C. Methodological proposal for the assessment of the scientific quality of geomorphosites. Alp. Mediterr. Quat. 2005, 18, 307–313. [Google Scholar]
Scientific/Educational Value (VSE) | ||||||
---|---|---|---|---|---|---|
Indicators and Descriptions | Grades (0–1) | |||||
Indicator | Description | 0 | 0.25 | 0.5 | 0.75 | 1 |
I1 Rarity | Number of closest identical sites | Common | Regional | National | International | The only occurrence |
I2 Representativeness | Didactic and exemplary characteristics of the site due to its own quality and general configuration | None | Low | Moderate | High | Utmost |
I3 Knowledge on geoscientific issues | Number of written papers in acknowledged journals, theses, presentations, and other publications | None | Local publications | Regional publications | National publications | International publications |
I4 Level of interpretation | Level of interpretive possibilities relating to geological and geomorphologic processes, phenomena, and shapes and level of scientific knowledge | None | Moderate level of processes but hard to explain to non-experts | Good example of processes but hard to explain to non-experts | Moderate level of processes but easy to explain to common visitors | Good example of processes and easy to explain to common visitors |
I5 Research and education “in situ” | Possibility of conducting scientific research or education directly at the geosite—suitability of the space, availability, need for permits, etc. | None | Low | Moderate | High | Utmost |
Scenic/Aesthetic Value (VSA) | ||||||
---|---|---|---|---|---|---|
Indicators and Descriptions | Grades (0–1) | |||||
Indicator | Description | 0 | 0.25 | 0.5 | 0.75 | 1 |
I6 Viewpoints | Number of viewpoints accessible by a pedestrian pathway—each must present a particular angle of view and be situated less than 1 km from the site | None | 1 | 2 to 3 | 4 to 6 | More than 6 |
I7 Surface | Whole surface of the site—each site is considered in quantitative relation to other sites | Small | - | Medium | - | Large |
I8 Surrounding landscape and nature | Panoramic view quality, presence of water and vegetation, absence of human–induced deterioration, vicinity of urban areas, etc. | - | Low | Medium | High | Utmost |
I9 Environmental fitting of sites | Level of contrast to the surrounding nature, contrast of colors, appearance of shapes, etc. | Unfitting | - | Neutral | - | Fitting |
I10 Basic physiognomy of the site | Predominant geometric shape of the geosite | Flat, linear | Concave | Convex | Linear–convex | Concave–convex |
Protection Value (VPr) | ||||||
---|---|---|---|---|---|---|
Indicators and Descriptions | Grades (0–1) | |||||
Indicator | Description | 0 | 0.25 | 0.5 | 0.75 | 1 |
I11 Current condition | Current state of the geosite | Totally damaged (as a result of human activities) | Highly damaged (as a result of natural processes) | Moderately damaged (with essential geomorphologic features preserved) | Slightly damaged | No damage |
I12 Protection level | Protection by local or regional groups, national government, international organizations, etc. | None | Local | Regional | National | International |
I13 Vulnerability | Vulnerability level of the geosite | Irreversible (with possibility of total loss) | High (could be easily damaged) | Medium (could be damaged by natural processes or human activities) | Low (could be damaged only by human activities) | None |
I14 Suitable number of visitors | Proposed number of visitors on the site at the same time, according to surface area, vulnerability, and current state of the geosite | 0 | 0 to 10 | 10 to 20 | 20 to 50 | More than 50 |
I15 Protected biota | Occurrence of specially protected and rare plant and animal species in the geosite | None | 1 | 2 to 3 | 4 to 6 | More than 6 |
Functional Value (VFn) | ||||||
---|---|---|---|---|---|---|
Indicators and Descriptions | Grades (0–1) | |||||
Indicator | Description | 0 | 0.25 | 0.5 | 0.75 | 1 |
I16 Accessibility | Possibility of approaching the site | None (inaccessible) | Low (accessible on foot with special equipment and expert-guided tours) | Medium (accessible by bicycle and other means of man-powered transport) | High (accessible by car) | Utmost (accessible by bus) |
I17 Additional natural values | Number of additional natural values within a radius of 5 km (geosites also included) | None | 1 | 2 to 3 | 4 to 6 | More than 6 |
I18 Additional anthropogenic values | Number of additional anthropogenic values within a radius of 5 km | None | 1 | 2 to 3 | 4 to 6 | More than 6 |
I19 Vicinity of emissive centers | Closeness of emissive centers | More than 100 km | 100 to 50 km | 50 to 25 km | 25 to 5 km | Less than 5 km |
I20 Vicinity of important road networks | Closeness of important road networks within a radius of 20 km | None | Local | Regional | National | International |
I21 Additional functional values | Presence of parking lots, gas stations, mechanics, etc. | None | Low | Moderate | High | Utmost |
Touristic Value (VTr) | ||||||
---|---|---|---|---|---|---|
Indicators and Descriptions | Grades (0–1) | |||||
Indicator | Description | 0 | 0.25 | 0.5 | 0.75 | 1 |
I22 Promotion | Level and number of promotional resources | None | Local | Regional | National | International |
I23 Organized visits | Annual number of organized visits to the geosite | None | Less than 12 per year | 12 to 24 per year | 24 to 48 per year | More than 48 per year |
I24 Vicinity of visitor center | Closeness of visitor center to the geosite | More than 50 km | 50 to 20 km | 20 to 5 km | 5 to 1 km | Less than 1 km |
I25 Interpretative panels | Interpretative characteristics of informative panels’ text and graphics, material quality, size, fitting to surroundings, etc. | None | Low quality | Medium quality | High quality | Utmost quality |
I26 Number of visitors | Annual number of visitors | None | Low (less than 5000) | Medium (5001 to 10.000) | High (10.001 to 100.000) | Utmost (more than 100.000) |
I27 Tourism infrastructure | Level of additional infrastructure for tourists (pedestrian pathways, resting places, garbage cans, toilets, wellsprings, etc.) | None | Low | Medium | High | Utmost |
I28 Tour guide services | Tour guides’ expertise level, knowledge of foreign language(s), interpretative skills, etc., if tour guides exist | None | Low | Medium | High | Utmost |
I29 Hostelry services | Hostelry service(s) close to the geosite | More than 50 km | 25–50 km | 10–25 km | 5–10 km | Less than 5 km |
I30 Restaurant services | Restaurant service(s) close to the geosite | More than 25 km | 10–25 km | 10–5 km | 1–5 km | Less than 1 km |
Geosite Label | Geosite Name | Main Values (VSE + VSA+ VPr) | Sum of Main Values | Additional Values (VFn + VTr) | Sum of Additional Values | Overall | Field |
---|---|---|---|---|---|---|---|
GS1 | Jasovská Cave | 3.75 + 3.75 + 4.25 | 11.75 | 4 + 7 | 11 | 22.75 | Z9 |
GS2 | Jasovská Rock | 2 + 3.25 + 3.25 | 8.5 | 3.5 + 4 | 7.5 | 16 | Z5 |
GS3 | Premonstratensian Monastery, Jasov | 2.75 + 2.5 + 2.5 | 7.75 | 3.5 + 3.75 | 7.25 | 15 | Z5 |
GS4 | NNR Jasovské Oaks | 2.5 + 1.75 + 3 | 7.25 | 3 + 1.75 | 4.75 | 12 | Z2 |
GS5 | Jasovský Lake | 2.25 + 2.25 + 2.75 | 7.25 | 2.75 + 2.5 | 5.25 | 12.5 | Z5 |
GS6 | Hatinská Cave | 1 + 1.5 + 2.25 | 4.75 | 2.25 + 2 | 4.25 | 9 | Z1 |
GS7 | Devil’s Rock | 1.75 + 1.5 + 2.25 | 5.5 | 2.5 + 2 | 4.5 | 10 | Z2 |
GS8 | Gombasecká Cave | 3.5 + 3.75 + 3.5 | 10.75 | 3.5 + 6.25 | 9.75 | 20.5 | Z6 |
GS9 | Gombasek Quarry | 2.25 + 3.25 + 1 | 6.5 | 2.5 + 2 | 4.5 | 11 | Z2 |
GS10 | Ruins of the Pauline Monastery, Gombasek | 1.75 + 1.5 + 1.5 | 4.75 | 3 + 3.75 | 6.75 | 11.5 | Z4 |
GS11 | Pauline Quarry | 2 + 1.5 + 1.25 | 4.75 | 3.25 + 2.5 | 5.75 | 10.5 | Z4 |
GS12 | Black Resurgence | 2 + 1.25 + 3.25 | 6.5 | 2.75 + 3 | 5.75 | 12.25 | Z5 |
GS13 | White Resurgence | 3 + 1.75 + 2.75 | 7.5 | 3 + 4 | 7 | 14.5 | Z5 |
GS14 | Domica Cave | 4 + 3.75 + 4 | 11.75 | 3.75 + 7 | 10.75 | 22.5 | Z9 |
GS15 | Domické Karrens | 2.75 + 3 + 3 | 8.75 | 2.25 + 3.25 | 5.5 | 14.25 | Z5 |
GS16 | Baradla Cave, Aggtelek | 3.75 + 4 + 4 | 11.75 | 4 + 7.75 | 11.75 | 23.5 | Z9 |
GS17 | Aggtelecká Rock | 3.25 + 2.75 + 3 | 9 | 3.25 + 3.75 | 7 | 16 | Z5 |
GS18 | Aggtelecké Lake | 2.5 + 1.75 + 3.25 | 7.5 | 3.5 + 4 | 7.5 | 15 | Z5 |
GS19 | Kečovské Karrens | 2.5 + 2.5 + 3.25 | 8.25 | 1.75 + 1.75 | 3.5 | 11.75 | Z2 |
GS20 | Kečovská Resurgence | 2.5 + 1.75 + 2.75 | 7 | 2.25 + 1.75 | 4 | 11 | Z2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudla, M.; Javorská, M.; Vašková, J.; Čech, V.; Tometzová, D. Inventory and Evaluation of Geosites: Case Studies of the Slovak Karst as a Potential Geopark in Slovakia. Sustainability 2024, 16, 7783. https://doi.org/10.3390/su16177783
Kudla M, Javorská M, Vašková J, Čech V, Tometzová D. Inventory and Evaluation of Geosites: Case Studies of the Slovak Karst as a Potential Geopark in Slovakia. Sustainability. 2024; 16(17):7783. https://doi.org/10.3390/su16177783
Chicago/Turabian StyleKudla, Miroslav, Miriama Javorská, Jana Vašková, Vladimír Čech, and Dana Tometzová. 2024. "Inventory and Evaluation of Geosites: Case Studies of the Slovak Karst as a Potential Geopark in Slovakia" Sustainability 16, no. 17: 7783. https://doi.org/10.3390/su16177783
APA StyleKudla, M., Javorská, M., Vašková, J., Čech, V., & Tometzová, D. (2024). Inventory and Evaluation of Geosites: Case Studies of the Slovak Karst as a Potential Geopark in Slovakia. Sustainability, 16(17), 7783. https://doi.org/10.3390/su16177783