Interdecadal Variations in Agricultural Drought Monitoring Using Land Surface Temperature and Vegetation Indices: A Case of the Amahlathi Local Municipality in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Satellite-Derived Datasets
2.1.2. South African National Land Cover Classification Map
2.2. Study Methods
2.2.1. Weighted Overlay, Multiple Linear Regression Model and Correlation Analysis
2.2.2. Drought Characterization Based on Standardized Precipitation Index
3. Results and Discussion
3.1. Spatiotemporal Dynamics of Interdecadal NDVI Trend
3.2. Spatiotemporal Dynamics of Interdecadal SAVI
3.3. Spatiotemporal Dynamics of Interdecadal LST
3.4. Spatial Distribution of Interdecadal Variability of Drought in the ALM between 1989 and 2019
3.5. Standardized Precipitation Index Classification
4. Intervention Strategies for Provincial Drought Monitoring and Policy Decision Support for Early Warning Systems
Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Correia, C.D.; Amraoui, M.; Santos, J.A. Analysis of the Impacts of Climate Change on Agriculture in Angola: Systematic Literature Review. Agronomy 2024, 14, 783. [Google Scholar] [CrossRef]
- Mpanyaro, Z.; Kalumba, A.M.; Zhou, L.; Afuye, G.A. Mapping and Assessing Riparian Vegetation Response to Drought along the Buffalo River Catchment in the Eastern Cape Province, South Africa. Climate 2024, 12, 7. [Google Scholar] [CrossRef]
- Henchiri, M.; Igbawua, T.; Javed, T.; Bai, Y.; Zhang, S.; Essifi, B.; Ujoh, F.; Zhang, J. Meteorological drought analysis and return periods over north and west Africa and linkage with El Niño–southern oscillation (Enso). Remote Sens. 2021, 13, 4730. [Google Scholar] [CrossRef]
- Afuye, G.A.; Kalumba, A.M.; Busayo, E.T.; Orimoloye, I.R. A bibliometric review of vegetation response to climate change. Environ. Sci. Pollut. Res. 2021, 29, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Tarate, S.B.; Patel, N.R.; Danodia, A.; Pokhariyal, S.; Parida, B.R. Geospatial Technology for Sustainable Agricultural Water Management in India—A Systematic Review. Geomatics 2024, 4, 91–123. [Google Scholar] [CrossRef]
- Li, Q.; Ye, A.; Wada, Y.; Zhang, Y.; Zhou, J. Climate change leads to an expansion of the global drought-sensitive area. J. Hydrol. 2024, 632, 130874. [Google Scholar] [CrossRef]
- Mpala, T.A.; Simatele, M.D. Climate-smart agricultural practices among rural farmers in Masvingo district of Zimbabwe: Perspectives on the mitigation strategies to drought and water scarcity for improved crop production. Front. Sustain. Food Syst. 2024, 7, 1298908. [Google Scholar] [CrossRef]
- Afuye, G.A.; Kalumba, A.M.; Orimoloye, I.R. Characterisation of vegetation response to climate change: A review. Sustainability 2021, 13, 7265. [Google Scholar] [CrossRef]
- Niyonsenga, S.; Eziz, A.; Kurban, A.; Yuan, X.; Umwali, E.D.; Azadi, H.; Hakorimana, E.; Umugwaneza, A.; Fidelis, G.D.; Nsanzabaganwa, J.; et al. Spatiotemporal Analysis of Drought Characteristics and Their Impact on Vegetation and Crop Production in Rwanda. Remote Sens. 2024, 16, 1455. [Google Scholar] [CrossRef]
- FAO. The State of Food Security and Nutrition in the World: Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [Google Scholar]
- Javed, T.; Li, Y.; Rashid, S.; Li, F.; Hu, Q.; Feng, H.; Chen, X.; Ahmad, S.; Liu, F.; Pulatov, B. Performance and relationship of four different agricultural drought indices for drought monitoring in China’s mainland using remote sensing data. Sci. Total Environ. 2021, 759, 143530. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, N.; Lee, Y. Development of integrated crop drought index by combining rainfall, land surface temperature, evapotranspiration, soil moisture, and vegetation index for agricultural drought monitoring. Remote Sens. 2021, 13, 1778. [Google Scholar] [CrossRef]
- Quille-Mamani, J.A.; Huayna, G.; Pino-Vargas, E.; Chucuya-Mamani, S.; Vera-Barrios, B.; Ramos-Fernandez, L.; Espinoza-Molina, J.; Cabrera-Olivera, F. Spatio-Temporal Evolution of Olive Tree Water Status Using Land Surface Temperature and Vegetation Indices Derived from Landsat 5 and 8 Satellite Imagery in Southern Peru. Agriculture 2024, 14, 662. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Warter, M.M.; Singer, M.B.; Cuthbert, M.O.; Roberts, D.; Caylor, K.K.; Sabathier, R.; Stella, J. Drought onset and propagation into soil moisture and grassland vegetation responses during the 2012–2019 major drought in Southern California. Hydrol. Earth Syst. Sci. 2021, 25, 3713–3729. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Minh, V.Q. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 417–427. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, J.; Zhang, J.; Zhao, F.; Liu, M.; Zhao, L. Assessing the drought monitoring characteristic of time series NDVI indices in crop growing season. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; IEEE: Piscataway, NJ, USA; pp. 2063–2066. [Google Scholar]
- Manatsa, D.; Mukwada, G.; Siziba, E.; Chinyanganya, T. Analysis of multidimensional aspects of agricultural droughts in Zimbabwe using the Standardized Precipitation Index (SPI). Theor. Appl. Climatol. 2010, 102, 287–305. [Google Scholar] [CrossRef]
- Funk, C.; Budde, M.E. Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe. Remote Sens. Environ. 2009, 113, 115–125. [Google Scholar] [CrossRef]
- Falahatkar, S.; Hosseini, S.M.; Soffianian, A.R. The relationship between land cover changes and spatial-temporal dynamics of land surface temperature. Indian J. Sci. Technol. 2011, 4, 76–81. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, K.V.; Pham, Q.B.; Srivastava, A.K.; Bogireddy, C.; Yadav, S.M. Advancements in drought using remote sensing: Assessing progress, overcoming challenges, and exploring future opportunities. Theor. Appl. Climatol. 2024, 155, 1–38. [Google Scholar] [CrossRef]
- Yousfi, S.; Marín, J.; Parra, L.; Lloret, J.; Mauri, P.V. Remote sensing devices as key methods in advanced turfgrass phenotyping under different water regimes. Agric. Water Manag. 2022, 266, 107581. [Google Scholar] [CrossRef]
- de Lima, I.P.; Jorge, R.G.; de Lima, J.L. Remote sensing monitoring of rice fields: Towards assessing water saving irrigation management practices. Front. Remote Sens. 2021, 2, 762093. [Google Scholar] [CrossRef]
- Nduku, L.; Munghemezulu, C.; Mashaba-Munghemezulu, Z.; Kalumba, A.M.; Chirima, G.J.; Masiza, W.; De Villiers, C. Global research trends for unmanned aerial vehicle remote sensing application in wheat crop monitoring. Geomatics 2023, 3, 115–136. [Google Scholar] [CrossRef]
- Meza, I.; Rezaei, E.E.; Siebert, S.; Ghazaryan, G.; Nouri, H.; Dubovyk, O.; Gerdener, H.; Herbert, C.; Kusche, J.; Popat, E.; et al. Drought risk for agricultural systems in South Africa: Drivers, spatial patterns, and implications for drought risk management. Sci. Total Environ. 2021, 799, 149505. [Google Scholar] [CrossRef] [PubMed]
- Kganvago, M.; Mukhawana, M.B.; Mashalane, M.; Mgabisa, A.; Moloele, S. Recent trends of drought using remotely sensed and in-situ indices: Towards an integrated drought monitoring system for South Africa. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA; pp. 6225–6228. [Google Scholar]
- Watson, A.; Miller, J.; Künne, A.; Kralisch, S. Using soil-moisture drought indices to evaluate key indicators of agricultural drought in semi-arid Mediterranean Southern Africa. Sci. Total Environ. 2022, 812, 152464. [Google Scholar] [CrossRef] [PubMed]
- Archer, E.; Landman, W.; Malherbe, J.; Tadross, M.; Pretorius, S. South Africa’s winter rainfall region drought: A region in transition? Clim. Risk Manag. 2019, 25, 100188. [Google Scholar] [CrossRef]
- Raphela, T.D.; Pillay, N. Explaining the effect of crop-raiding on food security of subsistence farmers of KwaZulu Natal, South Africa. Front. Sustain. Food Syst. 2021, 5, 687177. [Google Scholar] [CrossRef]
- Bahta, Y.T.; Jordaan, A.; Muyambo, F. Communal farmers’ perception of drought in South Africa: Policy implication for drought risk reduction. Int. J. Disaster Risk Reduct. 2016, 20, 39–50. [Google Scholar] [CrossRef]
- Walz, Y.; Min, A.; Dall, K.; Duguru, M.; de Leon, J.C.; Graw, V.; Dubovyk, O.; Sebesvari, Z.; Jordaan, A.; Post, J. Monitoring progress of the Sendai Framework using a geospatial model: The example of people affected by agricultural droughts in Eastern Cape, South Africa. Prog. Disaster Sci. 2020, 5, 100062. [Google Scholar] [CrossRef]
- South African Weather Service. Annual State of the Climate 2022. Pretoria, South Africa. 2023. Available online: https://www.weathersa.co.za/Documents/Corporate/31032023102536.pdf (accessed on 10 July 2023).
- Ndlazilwana, L.C. Perceptions, Coping Strategies and Welfare Impact of Drought among Small Stock Farmers in Amathole, Eastern Cape. Doctoral Dissertation, North-West University, Potchefstroom, South Africa, 2022. [Google Scholar]
- Kloos, S.; Yuan, Y.; Castelli, M.; Menzel, A. Agricultural drought detection with MODIS-based vegetation health indices in southeast Germany. Remote Sens. 2021, 13, 3907. [Google Scholar] [CrossRef]
- Shinga, P.S.; Tesfamichael, S.G.; Sibandze, P.; Kalumba, A.M.; Afuye, G.A. Modelling spatiotemporal patterns of wildfire risk in the Garden Route District biodiversity hotspots using analytic hierarchy process in South Africa. Nat. Hazards 2024, 1–25. [Google Scholar] [CrossRef]
- Jaber, S.M. Insights About the Spatial and Temporal Characteristics of the Relationships Between Land Surface Temperature and Vegetation Abundance and Topographic Elements in Arid to Semiarid Environments. Remote Sens. Earth Syst. Sci. 2023, 6, 254–274. [Google Scholar] [CrossRef]
- Amahlathi Local Municipality Integrated Development Plan. Available online: https://www.amahlathi.gov.za/wp-content/uploads/2023/06/Final-IDP-2023-2024.pdf (accessed on 5 July 2023).
- Bicheron, P.; Amberg, V.; Bourg, L.; Petit, D.; Huc, M.; Miras, B.; Brockmann, C.; Hagolle, O.; Delwart, S.; Ranera, F.; et al. Geolocation assessment of MERIS GlobCover orthorectified products. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2972–2982. [Google Scholar] [CrossRef]
- Afuye, G.A.; Kalumba, A.M.; Owolabi, S.T.; Thamaga, K.H.; Ndou, N.; Sibandze, P.; Orimoloye, I.R. Analyzing spatiotemporal variations and dynamics of vegetation over Amathole district municipality in South Africa. Environ. Dev. Sustain. 2024, 1–26. [Google Scholar] [CrossRef]
- Klisch, A.; Atzberger, C. Operational drought monitoring in Kenya using MODIS NDVI time series. Remote Sens. 2016, 8, 267. [Google Scholar] [CrossRef]
- Mogonong, B.P.; Twine, W.; Feig, G.T.; Van der Merwe, H.; Fisher, J.T. Influences of Climate Variability on Land Use and Land Cover Change in Rural South Africa. Remote Sens. 2024, 16, 1200. [Google Scholar] [CrossRef]
- Tadesse, A.; Tolossa, D.; Tsehaye, S.; Yayeh, D. Dynamics of Land Use and Land Cover Changes in Amibara and Awash-Fentale Districts, Ethiopia. Remote Sens. Appl. Soc. Environ. 2024, 36, 101315. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, Y.; Jia, S.; Shao, H.; Liu, M.; Tao, S.; Dai, X. Impacts of mining on vegetation phenology and sensitivity assessment of spectral vegetation indices to mining activities in arid/semi-arid areas. J. Environ. Manag. 2024, 356, 120678. [Google Scholar] [CrossRef]
- Dyosi, M.; Kalumba, A.M.; Magagula, H.B.; Zhou, L.; Orimoloye, I.R. Drought conditions appraisal using geoinformatics and multi-influencing factors. Environ. Monit. Assess. 2021, 193, 365. [Google Scholar] [CrossRef]
- Lottering, S.; Mafongoya, P.; Lottering, R. Detecting and mapping drought severity using multi-temporal Landsat data in the uMsinga region of KwaZulu-Natal, South Africa. Geocarto Int. 2022, 37, 1574–1586. [Google Scholar] [CrossRef]
- Marumbwa, F.M.; Cho, M.A.; Chirwa, P.W. Geospatial analysis of meteorological drought impact on Southern Africa biomes. Int. J. Remote Sens. 2021, 42, 2155–2173. [Google Scholar] [CrossRef]
- United States Geological Survey. Landsat 8 (L8) Data Users’ Handbook Version 5.0. USGS, 2019. Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf (accessed on 12 July 2023).
- Yıldırım, T.; Asık, S. Index-based assessment of agricultural drought using remote sensing in the semi-arid region of Western Turkey. J. Agric. Sci. 2018, 24, 510–516. [Google Scholar]
- Kakembo, V.; Ndou, N. Relating vegetation condition to grazing management systems in the central Keiskamma Catchment, Eastern Cape Province, South Africa. Land Degrad. Dev. 2019, 30, 1052–1060. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; Adeola, A.M.; De Wit, J.P.; Ncongwane, K.P.; Zwane, N.N. Drought risk analysis in the Eastern Cape Province of South Africa: The copula lens. Water 2020, 12, 1938. [Google Scholar] [CrossRef]
- Mukhawana, M.B.; Kanyerere, T.; Kahler, D. Review of in-situ and remote sensing-based indices and their Applicability for integrated drought monitoring in South Africa. Water 2023, 15, 240. [Google Scholar] [CrossRef]
- Nkamisa, M.; Ndhleve, S.; Nakin, M.D.; Mngeni, A.; Kabiti, H.M. Analysis of trends, recurrences, severity and frequency of droughts using standardised precipitation index: Case of OR Tambo District Municipality, Eastern Cape, South Africa. Jàmbá-J. Disaster Risk Stud. 2022, 14, 1147. [Google Scholar] [CrossRef]
- Tran, T.V.; Bruce, D.; Huang, C.Y.; Tran, D.X.; Myint, S.W.; Nguyen, D.B. Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data. GIScience Remote Sens. 2023, 60, 2163070. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Bai, Y.; Zhang, S.; Yang, S.; Henchiri, M.; Seka, A.M.; Nanzad, L. Drought monitoring and performance evaluation based on machine learning fusion of multi-source remote sensing drought factors. Remote Sens. 2022, 14, 6398. [Google Scholar] [CrossRef]
- Kumari, K.; Yadav, S. Linear regression analysis study. J. Pract. Cardiovasc. Sci. 2018, 4, 33–36. [Google Scholar] [CrossRef]
- Pavlidis, V.; Kganyago, M.; Mukhawana, M.; Alexandridis, T.; Cherif, I.; Laneve, G.; Orsi, R.; Kartsios, S.; Karypidou, M.C.; Sofiadis, I.; et al. A drought monitoring and early warning service for food security in South Africa. Clim. Serv. 2024, 34, 100463. [Google Scholar] [CrossRef]
- Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Impacts of climate variability and drought on surface water resources in Sub-Saharan Africa using remote sensing: A review. Remote Sens. 2020, 12, 4184. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Afuye, G.; Obateru, R.; Bodunrin, I.R.; Babalola, T.; Olusola, A.O. Drought in a semi-arid Environment: A Decadal Drought Assessment Using Earth Observation Information. Front. Environ. Sci. 2024, 12, 1414336. [Google Scholar]
- Ekundayo, O.Y.; Okogbue, E.C.; Akinluyi, F.O.; Kalumba, A.M.; Orimoloye, I.R. Geoinformatics approach to desertification evaluation using vegetation cover changes in the Sudan-Sahelian region of Nigeria from 2000 to 2010. In Re-Envisioning Remote Sensing Applications; CRC Press: Boca Raton, FL, USA, 2021; pp. 261–270. [Google Scholar]
- Afuye, G.A.; Kalumba, A.M.; Ishola, K.A.; Orimoloye, I.R. Long-term dynamics and response to climate change of different vegetation types using GIMMS NDVI3g data over Amathole district in South Africa. Atmosphere 2022, 13, 620. [Google Scholar] [CrossRef]
- Willie, Y.A.; Pillay, R.; Zhou, L.; Orimoloye, I.R. Monitoring spatial pattern of land surface thermal characteristics and urban growth: A case study of King Williams using remote sensing and GIS. Earth Sci. Inform. 2019, 12, 447–464. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Ololade, O.O.; Belle, J.A. Spatio-Environmental Distribution of Drought Disaster Events: A Space-Based Approach Using Terra-MODIS Vegetation Index. In Re-Envisioning Advances in Remote Sensing; CRC Press: Boca Raton, FL, USA, 2022; pp. 105–119. [Google Scholar]
- Thamaga, K.H.; Gom, S.; Adesola, G.O.; Ndou, N.; Muavhi, N.; Mndela, M.; Sibandze, P.; Abdo, H.G.; Maphanga, T.; Afuye, G.; et al. Integration of Geospatial-Based Algorithms for Groundwater Potential Characterization in Keiskamma Catchment of South Africa. Groundw. Sustain. Dev. 2024, 26, 101262. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Ololade, O.O.; Mazinyo, S.P.; Kalumba, A.M.; Ekundayo, O.Y.; Busayo, E.T.; Akinsanola, A.A.; Nel, W. Spatial assessment of drought severity in Cape Town area, South Africa. Heliyon 2019, 5. [Google Scholar] [CrossRef] [PubMed]
- Afuye, G.A.; Nduku, L.; Kalumba, A.M.; Santos, C.A.; Orimoloye, I.R.; Ojeh, V.N.; Thamaga, K.H.; Sibandze, P. Global trend assessment of land use and land cover changes: A systematic approach to future research development and planning. J. King Saud Univ. Sci. 2024, 36, 103262. [Google Scholar] [CrossRef]
- Gaznayee, H.A.; Al-Quraishi, A.M.; Mahdi, K.; Ritsema, C. A geospatial approach for analysis of drought impacts on vegetation cover and land surface temperature in the Kurdistan Region of Iraq. Water 2022, 14, 927. [Google Scholar] [CrossRef]
- Rafiei Sardooi, E.; Azareh, A.; Eskandari Damaneh, H.; Skandari Damaneh, H. Drought Monitoring Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index Products in Semi-Arid Areas of Iran. J. Rangel. Sci. 2021, 11, 402–418. [Google Scholar]
- Hazaymeh, K.; Hassan, Q.K. Remote sensing of agricultural drought monitoring: A state-of-the-art review. AIMS Environ. Sci. 2016, 3, 604–630. [Google Scholar] [CrossRef]
- Mutengwa, C.S.; Mnkeni, P.; Kondwakwenda, A. Climate-smart agriculture and food security in Southern Africa: A review of the vulnerability of smallholder agriculture and food security to climate change. Sustainability 2023, 15, 2882. [Google Scholar] [CrossRef]
- Ha, T.V.; Uereyen, S.; Kuenzer, C. Agricultural drought conditions over mainland Southeast Asia: Spatiotemporal characteristics revealed from MODIS-based vegetation time-series. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103378. [Google Scholar] [CrossRef]
- Sofia, G.; Zaccone, C.; Tarolli, P. Agricultural drought severity in NE Italy: Variability, bias, and future scenarios. Int. Soil Water Conserv. Res. 2024, 12, 403–418. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; Adeola, A.M. Spatial distribution of temporal precipitation contrasts in South Africa. South Afr. J. Sci. 2018, 114, 70–78. [Google Scholar] [CrossRef] [PubMed]
(a) | |||
SPI Value | Category | ||
2.00 and above | Extremely wet | ||
1.50–1.99 | Very wet | ||
1.00–1.49 | Moderately wet | ||
0.99 to −0.99 | Near-normal | ||
−1.00 to −1.49 | Moderately dry | ||
−1.50 to 1.99 | Severely dry | ||
−2.00 and less | Extremely dry | ||
(b) | |||
Vegetation Category | NDVI and SAVI Range | Drought Severity | |
No vegetation | <0.1 | Extremely dry | |
Low | 0.11–0.20 | Dry | |
Normal | 0.21–0.40 | Moderate | |
High | 0.41–0.60 | Wet | |
Very high | ≥0.61–1.00 | Extremely wet |
Statistics | NDVI (1989) | NDVI (1999) | NDVI (2009) | NDVI (2019) |
---|---|---|---|---|
Min | −1 | −1 | −0.46 | −1 |
Max | 1 | 1 | 0.82 | 1 |
Mean | 0.37 | 0.32 | 0.42 | 0.39 |
Standard Deviation | 0.12 | 0.14 | 0.12 | 0.16 |
Statistics | SAVI (1989) | SAVI (1999) | SAVI (2009) | SAVI (2019) |
---|---|---|---|---|
Min | –0.83 | –0.50 | –0.17 | –0.43 |
Max | 0.96 | 0.69 | 0.66 | 0.77 |
Mean | 0.18 | 0.16 | 0.25 | 0.21 |
Standard Deviation | 0.05 | 0.06 | 0.07 | 0.07 |
Statistics | LST °C (1989) | LST °C (1999) | LST °C (2009) | LST °C (2019) |
---|---|---|---|---|
Min | 4.78 | 16.01 | 16.55 | 6.31 |
Max | 37.82 | 40.03 | 38.89 | 40.12 |
Mean | 16.40 | 33.55 | 34.67 | 29.91 |
Standard Deviation | 2.32 | 3.44 | 3.93 | 3.80 |
1989 | 1999 | 2009 | 2019 | |||||
---|---|---|---|---|---|---|---|---|
Drought Classification | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % |
Severe drought | 9 | 0.2 | 13 | 0.3 | 12 | 0.3 | 38 | 0.9 |
Extreme drought | 1552 | 35.4 | 1753 | 40.0 | 1382 | 31.6 | 2446 | 55.8 |
Moderate drought | 1884 | 43.0 | 1747 | 39.8 | 1522 | 34.7 | 1296 | 29.6 |
Mild drought | 608 | 13.9 | 592 | 13.5 | 1057 | 24.1 | 435 | 9.9 |
No drought | 327 | 7.5 | 275 | 6.3 | 408 | 9.3 | 165 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbuqwa, P.; Magagula, H.B.; Kalumba, A.M.; Afuye, G.A. Interdecadal Variations in Agricultural Drought Monitoring Using Land Surface Temperature and Vegetation Indices: A Case of the Amahlathi Local Municipality in South Africa. Sustainability 2024, 16, 8125. https://doi.org/10.3390/su16188125
Mbuqwa P, Magagula HB, Kalumba AM, Afuye GA. Interdecadal Variations in Agricultural Drought Monitoring Using Land Surface Temperature and Vegetation Indices: A Case of the Amahlathi Local Municipality in South Africa. Sustainability. 2024; 16(18):8125. https://doi.org/10.3390/su16188125
Chicago/Turabian StyleMbuqwa, Phumelelani, Hezekiel Bheki Magagula, Ahmed Mukalazi Kalumba, and Gbenga Abayomi Afuye. 2024. "Interdecadal Variations in Agricultural Drought Monitoring Using Land Surface Temperature and Vegetation Indices: A Case of the Amahlathi Local Municipality in South Africa" Sustainability 16, no. 18: 8125. https://doi.org/10.3390/su16188125
APA StyleMbuqwa, P., Magagula, H. B., Kalumba, A. M., & Afuye, G. A. (2024). Interdecadal Variations in Agricultural Drought Monitoring Using Land Surface Temperature and Vegetation Indices: A Case of the Amahlathi Local Municipality in South Africa. Sustainability, 16(18), 8125. https://doi.org/10.3390/su16188125