Factors Affecting Teachers’ Behavior of Innovative Teaching with Technology: Structural Equation Modelling
Abstract
:1. Introduction
- How do technology innovation acceptance and organizational innovation climate influence BITT?
- What are the differences of all latent variables based on the gender and location of the respondents?
1.1. Technology Innovation Acceptance
1.2. Organizational Innovation Climate
1.3. Demographic Information
2. Materials and Methods
2.1. Instrumentation
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Measurement Model
3.2. Structural Model
3.3. MANOVA
4. Discussion
Limitation and Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liguori, E.; Winkler, C. From Offline to Online: Challenges and Opportunities for Entrepreneurship Education Following the COVID-19 Pandemic. Entrep. Educ. Pedagog. 2020, 3, 346–351. [Google Scholar] [CrossRef]
- Chou, C.M.; Shen, C.H.; Hsiao, H.C.; Shen, T.C. Factors influencing teachers’ innovative teaching behaviour with information and communication technology (ICT): The mediator role of organisational innovation climate. Educ. Psychol. 2019, 39, 65–85. [Google Scholar] [CrossRef]
- Woolsey, K.; Bellamy, R. Science Education and Technology: Opportunities to Enhance Student Learning. Elem. Sch. J. 1996, 97, 385–399. [Google Scholar] [CrossRef]
- Downes, J.M.; Bishop, P. Educators Engage Digital Natives and Learn from Their Experiences with Technology. Middle Sch. J. 2012, 43, 6–15. [Google Scholar] [CrossRef]
- Tondeur, J.; Van Braak, J.; Sang, G.; Voogt, J.; Fisser, P.; Ottenbreit-Leftwich, A. Preparing pre-service teachers to integrate technology in education: A synthesis of qualitative evidence. Comput. Educ. 2012, 59, 134–144. [Google Scholar] [CrossRef]
- Aslan, A.; Zhu, C. Investigating variables predicting Turkish pre-service teachers’ integration of ICT into teaching practices. Br. J. Educ. Technol. 2017, 48, 552–570. [Google Scholar] [CrossRef]
- Habibi, A.; Riady, Y.; Al-Adwan, A.S. Awni Albelbisi.Beliefs and Knowledge for Pre-Service Teachers’ Technology Integration during Teaching Practice: An Extended Theory of Planned Behavior. Comput. Sch. 2022, 40, 107–132. [Google Scholar] [CrossRef]
- Thurlings, M.; Evers, A.T.; Vermeulen, M. Toward a Model of Explaining Teachers’ Innovative Behavior: A Literature Review. Rev. Educ. Res. 2015, 85, 430–471. [Google Scholar] [CrossRef]
- Sukendro, S.; Habibi, A.; Khaeruddin, K.; Indrayana, B.; Syahruddin, S.; Makadada, F.A.; Hakim, H. Using an extended Technology Acceptance Model to understand students’ use of e-learning during COVID-19: Indonesian sport science education context. Heliyon 2020, 6, e05410. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Correa, P.E.; Arenas-Gaitán, J.; Rondán-Cataluña, F.J. Gender and acceptance of e-learning: A multi-group analysis based on a structural equation model among college students in Chile and Spain. PLoS ONE 2015, 10, e0140460. [Google Scholar] [CrossRef]
- Crawley, A.; Fetzner, M. Providing Innovative Service to Students Inside and Outside of the Online Classroom: A Student Perspective. Online Learn. 2013, 17, 7–17. [Google Scholar] [CrossRef]
- Houlden, S.; Veletsianos, G. The problem with flexible learning: Neoliberalism, freedom, and learner subjectivities. Learn. Media Technol. 2020, 46, 144–155. [Google Scholar] [CrossRef]
- Habibi, A.; Yusop, F.D.; Razak, R.A. The dataset for validation of factors affecting pre-service teachers’ use of ICT during teaching practices: Indonesian context. Data Brief 2020, 28, 104875. [Google Scholar] [CrossRef]
- Gebremedhin, M.A.; Fenta, A.A. Assessing Teachers’ Perception on Integrating ICT in Teaching-Learning Process: The Case of Adwa College. J. Educ. Pract. 2015, 6, 114–124. [Google Scholar]
- Innocenti, E.D.; Geronazzo, M.; Vescovi, D.; Nordahl, R.; Serafin, S.; Ludovico, L.A.; Avanzini, F. Mobile virtual reality for musical genre learning in primary education. Comput. Educ. 2019, 139, 102–117. [Google Scholar] [CrossRef]
- Nikolopoulou, K.; Gialamas, V. Barriers to ICT use in high schools: Greek teachers’ perceptions. J. Comput. Educ. 2016, 3, 59–75. [Google Scholar] [CrossRef]
- Mama, T.M.; Hennessy, S. Developing a typology of teacher beliefs and practices concerning classroom use of ICT. Comput. Educ. 2013, 68, 380–387. [Google Scholar] [CrossRef]
- Amabile, T.M.; Gryskiewicz, N.D. The Creative Environment Scales: Work Environment Inventory. Creat. Res. J. 1989, 2, 231–253. [Google Scholar] [CrossRef]
- Bouckenooghe, D.; Devos, G.; Van Den Broeck, H. Organizational change questionnaire-climate of change, processes, and readiness: Development of a new instrument. J. Psychol. Interdiscip. Appl. 2009, 143, 559–599. [Google Scholar] [CrossRef]
- Davis, D.; Chen, G.; Hauff, C.; Houben, G.J. Activating learning at scale: A review of innovations in online learning strategies. Comput. Educ. 2018, 125, 327–344. [Google Scholar] [CrossRef]
- Habibi, A.; Yaakob, M.F.M.; Sofwan, M. Student use of digital libraries during COVID-19: Structural equation modelling in Indonesian and Malaysian contexts. Electron. Libr. 2022, 40, 472–485. [Google Scholar] [CrossRef]
- Yang, C.; Hsieh, T.C. Regional differences of online learning behavior patterns. Electron. Libr. 2013, 31, 167–187. [Google Scholar] [CrossRef]
- Teo, T. Unpacking teachers’ acceptance of technology: Tests of measurement invariance and latent mean differences. Comput. Educ. 2014, 75, 127–135. [Google Scholar] [CrossRef]
- Behr, D. Assessing the use of back translation: The shortcomings of back translation as a quality testing method. Int. J. Soc. Res. Methodol. 2017, 20, 573–584. [Google Scholar] [CrossRef]
- Hair, J.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. PLS-SEM Book: A Primer on PLS-SEM, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2022. [Google Scholar]
- Kline, R.B. Methodology in the Social Sciences. In Principles and Practice of Structural Equation Modelling, 4th ed.; Guilford Press: New York, NY, USA, 2015; pp. 1–554. [Google Scholar]
- Benitez, J.; Henseler, J.; Castillo, A.; Schuberth, F. How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Inf. Manag. 2020, 57, 103168. [Google Scholar] [CrossRef]
- Manley, S.C.; Hair, J.F.; Williams, R.I.; McDowell, W.C. Essential new PLS-SEM analysis methods for your entrepreneurship analytical toolbox. Int. Entrep. Manag. J. 2020, 17, 1805–1825. [Google Scholar] [CrossRef]
- Abdullah, F.; Ward, R. Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Comput. Hum. Behav. 2016, 56, 238–256. [Google Scholar] [CrossRef]
- Lau, W.W.F.; Yuen, A.H.K. Developing and validating of a perceived ICT literacy scale for junior secondary school students: Pedagogical and educational contributions. Comput. Educ. 2014, 78, 1–9. [Google Scholar] [CrossRef]
- Obiri-Yeboah, K.; Kwarteng, K.O.; Kyere-Djan, R. Factors Affecting ICT Adoption in Tertiary Institutions in Ghana: A Case of Kwame Nkrumah University of Science and Technology. Inf. Knowl. Manag. 2013, 3, 13–21. [Google Scholar]
- Cao, H.; Wang, P.; Gao, Y. A survey of chinese university students’ perceptions of and attitudes towards homosexuality. Soc. Behav. Pers. 2010, 38, 721–728. [Google Scholar] [CrossRef]
- Hernández-Ramos, J.P.; Martínez-Abad, F.; Peñalvo, F.J.G.; García, M.E.H.; Rodríguez-Conde, M.J. Teachers’ attitude regarding the use of ICT. A factor reliability and validity study. Comput. Hum. Behav. 2014, 31, 509–516. [Google Scholar] [CrossRef]
Main Construct | Adapted from | Construct (34 Items) |
---|---|---|
Technology innovative acceptance | Chou et al. [2] | Benefits of innovation (BI1, BI2, BI3, BI4) |
Innovation compatibility (IC1, IC2, IC3, IC4) | ||
Organizational innovation climate | Amabile and Gryskiewic [18]; Bouckenooghe, Devos, and Broeck [19] | Group learning (GL1, GL2, Gl3, GL4) |
Group cohesion (GC1, GC2, GC3, GC4) | ||
Innovative culture (I-Cul1, I-Cul2, I-Cul3, I-Cul4) | ||
Job autonomy (JA1, JA2, JA3, JA4) | ||
BITT | Chou et al. [2]; Teo [23] | (BITT1, BITT2, BITT3, BITT4, BITT5, BITT6, BITT7, BITT8, BITT9, BITT10) |
Benefits of Innovation | Innovation Compatibility | Group Learning | Innovative Culture | Job Autonomy | Group Cohesion | BITT | |
---|---|---|---|---|---|---|---|
Benefits of innovation | 1 | 0.179 ** | 0.173 ** | 0.213 ** | 0.194 ** | 0.286 ** | 0.258 ** |
Innovation compatibility | 1 | 0.118 * | 0.241 ** | 0.196 ** | 0.146 ** | 0.221 ** | |
Group learning | 1 | 0.124 ** | 0.177 ** | 0.120 * | 0.576 ** | ||
Innovative culture | 1 | 0.248 ** | 0.270 ** | 0.271 ** | |||
Job autonomy | 1 | 0.365 ** | 0.421 ** | ||||
Group cohesion | 1 | 0.397 ** | |||||
BITT | 1 | ||||||
Skewness | −0.093 | −0.189 | 0.024 | −0.223 | 0.035 | 0.080 | 0.110 |
Kurtosis | −0.726 | −0.793 | −1.139 | −0.481 | −0.423 | 0.041 | 0.188 |
Mean | 5.2410 | 5.2889 | 5.3119 | 5.0310 | 4.9099 | 4.9488 | 5.0367 |
SD | 0.90533 | 88920 | 0.94671 | 0.83248 | 0.88107 | 0.80247 | 0.62649 |
Variable | Item | Load | α | CR | AVE |
---|---|---|---|---|---|
Benefits of innovation | BI1 | 0.938 | 0.830 | 0.880 | 0.712 |
BI2 | 0.842 | ||||
BI3 | 0.741 | ||||
BITT | BITT1 | 0.671 | 0.889 | 0.909 | 0.500 |
BITT10 | 0.694 | ||||
BITT2 | 0.690 | ||||
BITT3 | 0.740 | ||||
BITT4 | 0.744 | ||||
BITT5 | 0.737 | ||||
BITT6 | 0.657 | ||||
BITT7 | 0.722 | ||||
BITT8 | 0.715 | ||||
BITT9 | 0.698 | ||||
Group cohesion | GC1 | 0.778 | 0.766 | 0.849 | 0.585 |
GC2 | 0.799 | ||||
GC3 | 0.754 | ||||
GC4 | 0.725 | ||||
Group learning | GL1 | 0.855 | 0.789 | 0.877 | 0.706 |
GL2 | 0.893 | ||||
GL3 | 0.766 | ||||
Innovative culture | I-cul1 | 0.665 | 0.784 | 0.849 | 0.656 |
I-cul2 | 0.843 | ||||
I-cul3 | 0.903 | ||||
Innovation compatibility | IC1 | 0.835 | 0.813 | 0.889 | 0.727 |
IC2 | 0.877 | ||||
IC3 | 0.845 | ||||
Job autonomy | JA1 | 0.744 | 0.868 | 0.919 | 0.794 |
JA2 | 0.950 | ||||
JA3 | 0.962 |
BITT | BI | GC | GL | IC | I-Cul | |
---|---|---|---|---|---|---|
BITT | ||||||
Benefits of innovation | 0.131 | |||||
Group cohesion | 0.567 | 0.148 | ||||
Group learning | 0.624 | 0.062 | 0.491 | |||
Innovation compatibility | 0.044 | 0.046 | 0.042 | 0.066 | ||
Innovative culture | 0.090 | 0.067 | 0.056 | 0.042 | 0.129 | |
Job autonomy | 0.084 | 0.044 | 0.094 | 0.080 | 0.455 | 0.086 |
Estimated Model | |
---|---|
SRMR | 0.056 |
d_ULS | 1.360 |
d_G | 0.520 |
Chi-Square | 2.786 |
Path | VIF | β | t-Value | p-Value | f2 | |
---|---|---|---|---|---|---|
H1 | Benefits of innovation -> BITT | 1.024 | −0.079 | 2.816 | 0.005 * | 0.010 |
H2 | Innovation compatibility -> BITT | 1.180 | 0.025 | 0.799 | 0.424 | 0.001 |
H3 | Group learning -> BITT | 1.178 | 0.404 | 12.037 | 0.000 ** | 0.224 |
H4 | Group cohesion -> BITT | 1.205 | 0.307 | 8.517 | 0.000 ** | 0.127 |
H5 | Innovative culture -> BITT | 1.026 | −0.075 | 2.599 | 0.009 * | 0.009 |
H6 | Job autonomy -> BITT | 1.177 | 0.026 | 0.915 | 0.360 | 0.001 |
Variable | Mean (Male; n. 279) | Mean (Female; n. 589) | F | p-Value |
---|---|---|---|---|
BI | 4.0036 | 3.9140 | 1.969 | 0.161 |
IC | 3.7455 | 3.7204 | 0.306 | 0.581 |
JA | 2.8495 | 2.8466 | 0.002 | 0.964 |
ICUL | 4.3536 | 4.2869 | 2.062 | 0.151 |
GC | 3.6013 | 3.6558 | 1.194 | 0.275 |
BITT | 3.6082 | 3.7042 | 4.894 | 0.027 |
GL | 3.7730 | 3.9247 | 8.885 | 0.003 |
Variable | City; n. 433 | Village; n. 435 | F | p-value |
BI | 4.5104 | 3.3778 | 615.302 | 0.000 |
IC | 3.8191 | 3.6383 | 18.564 | 0.000 |
JA | 2.8445 | 2.8506 | 0.011 | 0.918 |
ICUL | 4.2625 | 4.3540 | 4.460 | 0.035 |
GC | 3.5652 | 3.7109 | 9.867 | 0.002 |
BITT | 3.6044 | 3.7421 | 11.627 | 0.001 |
GL | 3.8568 | 3.8950 | 0.640 | 0.424 |
BI | 4.5104 | 3.3778 | 615.302 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofwan, M.; Habibi, A.; Attar, R.W.; Alqahtani, T.M.; Alahmari, S.A.; Alhazmi, A.H. Factors Affecting Teachers’ Behavior of Innovative Teaching with Technology: Structural Equation Modelling. Sustainability 2024, 16, 8496. https://doi.org/10.3390/su16198496
Sofwan M, Habibi A, Attar RW, Alqahtani TM, Alahmari SA, Alhazmi AH. Factors Affecting Teachers’ Behavior of Innovative Teaching with Technology: Structural Equation Modelling. Sustainability. 2024; 16(19):8496. https://doi.org/10.3390/su16198496
Chicago/Turabian StyleSofwan, Muhammad, Akhmad Habibi, Razaz Waheeb Attar, Turki Mesfer Alqahtani, Sarah A. Alahmari, and Amal Hassan Alhazmi. 2024. "Factors Affecting Teachers’ Behavior of Innovative Teaching with Technology: Structural Equation Modelling" Sustainability 16, no. 19: 8496. https://doi.org/10.3390/su16198496
APA StyleSofwan, M., Habibi, A., Attar, R. W., Alqahtani, T. M., Alahmari, S. A., & Alhazmi, A. H. (2024). Factors Affecting Teachers’ Behavior of Innovative Teaching with Technology: Structural Equation Modelling. Sustainability, 16(19), 8496. https://doi.org/10.3390/su16198496