Link between Digital Technologies Adoption and Sustainability Performance: Supply Chain Traceability/Resilience or Circular Economy Practices
Abstract
:1. Introduction
- (a)
- Supply chain traceability;
- (b)
- Supply chain resilience;
- (c)
- Circular economy practices.
2. Literature Review and Hypothesis Generation
2.1. Theoretical Background
2.2. The Path from Digital Technologies Adoption to Sustainability Performance
2.3. Digital Technologies and Supply Chain Traceability
2.4. Digital Technologies and Supply Chain Resilience
2.5. Digital Technologies and Circular Economy Practices
2.6. Basis of Mediating Effects
3. Methodological Approach
3.1. Sampling and Data Gathering
3.2. Measurement of Variables
4. Data Analyses and Results
4.1. Reliability and Validity Analyses
4.2. Testing of Hypotheses
5. Synthesizing Findings and Strategic Implications
5.1. Synthesizing Findings
5.2. Managerial Implications
5.3. Theoretical Implications
5.4. Limitations and Future Areas of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Construct | Items | Source |
---|---|---|
Digital Technologies | Please indicate to what extent each of the following digital technologies has been used in your company (1 = “too low level”; 5 = “too high level”). DT1. Artificial intelligient DT2. Augmented reality DT3. Additive manufacturing DT4. Blockchain DT 5. Big data DT 6. Cloud computing DT 7. Cyber physical systems DT 8. Cybersecurity DT 9. Integration DT 10. IoT DT 11. Mobile technologies DT 12. Robots DT13. Digital twins * DT14. Virtual reality * | [53,54] |
Supply Chain Traceability | Please indicate to what extent you agree or disagree with the following statement regarding your company. (1 = “strongly disagree” to 5 = “strongly agree”). SCT1. Identifying the sources of our green raw materials. SCT2. Tracking the processes distribution and transportation activities. SCT3. Tracing the origins of our purchases through the entire supply chain. SCT4. Tracking the environmental performance of our logistics activities. SCT5. Tracking the impact of warehousing and packaging on the environment. | [52] |
Supply Chain Resilience | Please indicate to what extent you agree or disagree with the following statement regarding your company. (1 = “strongly disagree” to 5 = “strongly agree”). SCR1. We are able to cope with changes brought about by supply chain disruptions. SCR2. We are able to adapt to supply chain disruptions easily. SCR3. We are able to provide a quick response to supply chain disruption. SCR4. We are able to maintain high situational awareness at all times. SCR5. Our company’s supply chain can move to a new, more desirable state after being disrupted. SCR6. Our company’s supply chain is able to adequately respond to unexpected disruptions by quickly restoring its product flow. SCR7. We can reduce the occurrence of negative events. SCR8. We can reduce impact of loss with the least cost. | [50,51] |
Circular Economy Practices | Please indicate to what extent you agree or disagree with the following statement regarding your company. (1 = “strongly disagree” to 5 = “strongly agree”). CE1. Refuse * CE2. Rethink * CE3. Reduce * CE4. Reuse CE5. Repair CE6. Refurbish CE7. Remanufacture CE8. Repurpose CE9. Recycle CE10. Recover | [16] |
Sustainability Performance | Please rate your company’s development in the following performance parameters over the last 3 years. (1 = “significantly worsened” to 5 = “significantly improved”). | |
Economic sustainability | ES1. Lower production costs ES2. Increased profit ES3. Decreased NPD costs ES4. Reduced energy usage ES5. Reduction in costs of inventory ES6. Reduced product rejection and rework costs ES7. Decreased purchasing costs for raw material ES8. Reduction in treatment costs for production waste | [2] |
Enviromental sustainability | ENVS1. Reduction of air emissions ENVS2. Reduction of liquid waste ENVS3. Reduction of solid wastes ENVS4. Decrease in consumption for hazardous/harmful/toxic materials ENVS5. Decrease in frequency for environmental accidents/Improved environmental situation of the firm ENVS6. Improvement in an enterprise’s environmental situation | [2] |
Social sustainability | SS1. Better working condition SS2. Better workplace safety SS3. Healthier employees SS4. Improved labour relations SS5. Decrease in number of accidents SS6. Decrease in the number of customer complaints | [2] |
References
- Hanelt, A.; Bohnsack, R.; Marz, D.; Antunes Marante, C. A systematic review of the literature on digital transformation: Insights and implications for strategy and organizational change. J. Manag. Stud. 2021, 58, 1159–1197. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A. Analysing the role of Industry 4.0 technologies and circular economy practices in improving sustainable performance in Indian manufacturing organisations. Prod. Plan. Control 2023, 34, 887–901. [Google Scholar] [CrossRef]
- Liu, Q.; Trevisan, A.H.; Yang, M.; Mascarenhas, J. A framework of digital technologies for the circular economy: Digital functions and mechanisms. Bus. Strategy Environ. 2022, 31, 2171–2192. [Google Scholar] [CrossRef]
- Chauhan, C.; Parida, V.; Dhir, A. Linking circular economy and digitalisation technologies: A systematic literature review of past achievements and future promises. Technol. Forecast. Soc. Chang. 2022, 177, 121508. [Google Scholar] [CrossRef]
- Roy, V. Contrasting supply chain traceability and supply chain visibility: Are they interchangeable? Int. J. Logist. Manag. 2021, 32, 942–972. [Google Scholar] [CrossRef]
- Lewandowski, M. Designing the Business Models for Circular Economy—Towards the Conceptual Framework. Sustainability 2016, 8, 43. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Del Vecchio, P.; Oropallo, E.; Secundo, G. Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Inf. Manag. 2022, 59, 103508. [Google Scholar] [CrossRef]
- Khan, M.; Parvaiz, G.S.; Dedahanov, A.T.; Abdurazzakov, O.S.; Rakhmonov, D.A. The Impact of Technologies of Traceability and Transparency in Supply Chains. Sustainability 2022, 14, 16336. [Google Scholar] [CrossRef]
- Khan, M.; Alshahrani, A.N.; Jacquemod, J. Digital Platforms and Supply Chain Traceability for Robust Information and Effective Inventory Management: The Mediating Role of Transparency. Logistics 2023, 7, 25. [Google Scholar] [CrossRef]
- Dey, P.K.; Chowdhury, S.; Abadie, A.; Vann Yaroson, E.; Sarkar, S. Artificial intelligence-driven supply chain resilience in Vietnamese manufacturing small-and medium-sized enterprises. Int. J. Prod. Res. 2023, 62, 5417–5456. [Google Scholar] [CrossRef]
- Alvarenga, M.Z.; Oliveira, M.P.V.d.; Oliveira, T.A.G.F.d. The impact of using digital technologies on supply chain resilience and robustness: The role of memory under the COVID-19 outbreak. Supply Chain Manag. Int. J. 2023, 28, 825–842. [Google Scholar] [CrossRef]
- Ivanov, D.; Blackhurst, J.; Das, A. Supply chain resilience and its interplay with digital technologies: Making innovations work in emergency situations. Int. J. Phys. Distrib. Logist. Manag. 2021, 51, 97–103. [Google Scholar] [CrossRef]
- Qader, G.; Junaid, M.; Abbas, Q.; Mubarik, M.S. Industry 4.0 enables supply chain resilience and supply chain performance. Technol. Forecast. Soc. Chang. 2022, 185, 122026. [Google Scholar] [CrossRef]
- Zouari, D.; Ruel, S.; Viale, L. Does digitalising the supply chain contribute to its resilience? Int. J. Phys. Distrib. Logist. Manag. 2021, 51, 149–180. [Google Scholar] [CrossRef]
- Edwin Cheng, T.C.; Kamble, S.S.; Belhadi, A.; Ndubisi, N.O.; Lai, K.-h.; Kharat, M.G. Linkages between big data analytics, circular economy, sustainable supply chain flexibility, and sustainable performance in manufacturing firms. Int. J. Prod. Res. 2022, 60, 6908–6922. [Google Scholar] [CrossRef]
- Bag, S.; Gupta, S.; Kumar, S. Industry 4.0 adoption and 10R advance manufacturing capabilities for sustainable development. Int. J. Prod. Econ. 2021, 231, 107844. [Google Scholar] [CrossRef]
- Bag, S.; Pretorius, J.H.C.; Gupta, S.; Dwivedi, Y.K. Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities. Technol. Forecast. Soc. Chang. 2021, 163, 120420. [Google Scholar] [CrossRef]
- Al-Khatib, A.W. The impact of industrial Internet of things on sustainable performance: The indirect effect of supply chain visibility. Bus. Process Manag. J. 2023, 29, 1607–1629. [Google Scholar] [CrossRef]
- Nandi, M.L.; Nandi, S.; Moya, H.; Kaynak, H. Blockchain technology-enabled supply chain systems and supply chain performance: A resource-based view. Supply Chain Manag. Int. J. 2020, 25, 841–862. [Google Scholar] [CrossRef]
- Salam, M.A. Analyzing manufacturing strategies and Industry 4.0 supplier performance relationships from a resource-based perspective. Benchmarking Int. J. 2021, 28, 1697–1716. [Google Scholar] [CrossRef]
- Sharma, M.; Luthra, S.; Joshi, S.; Kumar, A.; Jain, A. Green logistics driven circular practices adoption in industry 4.0 Era: A moderating effect of institution pressure and supply chain flexibility. J. Clean. Prod. 2023, 383, 135284. [Google Scholar] [CrossRef]
- Ali, S.S.; Torğul, B.; Paksoy, T.; Luthra, S.; Kayikci, Y. A novel hybrid decision-making framework for measuring Industry 4.0-driven circular economy performance for textile industry. Bus. Strategy Environ. 2024. [Google Scholar] [CrossRef]
- Erboz, G.; Yumurtacı Hüseyinoğlu, I.Ö.; Szegedi, Z. The partial mediating role of supply chain integration between Industry 4.0 and supply chain performance. Supply Chain Manag. Int. J. 2022, 27, 538–559. [Google Scholar] [CrossRef]
- Ma, J.-Y.; Shi, L.; Kang, T.-W. The Effect of Digital Transformation on the Pharmaceutical Sustainable Supply Chain Performance: The Mediating Role of Information Sharing and Traceability Using Structural Equation Modeling. Sustainability 2023, 15, 649. [Google Scholar] [CrossRef]
- Rodríguez-González, R.M.; Madrid-Guijarro, A.; Maldonado-Guzmán, G. Digital organizational culture and absorptive capacity as precursors to supply chain resilience and sustainable performance. J. Clean. Prod. 2023, 420, 138411. [Google Scholar] [CrossRef]
- Singh, G.; Singh, S.; Daultani, Y.; Chouhan, M. Measuring the influence of digital twins on the sustainability of manufacturing supply chain: A mediating role of supply chain resilience and performance. Comput. Ind. Eng. 2023, 186, 109711. [Google Scholar] [CrossRef]
- Gao, J.Q.; Li, D.; Qiao, G.H.; Jia, Q.R.; Li, S.R.; Gao, H.L. Circular economy strategies in supply chains, enhancing resource efficiency and sustainable development goals. Environ. Sci. Pollut. Res. 2024, 31, 8751–8767. [Google Scholar] [CrossRef]
- Yu, Z.; Khan, S.A.R.; Umar, M. Circular economy practices and industry 4.0 technologies: A strategic move of automobile industry. Bus. Strategy Environ. 2022, 31, 796–809. [Google Scholar] [CrossRef]
- Nascimento, D.L.M.; Alencastro, V.; Quelhas, O.L.G.; Caiado, R.G.G.; Garza-Reyes, J.A.; Rocha-Lona, L.; Tortorella, G. Exploring Industry 4.0 technologies to enable circular economy practices in a manufacturing context: A business model proposal. J. Manuf. Technol. Manag. 2019, 30, 607–627. [Google Scholar] [CrossRef]
- Paul, T.; Islam, N.; Mondal, S.; Rakshit, S. RFID-integrated blockchain-driven circular supply chain management: A system architecture for B2B tea industry. Ind. Mark. Manag. 2022, 101, 238–257. [Google Scholar] [CrossRef]
- Dabbene, F.; Gay, P.; Tortia, C. Traceability issues in food supply chain management: A review. Biosyst. Eng. 2014, 120, 65–80. [Google Scholar] [CrossRef]
- Koh, L.; Dolgui, A.; Sarkis, J. Blockchain in Transport and Logistics–Paradigms and Transitions; Taylor & Francis: Abingdon, UK, 2020; Volume 58, pp. 2054–2062. [Google Scholar]
- Ventura, C.; Aroca, R.; Antonialli, A.; Abrão, A.; Rubio, J.C.; Câmara, M. Towards part lifetime traceability using machined quick response codes. Procedia Technol. 2016, 26, 89–96. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Sokolov, B. Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”. Transp. Res. Part E Logist. Transp. Rev. 2022, 160, 102676. [Google Scholar] [CrossRef]
- Huang, K.; Wang, K.; Lee, P.K.C.; Yeung, A.C.L. The impact of industry 4.0 on supply chain capability and supply chain resilience: A dynamic resource-based view. Int. J. Prod. Econ. 2023, 262, 108913. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Chiaroni, D.; Del Vecchio, P.; Urbinati, A. Designing business models in circular economy: A systematic literature review and research agenda. Bus. Strategy Environ. 2020, 29, 1734–1749. [Google Scholar] [CrossRef]
- Böhmecke-Schwafert, M.; Wehinger, M.; Teigland, R. Blockchain for the circular economy: Theorizing blockchain’s role in the transition to a circular economy through an empirical investigation. Bus. Strategy Environ. 2022, 31, 3786–3801. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Zia-ul-haq, H.M.; Umar, M.; Yu, Z. Digital technology and circular economy practices: An strategy to improve organizational performance. Bus. Strategy Dev. 2021, 4, 482–490. [Google Scholar] [CrossRef]
- Karmaker, C.L.; Al Aziz, R.; Ahmed, T.; Misbauddin, S.; Moktadir, M.A. Impact of industry 4.0 technologies on sustainable supply chain performance: The mediating role of green supply chain management practices and circular economy. J. Clean. Prod. 2023, 419, 138249. [Google Scholar] [CrossRef]
- Zhou, X.; Pullman, M.; Xu, Z. The impact of food supply chain traceability on sustainability performance. Oper. Manag. Res. 2022, 15, 93–115. [Google Scholar] [CrossRef]
- Lin, R.-J.; Tan, K.-H.; Geng, Y. Market demand, green product innovation, and firm performance: Evidence from Vietnam motorcycle industry. J. Clean. Prod. 2013, 40, 101–107. [Google Scholar] [CrossRef]
- Schöggl, J.-P.; Rusch, M.; Stumpf, L.; Baumgartner, R.J. Implementation of digital technologies for a circular economy and sustainability management in the manufacturing sector. Sustain. Prod. Consum. 2023, 35, 401–420. [Google Scholar] [CrossRef]
- Queiroz, M.M.; Ivanov, D.; Dolgui, A.; Fosso Wamba, S. Impacts of epidemic outbreaks on supply chains: Mapping a research agenda amid the COVID-19 pandemic through a structured literature review. Ann. Oper. Res. 2022, 319, 1159–1196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, J. The impact of big data on supply chain resilience: The moderating effect of supply chain complexity. In Proceedings of the WHICEB 2019 Proceedings, Wuhan, China, 24–26 May 2019. [Google Scholar]
- Pettit, T.J.; Croxton, K.L.; Fiksel, J. The evolution of resilience in supply chain management: A retrospective on ensuring supply chain resilience. J. Bus. Logist. 2019, 40, 56–65. [Google Scholar] [CrossRef]
- Grimm, J.H.; Hofstetter, J.S.; Sarkis, J. Exploring sub-suppliers’ compliance with corporate sustainability standards. J. Clean. Prod. 2016, 112, 1971–1984. [Google Scholar] [CrossRef]
- Birkel, H.S.; Hartmann, E. Internet of Things–The future of managing supply chain risks. Supply Chain Manag. Int. J. 2020, 25, 535–548. [Google Scholar] [CrossRef]
- Usuga Cadavid, J.P.; Lamouri, S.; Grabot, B.; Pellerin, R.; Fortin, A. Machine learning applied in production planning and control: A state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 2020, 31, 1531–1558. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Das, A.; Sokolov, B. Digital Supply Chain Twins: Managing the Ripple Effect, Resilience, and Disruption Risks by Data-Driven Optimization, Simulation, and Visibility. In Handbook of Ripple Effects in the Supply Chain; Ivanov, D., Dolgui, A., Sokolov, B., Eds.; Springer International Publishing: Cham, Swizerland, 2019; pp. 309–332. [Google Scholar] [CrossRef]
- Ruel, S.; El Baz, J. Disaster readiness’ influence on the impact of supply chain resilience and robustness on firms’ financial performance: A COVID-19 empirical investigation. Int. J. Prod. Res. 2023, 61, 2594–2612. [Google Scholar] [CrossRef]
- Adana, S.; Manuj, I.; Herburger, M.; Cevikparmak, S.; Celik, H.; Uvet, H. Linking decentralization in decision-making to resilience outcomes: A supply chain orientation perspective. Int. J. Logist. Manag. 2024, 35, 256–280. [Google Scholar] [CrossRef]
- Agyabeng-Mensah, Y.; Afum, E.; Acquah, I.S.K.; Dacosta, E.; Baah, C.; Ahenkorah, E. The role of green logistics management practices, supply chain traceability and logistics ecocentricity in sustainability performance. Int. J. Logist. Manag. 2021, 32, 538–566. [Google Scholar] [CrossRef]
- Aldrighetti, R.; Battini, D.; Das, A.; Simonetto, M. The performance impact of Industry 4.0 technologies on closed-loop supply chains: Insights from an Italy based survey. Int. J. Prod. Res. 2023, 61, 3004–3029. [Google Scholar] [CrossRef]
- Mukherjee, A.A.; Raj, A.; Aggarwal, S. Identification of barriers and their mitigation strategies for industry 5.0 implementation in emerging economies. Int. J. Prod. Econ. 2023, 257, 108770. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Hair, J.F. Treating unobserved heterogeneity in PLS-SEM: A multi-method approach. In Partial Least Squares Path Modeling: Basic Concepts, Methodological Issues and Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 197–217. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. (Eds.) Evaluation of Reflective Measurement Models. In Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Springer International Publishing: Cham, Swizerland, 2021; pp. 75–90. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Ramsey, J. Test For Specification Errors in Classical Linear Least Squares Regression Analysis. J. R. Stat. Society. Ser. B 1969, 31, 350–371. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Cheah, J.-H.; Ting, H.; Moisescu, O.I.; Radomir, L. Structural model robustness checks in PLS-SEM. Tour. Econ. 2019, 26, 531–554. [Google Scholar] [CrossRef]
- Omar, I.A.; Debe, M.; Jayaraman, R.; Salah, K.; Omar, M.; Arshad, J. Blockchain-based Supply Chain Traceability for COVID-19 personal protective equipment. Comput. Ind. Eng. 2022, 167, 107995. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, D.; Liu, Y.; Shou, Y. Digitalization for supply chain resilience and robustness: The roles of collaboration and formal contracts. Front. Eng. Manag. 2023, 10, 5–19. [Google Scholar] [CrossRef]
- Nakandala, D.; Yang, R.; Lau, H.; Weerabahu, S. Industry 4.0 technology capabilities, resilience and incremental innovation in Australian manufacturing firms: A serial mediation model. Supply Chain Manag. Int. J. 2023, 28, 760–772. [Google Scholar] [CrossRef]
- Haji, M.; Kerbache, L.; Sheriff, K.M.M.; Al-Ansari, T. Critical Success Factors and Traceability Technologies for Establishing a Safe Pharmaceutical Supply Chain. Methods Protoc. 2021, 4, 85. [Google Scholar] [CrossRef]
- Metwally, A.B.M.; Ali, H.A.A.; Aly, S.A.S.; Ali, M.A.S. The Interplay between Digital Technologies, Supply Chain Resilience, Robustness and Sustainable Environmental Performance: Does Supply Chain Complexity Matter? Sustainability 2024, 16, 6175. [Google Scholar] [CrossRef]
- Khan, S.A.; Mubarik, M.S.; Kusi-Sarpong, S.; Gupta, H.; Zaman, S.I.; Mubarik, M. Blockchain technologies as enablers of supply chain mapping for sustainable supply chains. Bus. Strategy Environ. 2022, 31, 3742–3756. [Google Scholar] [CrossRef]
- Pinheiro, M.A.P.; Jugend, D.; Lopes de Sousa Jabbour, A.B.; Chiappetta Jabbour, C.J.; Latan, H. Circular economy-based new products and company performance: The role of stakeholders and Industry 4.0 technologies. Bus. Strategy Environ. 2022, 31, 483–499. [Google Scholar] [CrossRef]
- Bakhtari, A.R.; Waris, M.M.; Sanin, C.; Szczerbicki, E. Evaluating industry 4.0 implementation challenges using interpretive structural modeling and fuzzy analytic hierarchy process. Cybern. Syst. 2021, 52, 350–378. [Google Scholar] [CrossRef]
- Sharma, M.; Kamble, S.; Mani, V.; Sehrawat, R.; Belhadi, A.; Sharma, V. Industry 4.0 adoption for sustainability in multi-tier manufacturing supply chain in emerging economies. J. Clean. Prod. 2021, 281, 125013. [Google Scholar] [CrossRef]
Reference | DTs | CEPs | SCR | SCT | Other Constcusts | Performance Type |
---|---|---|---|---|---|---|
[15] | Big Data | ✓ | - | - | SC Flexibility | Sustainable SC (ENVS, SS, ES) |
[24] | Transformation | - | - | ✓ | Information Sharing | Sustainable SC |
[25] | Organizational | - | ✓ | - | Absoptive Capacity | SP |
[26] | Digital Twin | - | ✓ | SC Performance | SP | |
[27] | - | ✓ | - | - | Green SC Management Resource Efficiency | ENVS, ES |
[28] | Execution Forecasting Planning | ✓ | - | - | SC Capability | Operational Sustainability ES |
[29] | Addictive Manufacturing | ✓ | - | - | Sustainable SC | - |
[30] | RFID-Block Chain | ✓ | - | ✓ | SC Transparency | Profitability Market Share Lead Time |
Characteristic | Number of Firms | Percentage (%) |
---|---|---|
Position of the respondent | ||
Owner | 8 | 0.03 |
Genel Manager | 12 | 0.05 |
Departmant Head/Director | 150 | 0.64 |
Professional expert | 65 | 0.28 |
Total | 100% | |
Number of employees | ||
<50 | 12 | 0.05 |
50–249 | 51 | 0.22 |
250–499 | 38 | 0.16 |
>500 | 134 | 0.57 |
Total | 235 | 100% |
Ownership Structure | ||
Local | 149 | 0.63 |
Foreign Capital | 49 | 0.21 |
Foreign Participated | 37 | 0.16 |
Total | 235 | 100% |
Sector | ||
Textile | 32 | 0.14 |
Automotive-Electronic and Machinery | 80 | 0.34 |
Basic Metal | 17 | 0.07 |
Food and beverage | 23 | 0.10 |
Plastics | 9 | 0.04 |
Fabricated Metal Products | 11 | 0.05 |
Chemicals and pharmaceutical | 36 | 0.15 |
Others | 27 | 0.11 |
Total | 235 | 100% |
Construct | Items | FL | ρa | ρc | AVE |
---|---|---|---|---|---|
DTs | DT1 | 0.709 | 0.915 | 0.923 | 0.501 |
DT2 | 0.748 | ||||
DT3 | 0.661 | ||||
DT4 | 0.694 | ||||
DT5 | 0.769 | ||||
DT6 | 0.668 | ||||
DT7 | 0.763 | ||||
DT8 | 0.716 | ||||
DT9 | 0.754 | ||||
DT10 | 0.641 | ||||
DT11 | 0.731 | ||||
DT12 | 0.619 | ||||
CEPs | CE4 | 0.596 | 0.832 | 0.874 | 0.502 |
CE5 | 0.648 | ||||
CE6 | 0.726 | ||||
CE7 | 0.790 | ||||
CE8 | 0.799 | ||||
CE9 | 0.769 | ||||
CE10 | 0.596 | ||||
SCT | SCT1 | 0.728 | 0.859 | 0.896 | 0.633 |
SCT2 | 0.763 | ||||
SCT3 | 0.756 | ||||
SCT4 | 0.869 | ||||
SCT5 | 0.854 | ||||
SCR | SCR1 | 0.822 | 0.926 | 0.935 | 0.644 |
SCR2 | 0.821 | ||||
SCR3 | 0.797 | ||||
SCR4 | 0.817 | ||||
SCR5 | 0.836 | ||||
SCR6 | 0.805 | ||||
SCR7 | 0.732 | ||||
SCR8 | 0.783 | ||||
SP | |||||
ENVS | ENVS1 | 0.852 | 0.924 | 0.940 | 0.722 |
ENVS2 | 0.920 | ||||
ENVS3 | 0.866 | ||||
ENVS4 | 0.866 | ||||
ENVS5 | 0.827 | ||||
ENVS6 | 0.758 | ||||
ES | ES1 | 0.738 | 0.867 | 0.894 | 0.513 |
ES2 | 0.649 | ||||
ES3 | 0.707 | ||||
ES4 | 0.703 | ||||
ES5 | 0.723 | ||||
ES6 | 0.736 | ||||
ES7 | 0.729 | ||||
ES8 | 0.740 | ||||
SS | SS1 | 0.851 | 0.915 | 0.933 | 0.701 |
SS2 | 0.871 | ||||
SS3 | 0.904 | ||||
SS4 | 0.870 | ||||
SS5 | 0.738 | ||||
SS6 | 0.777 |
Constructs | CEPs | DTs | SCR | SCT | SP |
---|---|---|---|---|---|
CEPs | 0.708 | ||||
DTs | 0.317 | 0.708 | |||
SCR | 0.263 | 0.414 | 0.802 | ||
SCT | 0.370 | 0.490 | 0.592 | 0.796 | |
SP | 0.282 | 0.544 | 0.552 | 0.578 | 0.866 |
Hypotheses | Original Sample (O) | T Statistics | p Values | Cohen f2 | Decision | Effect Size |
---|---|---|---|---|---|---|
CEps → SCT | 0.239 | 3.997 | 0.000 | 0.072 | Supported | Small |
CEPs → SP | 0.063 | 1.212 | 0.226 | 0.006 | Not Supported | - |
DTs → CEPs | 0.317 | 5.738 | 0.000 | 0.111 | Supported | Close to Medium |
DTs → SCR | 0.164 | 2.520 | 0.012 | 0.032 | Supported | Small |
DTs → SCT | 0.414 | 6.666 | 0.000 | 0.218 | Supported | Medium |
SCR → SP | 0.320 | 4.935 | 0.000 | 0.111 | Supported | Close to Medium |
SCT → SCR | 0.512 | 8.999 | 0.000 | 0.316 | Supported | Substantial |
SCT → SP | 0.366 | 5.849 | 0.000 | 0.135 | Supported | Close to Medium |
Hypotheses | Original Sample (O) | T Statistics | p Values | Decision |
---|---|---|---|---|
DTs → SCT → SP | 0.152 | 3.891 | 0.001 | Supported |
DTs → CEPs → SP | 0.020 | 1.073 | 0.284 | Not Supported |
DTs → SCR → SP | 0.052 | 2.011 | 0.044 | Supported |
DTs → SCT → SCR | 0.212 | 5.079 | 0.000 | Supported |
DTs → CEPs → SCT | 0.076 | 3.101 | 0.002 | Supported |
Constructs | CEPs | DTs | SCR | SCT |
---|---|---|---|---|
DTs | 0.348 | |||
SCR | 0.289 | 0.435 | ||
SCT | 0.427 | 0.549 | 0.651 | |
SP | 0.324 | 0.619 | 0.606 | 0.682 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duman Altan, A.; Beyca, Ö.F.; Zaim, S. Link between Digital Technologies Adoption and Sustainability Performance: Supply Chain Traceability/Resilience or Circular Economy Practices. Sustainability 2024, 16, 8694. https://doi.org/10.3390/su16198694
Duman Altan A, Beyca ÖF, Zaim S. Link between Digital Technologies Adoption and Sustainability Performance: Supply Chain Traceability/Resilience or Circular Economy Practices. Sustainability. 2024; 16(19):8694. https://doi.org/10.3390/su16198694
Chicago/Turabian StyleDuman Altan, Aylin, Ömer Faruk Beyca, and Selim Zaim. 2024. "Link between Digital Technologies Adoption and Sustainability Performance: Supply Chain Traceability/Resilience or Circular Economy Practices" Sustainability 16, no. 19: 8694. https://doi.org/10.3390/su16198694
APA StyleDuman Altan, A., Beyca, Ö. F., & Zaim, S. (2024). Link between Digital Technologies Adoption and Sustainability Performance: Supply Chain Traceability/Resilience or Circular Economy Practices. Sustainability, 16(19), 8694. https://doi.org/10.3390/su16198694