sustainability-logo

Journal Browser

Journal Browser

Sustainable Supply Chain Management in Industry 4.0

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Sustainable Management".

Deadline for manuscript submissions: 24 April 2025 | Viewed by 6124

Special Issue Editors


E-Mail Website
Guest Editor
School of Management Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Interests: intelligent scheduling; service manufacturing; digital twin; logistics and supply chain management; industrial policy

E-Mail Website
Guest Editor
School of Management Science and Engineering, Nanjing University of Information Engineering and Technology, Nanjing, China
Interests: logistics smulation and optimization; data-driven decision making; knowledge service

E-Mail Website
Guest Editor
School of Business, Qingdao University, Qingdao, China
Interests: production planning and scheduling; evolutionary multi-objective optimization; reinforcement learning
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Over the preceding decades, supply chain management has driven by the development of Industry 4.0  towards to a more efficient and greener system. Industry 4.0 embraces a set of future industrial developments regarding Internet of Things, cyber–physical systems, artificial intelligence, machine learning, data mining, cloud computing, blockchain, and big data analytics. Industry 4.0 represents the fourth industrial revolution and will offer wide prospects to gain competitive advantages and establish future sustainable supply chain practices.

Some of the changes that operations and their connected supply chains face are revolutionary, and this requires careful consideration from both practical and theoretical points of view. However, the implementation of I4.0 in SC remains in its infancy. Going forward, there is a need to explore how the Industry 4.0 helps organizations to monitor metrics on an ongoing basis, troubleshoot poor performance, and identify root cause, as well as enable the delivery of better business decisions and provide tremendous benefits through the improvement of business processes.

Thus, this Special Issue aims to explore the potential of Industry 4.0 opportunities available in supporting the data-driven revolution in sustainable supply chain space. In this Special Issue, we are looking for high-quality original research articles related (but not limited) to the following topics:

  1. Environmental, social and governance (ESG) in supply chains;
  2. Sustainable supply chain optimization in Industry 4.0;
  3. Resilience in supply chains and logistics;
  4. Product/service tracibility with blockchain in supply chain;
  5. Digital twin frameworks and methodologies for sustainable supply chains;
  6. Artificial intelligence in manufacturing and transport logistics;
  7. Use of simulation-based advanced data analytics for sustainable supply chain design;
  8. Artificial intelligence/digital twin-driven logistics optimization;
  9. Big data/artificial intelligence-driven e-commerce supply chains;
  10. Data analytics and machine learning in sustainable supply chains;
  11. Real-time optimization for green vehicel routing problem.

Dr. Zhitao Xu
Dr. Zhenyong Wu
Prof. Dr. Yaping Fu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • supply chain
  • Industrial 4.0
  • sustainability
  • data analytics
  • sustainable supply chain optimization
  • logistics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2618 KiB  
Article
Integrated Pricing and Inventory Decisions for Product Quality-Driven Extended Warranty Services
by Wendi Zha, Zhenyong Wu, Jianxin Tan, Yiming Chen, Yaping Fu and Zhitao Xu
Sustainability 2024, 16(20), 8769; https://doi.org/10.3390/su16208769 - 11 Oct 2024
Viewed by 924
Abstract
Extended warranty services have become increasingly important for both manufacturers and retailers, offering avenues for new profit sources and growth opportunities. Focusing on the multiple effects of product quality, this study develops a two-period supply chain decision model to analyze the effects of [...] Read more.
Extended warranty services have become increasingly important for both manufacturers and retailers, offering avenues for new profit sources and growth opportunities. Focusing on the multiple effects of product quality, this study develops a two-period supply chain decision model to analyze the effects of product quality, pricing, and inventory management in the context of extended warranty services. Using a Stackelberg dynamic game model, this study examines the interaction between a manufacturer and a dominant retailer who provides extended warranties. The results indicate significant differences in optimal decisions between centralized and decentralized supply chains, especially concerning pricing and inventory control. Introducing a “quality cost-sharing” contract enhances product quality and improves coordination, leading to increased profits for both the manufacturer and the retailer. Numerical simulations confirm that the cost-sharing contract effectively balances product quality improvements with supply chain profitability. Full article
(This article belongs to the Special Issue Sustainable Supply Chain Management in Industry 4.0)
Show Figures

Figure 1

17 pages, 513 KiB  
Article
Link between Digital Technologies Adoption and Sustainability Performance: Supply Chain Traceability/Resilience or Circular Economy Practices
by Aylin Duman Altan, Ömer Faruk Beyca and Selim Zaim
Sustainability 2024, 16(19), 8694; https://doi.org/10.3390/su16198694 - 9 Oct 2024
Viewed by 1184
Abstract
Technological progress and digitalization have ushered in significant transformations in business strategies. At present, research is scarcely focused on the influence of the adoption of digital technologies (DTs) on establishing comprehensive relationships within the context of a circular economy (CE), and the supply [...] Read more.
Technological progress and digitalization have ushered in significant transformations in business strategies. At present, research is scarcely focused on the influence of the adoption of digital technologies (DTs) on establishing comprehensive relationships within the context of a circular economy (CE), and the supply chain (SC) framework to contribute to the Resource-Based View (RBV) theory. This study utilizes survey data collected from 235 manufacturing practitioners employed by Turkish manufacturing enterprises to explore a model elucidating the relationship between DTs adoption and sustainability performance (SP) through supply chain traceability (SCT), supply chain resilience (SCR), and circular economy practices (CEPs), based on 10R strategies. Through this linkage, this research accentuates that the exclusive integration of CEPs with digital technology solutions is insufficient for industrial enterprises to attain their long-term sustainability goals. It underscores the necessity of ensuring SCT and/or SCR in this context. Full article
(This article belongs to the Special Issue Sustainable Supply Chain Management in Industry 4.0)
Show Figures

Figure 1

21 pages, 5007 KiB  
Article
Strategic Choices of General Contractors in the Context of China’s Industry Chain of Construction Industrialization
by Shengfei Li and Dalin Zeng
Sustainability 2024, 16(15), 6511; https://doi.org/10.3390/su16156511 - 30 Jul 2024
Viewed by 903
Abstract
Amidst the challenges of economic downturn and construction industrialization, the profits obtained by general contractors through comparative advantage strategies are slowly decreasing, and thus, new strategic choices are required. The collaborative division of labor effect in the industry chain can improve profits and [...] Read more.
Amidst the challenges of economic downturn and construction industrialization, the profits obtained by general contractors through comparative advantage strategies are slowly decreasing, and thus, new strategic choices are required. The collaborative division of labor effect in the industry chain can improve profits and labor productivity, which is an important driving force for enterprise transformation and development. Therefore, a need arises to improve the profits of general contractors in the industrial chain system composed of prefabricated component suppliers, general contractors, and building development enterprises. Accordingly, this paper constructs a backward integration, forward integration, and bidirectional integration Stackelberg game model based on the proportion of resource investments, with general contractors as the main decision-making body. It then compares and analyzes the optimal decision-making values in different situations to study the optimal strategic decision-making problem of general contractors. Research results indicate the following. (1) All three integrated strategies can improve the profits of general contractors. When the proportion of resource investment meets certain conditions, the profits of general contractors under the bidirectional integration strategy are the highest, while the sustainable performance of the industrial chain and prefabricated buildings can be increased and the coordination of the industrial chain can be achieved. Thus, it is the best choice for a general contractor. (2) As a prefabricated component supplier needs to carry out continuous technological innovation activity to obtain a cumulative effect, the return on investment of forward integration is less than that of backward integration. (3) General contractors may consider choosing to carry out bidirectional integration strategies of forward integration followed by backward integration. Full article
(This article belongs to the Special Issue Sustainable Supply Chain Management in Industry 4.0)
Show Figures

Figure 1

23 pages, 1085 KiB  
Article
Exploring the Impacts of Green Supply Chain Integration and Ambidextrous Green Innovation on the Financial Performance of China’s Pharmaceutical Manufacturing Enterprises
by Guimei Yang, Feng Liu and Putthiwat Singhdong
Sustainability 2024, 16(15), 6501; https://doi.org/10.3390/su16156501 - 30 Jul 2024
Cited by 1 | Viewed by 1261
Abstract
This study focuses on the factors affecting the financial performance of pharmaceutical manufacturing enterprises. Based on dynamic capability theory and ambidextrous innovation theory, this study adopts the Resource–Behavior–Performance framework to investigate how green supply chain integration (GSCI) and ambidextrous green innovation affect financial [...] Read more.
This study focuses on the factors affecting the financial performance of pharmaceutical manufacturing enterprises. Based on dynamic capability theory and ambidextrous innovation theory, this study adopts the Resource–Behavior–Performance framework to investigate how green supply chain integration (GSCI) and ambidextrous green innovation affect financial performance. The proposed hypotheses were tested through structural equation modeling using data from 400 China’s pharmaceutical manufacturing enterprises. The results indicate that the various dimensions of GSCI and ambidextrous green innovation yield distinct outcomes. Among the three dimensions of GSCI, only green supplier integration and green customer integration significantly impact financial performance directly, unlike green internal integration. Among the two dimensions of ambidextrous green innovation, only exploitative green innovation significantly influences financial performance, acting as a mediator between the GSCI dimensions and financial performance, while exploratory green innovation does not. The main advantages of this study include considering the connotation and value of GSCI from a green dynamic capability perspective, as well as the effects of exploratory and exploitative green innovation as intermediary behaviors while simultaneously considering the performance effects of GSCI and ambidextrous green innovation. This study offers novel academic insights and practical guidelines for pharmaceutical manufacturing enterprises to integrate GSCI and ambidextrous green innovation, with the aim of achieving better financial performance in their sustainable development efforts. Full article
(This article belongs to the Special Issue Sustainable Supply Chain Management in Industry 4.0)
Show Figures

Figure 1

18 pages, 1073 KiB  
Article
An Improved Q-Learning Algorithm for Optimizing Sustainable Remanufacturing Systems
by Shujin Qin, Xiaofei Zhang, Jiacun Wang, Xiwang Guo, Liang Qi, Jinrui Cao and Yizhi Liu
Sustainability 2024, 16(10), 4180; https://doi.org/10.3390/su16104180 - 16 May 2024
Cited by 1 | Viewed by 993
Abstract
In our modern society, there has been a noticeable increase in pollution due to the trend of post-use handling of items. This necessitates the adoption of recycling and remanufacturing processes, advocating for sustainable resource management. This paper aims to address the issue of [...] Read more.
In our modern society, there has been a noticeable increase in pollution due to the trend of post-use handling of items. This necessitates the adoption of recycling and remanufacturing processes, advocating for sustainable resource management. This paper aims to address the issue of disassembly line balancing. Existing disassembly methods largely rely on manual labor, raising concerns regarding safety and sustainability. This paper proposes a human–machine collaborative disassembly approach to enhance safety and optimize resource utilization, aligning with sustainable development goals. A mixed-integer programming model is established, considering various disassembly techniques for hazardous and delicate parts, with the objective of minimizing the total disassembly time. The CPLEX solver is employed to enhance model accuracy. An improvement is made to the Q-learning algorithm in reinforcement learning to tackle the bilateral disassembly line balancing problem in human–machine collaboration. This approach outperforms CPLEX in both solution efficiency and quality, especially for large-scale problems. A comparative analysis with the original Q-learning algorithm and SARSA algorithm validates the superiority of the proposed algorithm in terms of convergence speed and solution quality. Full article
(This article belongs to the Special Issue Sustainable Supply Chain Management in Industry 4.0)
Show Figures

Figure 1

Back to TopTop