Simulation Study on the Combustion and Emissions of a Diesel Engine with Different Oxygenated Blended Fuels
Abstract
:1. Introduction
2. Test System and Test Conditions
Verification of Numerical Simulation Model
3. Results and Discussion
3.1. Effect of Different Oxygen-Containing Functional Group Fuels on Combustion
3.2. ID and CD
3.3. Effect of Different Fuels on the Main Combustion Components
3.4. Effect of Different Fuels on Carbon Soot Precursors
3.5. Effect of Different Fuels on the History of Soot Generation
3.6. Effect of Different Oxygen-Containing Functional Group Fuels on NOx Generation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, H.; Xie, F.; Han, Y.; Zhang, Q.; Li, Y. Effect of cetane coupled injection parameters on diesel engine combustion and emissions. Fuel 2022, 319, 123714. [Google Scholar] [CrossRef]
- Vargün, M.; Özsezen, A.N. Evaluation of the effect of the fuel injection phase on the combustion and exhaust characteristics in a diesel engine operating with alcohol-diesel mixtures. Energy 2023, 270, 126975. [Google Scholar] [CrossRef]
- Yesilyurt, M.K.; Aydin, M.; Yilbasi, Z.; Arslan, M. Investigation on the structural effects of the addition of alcohols having various chain lengths into the vegetable oil-biodiesel-diesel fuel blends: An attempt for improving the performance, combustion, and exhaust emission characteristics of a compression ignition engine. Fuel 2020, 269, 117455. [Google Scholar] [CrossRef]
- Yesilyurt, M.K.; Yilbasi, Z.; Aydin, M. The performance, emissions, and combustion characteristics of an unmodified diesel engine running on the ternary blends of pentanol/safflower oil biodiesel/diesel fuel. J. Therm. Anal. Calorim. 2020, 140, 2903–2942. [Google Scholar] [CrossRef]
- Sun, P.; Feng, J.; Yang, S.; Wang, C.; Cui, K.; Dong, W.; Du, Y.; Yu, X.; Zhou, J. Particulate number and size distribution of dimethyl ether/gasoline combined injection spark ig-nition engines at medium engine speed and load. Fuel 2022, 315, 122645. [Google Scholar] [CrossRef]
- Putrasari, Y.; Lim, O. Dimethyl ether as the next generation fuel to control nitrogen oxides and particulate matter emissions from internal combustion engines: A review. ACS Omega 2021, 7, 32–37. [Google Scholar] [CrossRef]
- Yilbaşi, Z.; Yeşilyurt, M.K.; Arslan, M.; Yaman, H. Understanding the performance, emissions, and combustion behaviors of a DI diesel engine using alcohol/hemp seed oil biodiesel/diesel fuel ternary blends: Influence of long-chain alcohol type and concentration. Sci. Technol. Energy Transit. 2023, 78, 5. [Google Scholar] [CrossRef]
- Huang, W.; Pratama, R.H.; Oguma, M.; Kinoshita, K.; Takeda, Y.; Suzuki, S. Spray dynamics of synthetic dimethyl carbonate and its blends with gasoline. Fuel 2023, 341, 127696. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, S.H. Optimization study on exhaust emissions and fuel consumption in a dimethyl ether (DME) fueled diesel engine. Fuel 2016, 182, 541–549. [Google Scholar] [CrossRef]
- Wu, H.; Xie, F.; Han, Y. Effect of cetane coupled with various engine conditions on diesel engine combustion and emission. Fuel 2022, 322, 124164. [Google Scholar] [CrossRef]
- Wang, H.; Ji, C.; Shi, C.; Ge, Y.; Meng, H.; Yang, J.; Chang, K.; Wang, S. Comparison and evaluation of advanced machine learning methods for performance and emissions prediction of a gasoline Wankel rotary engine. Energy 2022, 248, 123611. [Google Scholar] [CrossRef]
- Li, M.; Xu, Z.; Luo, Q.; Wang, C. Investigation of bicubic flame radiation model of continuously opposed spilling fire over n-butanol fuel. Energy 2023, 272, 127144. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Kumar, V.; Valera, H.; Mukherjee, N.K.; Mehra, S.; Nene, D. Ultra-low soot/particulate emissions from a dimethyl ether-fueled agricultural tractor engine. Fuel 2024, 356, 129637. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, G.; Guo, L.; Zhang, H.; Yan, Y.; Lin, S.; Zeng, W.; Zhang, X.; Jiang, M.; Yu, C. Optical diagnostic study of internal and external EGR combined with oxygenated fuels of n-butanol, PODE3 and DMC to optimize the combustion process of FT synthetic diesel. Fuel 2024, 355, 129390. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Y.; Zhang, Z.; Tan, D.; Li, J.; Yin, Z.; Hu, J.; Zhao, Z. Multi-objective optimization of the combustion chamber geometry for a highland diesel engine fueled with diesel/n-butanol/PODEn by ANN-NSGA III. Energy 2023, 282, 128793. [Google Scholar] [CrossRef]
- Tripathi, A.; Agarwal, A.K. Characterisation of particulates and trace metals emitted by a dimethyl ether-fuelled genset engine prototype. Environ. Pollut. 2023, 329, 121649. [Google Scholar] [CrossRef]
- Li, M.D.; Wang, Z.; Liu, S.A.; Li, R.N.; Zhao, Y. Study on the Particulate Microstructure of Different Oxygenated Fuels. Adv. Mater. Res. 2013, 726, 1950–1953. [Google Scholar] [CrossRef]
- Wang, H.; Deneys Reitz, R.; Yao, M.; Yang, B.; Jiao, Q.; Qiu, L. Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. Combust. Flame 2013, 160, 504–519. [Google Scholar] [CrossRef]
- Glaude, P.A.; Pitz, W.J.; Thomson, M.J. Chemical kinetic modeling of dimethyl carbonate in an opposed-flow diffusion flame. Proc. Combust. Inst. 2005, 30, 1111–1118. [Google Scholar] [CrossRef]
- Kaiser, E.W.; Wallington, T.J.; Hurley, M.D.; Platz, J.; Curran, H.J.; Pitz, W.J.; Westbrook, C.K. Experimental and Modeling Study of Premixed Atmospheric-Pressure Dimethyl Ether−Air Flames. J. Phys. Chem. A 2000, 104, 8194–8206. [Google Scholar] [CrossRef]
- Slavinskaya, N.; Frank, P. A modelling study of aromatic soot precursors formation in laminar methane and ethene flames. Combust. Flame 2009, 156, 1705–1722. [Google Scholar] [CrossRef]
- Labeckas, G.; Slavinskas, S.; Rudnicki, J.; Zadrąg, R. The effect of oxygenated diesel-n-butanol fuel blends on combustion, performance, and exhaust emissions of a turbocharged CRDI diesel engine. Pol. Marit. Res. 2018, 25, 108–120. [Google Scholar] [CrossRef]
- Choi, B.; Jiang, X.; Kim, Y.K.; Jung, G.; Lee, C.; Choi, I.; Song, C.S. Effect of diesel fuel blend with n-butanol on the emission of a turbocharged common rail direct injection diesel engine. Appl. Energy 2015, 146, 20–28. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Z.; Liu, J.; Lee, C. Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact. Energy Convers. Manag. 2014, 78, 787–795. [Google Scholar] [CrossRef]
- Wei, L.; Cheung, C.; Huang, Z. Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine. Energy 2014, 70, 172–180. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, H.; Zhu, Z.; Lv, D.; Pan, Y.; Wei, H.; Zhuang, J. Effect of intake oxygen concentration on diesel–n-butanol blending combustion: An experimental and numerical study at low engine load. Energy Convers. Manag. 2018, 165, 53–65. [Google Scholar] [CrossRef]
- Rahiman, M.K.; Santhoshkumar, S.; Subramaniam, D.; Avinash, A.; Pugazhendhi, A. Effects of oxygenated fuel pertaining to fuel analysis on diesel engine combustion and emission characteristics. Energy 2022, 239, 122373. [Google Scholar] [CrossRef]
- Alptekin, E. Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine. Energy 2017, 119, 44–52. [Google Scholar] [CrossRef]
- Abdalla, A.O.G.; Liu, D. Dimethyl carbonate as a promising oxygenated fuel for combustion: A review. Energies 2018, 11, 1552. [Google Scholar] [CrossRef]
- Ruiz, F.A.; Cadrazco, M.; López, A.F.; Sanchez-Valdepeñas, J.; Agudelo, J.R. Impact of dual-fuel combustion with n-butanol or hydrous ethanol on the oxidation reactivity and nanostructure of diesel particulate matter. Fuel 2015, 161, 18–25. [Google Scholar] [CrossRef]
- Wang, H.W.; Huang, Z.H.; Zhou, L.B.; Jiang, D.M.; Yang, Z.L. Technical note: Investigation on emission characteristics of a compression ignition engine with oxygenated fuels and exhaust gas recirculation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2005, 214, 503–508. [Google Scholar] [CrossRef]
- López, A.F.; Cadrazco, M.; Agudelo, A.F.; Corredor, L.A.; Vélez, J.A.; Agudelo, J.R. Impact of n-butanol and hydrous ethanol fumigation on the performance and pollutant emissions of an automotive diesel engine. Fuel 2015, 153, 483–491. [Google Scholar] [CrossRef]
- Kumar, B.R.; Saravanan, S. Partially premixed low temperature combustion using dimethyl carbonate (DMC) in a DI diesel engine for favorable smoke/NOx emissions. Fuel 2016, 180, 396–406. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Stroke | 102 mm |
Bore | 93 mm |
Compression ratio (CR) | 17.2 |
Engine | Turbocharged |
Type | Four-cylinder |
Cooling method | Water cooling |
Rated speed | 3400 |
Number of holes | 4 |
Rated power | 82 kW |
Parameter | Model | Parameter | Model |
---|---|---|---|
Spray fragmentation | KH-RT | Droplet wall | Rebound/slide |
Turbulent diffusion | O’Rourke | Droplet evaporation | Frossling |
Droplet collision | NTC | Collision result processing | Post composite model |
Properties | Diesel Fuel (n-Heptane) | n-Butanol [12] | DME [13] | DMC [14] |
---|---|---|---|---|
Molecular formula | C7H16 | C4H9OH | CH3OCH3 | CH3OCOOCH3 |
Oxygen-containing functional group structure | None | |||
CN | 40–55 | 12 | 55–60 | 35–36 |
Calorific value/MJ.kg−1 | 42.5 (44) | 35.1 (36) | 28.4 | 15.78 |
Oxygen content % | 0 | 21.6 | 34.8 | 53.3 |
Latent heat of vaporization KJ.kg−1 | 250 | 430 | 410 | 270 |
Properties | n-Butanol/Diesel [15] | DME/Diesel [16] | DMC/Diesel [17] |
---|---|---|---|
Mass fraction of diesel fuel | 70% | 81.4% | 87.8% |
Mass fraction of oxygenated fuel | 30% | 18.6% | 12.2% |
Element C mass fraction | 78.26% | 78.08% | 78.72% |
Elemental O mass fraction | 6.49% | 6.49% | 6.49% |
C/O molarity ratio | 16.07 | 16.04 | 16.17 |
Calorific value/MJ.kg−1 | 40.8 | 39.8 | 39.3 |
Property | Resolution | Uncertainty |
---|---|---|
Dynamometer (speed measurement) | 1 rpm | ±0.3% |
Dynamometer (torque measurement) | 0.01 N m | ±0.2% |
Flow meter sensor | 0.01 g | ±0.3% |
Pressure transducer | 0.01 MPa | ±0.3% |
Gas analyzer | ||
CO measurement | 0.01% | <0.2% |
HC measurement | 2 ppm | <0.2% |
NOx measurement | 1 ppm | <0.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, Q.; Ma, Y.; Wu, G.; Yang, Z.; Fu, Q. Simulation Study on the Combustion and Emissions of a Diesel Engine with Different Oxygenated Blended Fuels. Sustainability 2024, 16, 631. https://doi.org/10.3390/su16020631
Li X, Liu Q, Ma Y, Wu G, Yang Z, Fu Q. Simulation Study on the Combustion and Emissions of a Diesel Engine with Different Oxygenated Blended Fuels. Sustainability. 2024; 16(2):631. https://doi.org/10.3390/su16020631
Chicago/Turabian StyleLi, Xiuzhen, Qiang Liu, Yanying Ma, Guanghua Wu, Zhou Yang, and Qiang Fu. 2024. "Simulation Study on the Combustion and Emissions of a Diesel Engine with Different Oxygenated Blended Fuels" Sustainability 16, no. 2: 631. https://doi.org/10.3390/su16020631
APA StyleLi, X., Liu, Q., Ma, Y., Wu, G., Yang, Z., & Fu, Q. (2024). Simulation Study on the Combustion and Emissions of a Diesel Engine with Different Oxygenated Blended Fuels. Sustainability, 16(2), 631. https://doi.org/10.3390/su16020631