Impact of the Structural Parameters on the Performance of a Regenerative-Type Hydrogen Recirculation Blower for Vehicular Proton Exchange Membrane Fuel Cells
Abstract
:1. Introduction
2. Methods
2.1. CFD Numerical Models
2.1.1. Simulation Assumptions
- The fuel cell anode exhaust is regarded as an ideal gas and its state parameters satisfy the ideal gas equation:
- 2.
- The condensation of the water vapour inside the regenerative blower was ignored, so the internal flow in the blower is in a single phase.
- 3.
- The internal flow rate inside the regenerative blower is very fast, and the fluid does not have time to heat transfer, so it was assumed that the internal walls are adiabatic.
- 4.
- The gravity of gas molecules from the anode outlet was ignored.
2.1.2. Governing Equations
2.1.3. Boundary Conditions
2.1.4. Model Validation
2.2. Response Surface Methodology (RSM)
3. Results and Discussion
3.1. Single-Factor Analysis of the Geometry Parameters
3.1.1. Impact of the Vane Number
3.1.2. Impact of the Blade Thickness
3.1.3. Impact of the Blade Angle
3.1.4. Impact of the Blade Height
3.1.5. Impact of the Septum Angle
3.1.6. Impact of the Impeller Inner Radius
3.2. Response Surface Analysis
3.2.1. Response Surface Regression Model and ANOVA
3.2.2. Interaction Effects in Response Surface Figures
3.3. Genetic Algorithm, CFD Verification, and Entropy generation Rate Analysis
3.3.1. Genetic Algorithm Optimization
3.3.2. CFD Verification and Entropy Generation Rate Analysis
3.4. Regenerative Blower Efficiency Improvement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
PEMFC | Proton exchange membrane fuel cell | ω | Turbulent eddy frequency (s−1) |
RPM | Revolutions per min (r min−1) | Diffusivity of k | |
CFD | Computational fluid dynamics | Diffusivity of ω | |
RSM | Response surface methodology | Production rates of k | |
CCD | Center composite design | Production rates of ω | |
GA | Genetic algorithm | Diffusivity of k | |
Volumetric flow rate | Diffusivity of ω | ||
Volumetric circulatory flow rate | Transverse diffusion term of ω | ||
r | External radius of the impeller (mm) | UDF | User-defined function |
Inner radius of the impeller (mm) | RTD | Resistance temperature detector | |
z | Number of vanes | SLPM | Standard liter per minute |
θ | Angle of the vanes (°) | DOE | Design of experiments |
h | Height of the vanes (mm) | X | Independent variable of RSM |
w | Width of the vanes (mm) | Y | Response variable of RSM |
Height of the side channel (mm) | Efficiency | ||
Width of the side channel (°) | Output work (W) | ||
Angle of the septum (°) | Input work (W) | ||
Axial clearance | Axial clearance (mm) | V | Volume flow rate (m3 s−1) |
MRF | Multiple reference frame | Pressure difference (Pa) | |
Pressure (kPa) | N | Torque (N m) | |
Density (kg m−3) | Regression coefficient of RSM | ||
Specific gas constant | Error | ||
Temperature (k) | Efficiency calculated by GA | ||
Velocity vector (m s−1) | Efficiency calculated by CFD | ||
i,j and k | Directions | ANOVA | Analysis of variance |
Stress tensor | RSME | Root-mean-square error | |
Total energy (J kg−1) | Total entropy generation rate (W m−3 k−1) | ||
Mass force (N) | Entropy generation rate of viscous dissipation (W m−3 k−1) | ||
Effective thermal conductivity (W m−1 K−1) | Entropy generation rate of viscous dissipation average term (W m−3 k−1) | ||
Enthalpy of species (J) | Entropy generation rate of viscous dissipation pulsation term (W m−3 k−1) | ||
Diffusive flux of species (kg m−2 s−1) | Dynamic viscosity (N s m−2) | ||
Mass fraction of species | Strain rate tensor | ||
SST | Shear stress transport | Pulsation strain rate tensor | |
k | Turbulent kinetic energy (m2 s−2) |
References
- Wang, X.; Xu, S.; Xing, C. Numerical and experimental investigation on an ejector designed for an 80 kW polymer electrolyte membrane fuel cell stack. J. Power Sources 2019, 415, 25–32. [Google Scholar] [CrossRef]
- Gu, P.; Xing, L.; Wang, Y.; Feng, J.; Peng, X. Transient flow field and performance analysis of a claw pump for FCVs. Int. J. Hydrogen Energy 2020, 46, 984–997. [Google Scholar] [CrossRef]
- Seminario-Córdova, R.; Rojas-Ortega, R.J.S. Renewable energy sources and energy production: A bibliometric analysis of the last five years. Sustainability 2023, 15, 10499. [Google Scholar] [CrossRef]
- Akinpelu, A.; Alam, M.S.; Shafiullah, M.; Rahman, S.M.; Al-Ismail, F.S.J.S. Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction. Sustainability 2023, 15, 5639. [Google Scholar] [CrossRef]
- Besagni, G.; Mereu, R.; Inzoli, F.; Chiesa, P. Application of an integrated lumped parameter-CFD approach to evaluate the ejector-driven anode recirculation in a PEM fuel cell system. Appl. Therm. Eng. 2017, 121, 628–651. [Google Scholar] [CrossRef]
- Wang, H.; Ji, C.; Shi, C.; Yang, J.; Wang, S.; Ge, Y.; Chang, K.; Meng, H.; Wang, X. Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm. Energy 2023, 263, 125961. [Google Scholar] [CrossRef]
- Wang, H.; Ji, C.; Wang, D.; Wang, Z.; Yang, J.; Meng, H.; Shi, C.; Wang, S.; Wang, X.; Ge, Y.; et al. Investigation on the potential of using carbon-free ammonia and hydrogen in small-scaled Wankel rotary engines. Energy 2023, 283, 129166. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Zhang, S.; Liu, D.; Ma, S.J.S. The Hydrogen Energy Infrastructure Location Selection Model: A Hybrid Fuzzy Decision-Making Approach. Sustainability 2023, 15, 10195. [Google Scholar] [CrossRef]
- Zhiznin, S.Z.; Vassilev, S.; Gusev, A.L. Economics of secondary renewable energy sources with hydrogen generation. Int. J. Hydrogen Energy 2019, 44, 11385–11393. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, Z.; Chan, S.H. Applications of ejectors in proton exchange membrane fuel cells: A review. Fuel Process. Technol. 2021, 214, 106683. [Google Scholar] [CrossRef]
- Venkatasatish, R.; Chittathuru, D.J.S. Coyote Optimization Algorithm-Based Energy Management Strategy for Fuel Cell Hybrid Power Systems. Sustainability 2023, 15, 9638. [Google Scholar] [CrossRef]
- Azni, M.; Md Khalid, R.; Hasran, U.; Kamarudin, S. Review of the effects of fossil fuels and the need for a hydrogen fuel cell policy in Malaysia. Sustainability 2023, 15, 4033. [Google Scholar] [CrossRef]
- Yin, P.; Chen, J.; He, H.J.S. Control of Oxygen Excess Ratio for a PEMFC Air Supply System by Intelligent PID Methods. Sustainability 2023, 15, 8500. [Google Scholar] [CrossRef]
- Liang, X.; Kang, H.; Shen, J.; Li, Z.; Zeng, R. Review and analysis of hydrogen recirculation devices for compact vehicular proton exchange membrane fuel cells. J. Power Sources 2023, 555, 232308. [Google Scholar] [CrossRef]
- Yin, Y.; Fan, M.; Jiao, K.; Du, Q.; Qin, Y. Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system. Energy Convers. Manag. 2016, 126, 1106–1117. [Google Scholar] [CrossRef]
- Chen, J.; Siegel, J.B.; Stefanopoulou, A.G.; Waldecker, J.R. Optimization of purge cycle for dead-ended anode fuel cell operation. Int. J. Hydrogen Energy 2013, 38, 5092–5105. [Google Scholar] [CrossRef]
- Hwang, J.-J.; Lin, C.-H.; Kuo, J.-K. Performance analysis of fuel cell thermoelectric cogeneration system with methanol steam reformer. Int. J. Hydrogen Energy 2014, 39, 14448–14459. [Google Scholar] [CrossRef]
- Xiao, Y.; Ye, L.; Yang, Q.X.; Tong, S.Y.; Yin, Y. Hydrogen ejector flow field simulation and performance analysis on PEMFC engine system. Energy Eng. 2016, 6, 27–33. [Google Scholar] [CrossRef]
- Zhang, L.H.; Li, X.J.; Li, J.; Shao, Z.G.; Yi, B.L. Design and performance test of subsonic ejector for proton exchange membrane fuel cell based on thermodynamic model. Chin. J. Power Sources 2014, 38, 1824–1827. [Google Scholar]
- Kim, M.; Sohn, Y.J.; Cho, C.W.; Lee, W.Y.; Kim, C.S. Customized design for the ejector to recirculate a humidified hydrogen fuel in a submarine PEMFC. J. Power Sources 2008, 176, 529–533. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y. New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system. J. Power Sources 2009, 191, 510–519. [Google Scholar] [CrossRef]
- Dadvar, M.; Afshari, E. Analysis of design parameters in anodic recirculation system based on ejector technology for PEM fuel cells: A new approach in designing. Int. J. Hydrogen Energy 2014, 39, 12061–12073. [Google Scholar] [CrossRef]
- Brunner, D.A.; Marcks, S.; Bajpai, M.; Prasad, A.K.; Advani, S.G. Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications. Int. J. Hydrogen Energy 2012, 37, 4457–4466. [Google Scholar] [CrossRef]
- Rao, M.V.; Srisha Jagadeesh, G. Vector Evaluated Particle Swarm Optimization (VEPSO) of Supersonic Ejector for Hydrogen Fuel Cells. J. Fuel Cell Sci. Technol. 2010, 7, 16–22. [Google Scholar] [CrossRef]
- Maghsoodi, A.; Afshari, E.; Ahmadikia, H. Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm. Appl. Therm. Eng. 2014, 71, 410–418. [Google Scholar] [CrossRef]
- Nikiforow, K.; Koski, P.; Karimaki, H.; Ihonen, J.; Alopaeus, V. Designing a hydrogen gas ejector for 5kW stationary PEMFC system—CFD-modeling and experimental validation. Int. J. Hydrogen Energy 2016, 41, 14952–14970. [Google Scholar] [CrossRef]
- Besagni, G.; Mereu, R.; Chiesa, P.; Inzoli, F. An Integrated Lumped Parameter-CFD approach for off-design ejector performance evaluation. Energy Convers. Manag. 2015, 105, 697–715. [Google Scholar] [CrossRef]
- Pei, P.; Ren, P.; Li, Y.; Wu, Z.; Chen, D.; Huang, S.; Jia, X. Numerical studies on wide-operating-range ejector based on anodic pressure drop characteristics in proton exchange membrane fuel cell system. Appl. Energy 2019, 235, 729–738. [Google Scholar] [CrossRef]
- Yang, Y.; Du, W.; Ma, T.; Lin, W.; Yu, Z. Numerical studies on ejector structure optimization and performance prediction based on a novel pressure drop model for proton exchange membrane fuel cell anode. Int. J. Hydrogen Energy 2020, 45, 23343–23352. [Google Scholar] [CrossRef]
- Yu, M.; Wang, C.; Wang, L.; Wang, X. Flow characteristics of coaxial-nozzle ejector for PEMFC hydrogen recirculation system. Appl. Therm. Eng. 2024, 236, 121541. [Google Scholar] [CrossRef]
- Available online: https://mp.weixin.qq.com/s/lLcRlEZ8vCdUCeepfElrlg (accessed on 9 June 2020).
- Xue, H.; Wang, L.; Zhang, H.; Jia, L.; Ren, J. Design and investigation of multi-nozzle ejector for PEMFC hydrogen recirculation. Int. J. Hydrogen Energy 2020, 45, 14500–14516. [Google Scholar] [CrossRef]
- James, B.D.; Spisak, A.B.; Colella, W.G. Design for Manufacturing and Assembly Cost Estimate Methodology for Transportation Fuel Cell Systems. J. Manuf. Sci. Eng. 2014, 136, 024503. [Google Scholar] [CrossRef]
- Xing, L.; Feng, J.; Chen, W.; Xing, Z.; Peng, X. Development and Testing of a Roots Pump for Hydrogen Recirculation in Fuel Cell System. Appl. Sci. 2020, 10, 8091. [Google Scholar] [CrossRef]
- Hsieh, C.F.; Hwang, Y.W.; Fong, Z.H. Study on the tooth profile for the screw claw-type pump. Mech. Mach. Theory 2008, 43, 812–828. [Google Scholar] [CrossRef]
- Vogelsang, H.; Verhülsdonk, B.; Türk, M.; Hrnig, G. Pulsation problems in rotary lobe pumps. World Pumps 1999, 1999, 45–46. [Google Scholar] [CrossRef]
- Sun, S.K.; Zhao, B.; Jia, X.H.; Peng, X.Y. Three-dimensional numerical simulation and experimental validation of flows in working chambers and inlet/outlet pockets of Roots pump. Vacuum 2017, 137, 195–204. [Google Scholar] [CrossRef]
- Yao, L.; Ye, Z.; Dai, J.S.; Cai, H. Geometric analysis and tooth profiling of a three-lobe helical rotor of the Roots blower. J. Mater. Process. Technol. 2005, 170, 259–267. [Google Scholar] [CrossRef]
- Song, P.; Wang, H.; Zheng, S.; Wei, M.; Zhuge, W.; Zhang, Y. Investigation on the wet compression performance of a co-rotating scroll hydrogen recirculation pump for fuel cell engine systems. Appl. Therm. Eng. 2023, 235, 121415. [Google Scholar] [CrossRef]
- Manfred, D. Hofer Diaphragm Compressors. 2012. Available online: http://www.andreas-hofer.de/E/downloads/diaphragmcompressor10e02.pdf (accessed on 16 October 2021).
- Jia, X.; Chen, J.; Wu, H.; Peng, X. Study on the diaphragm fracture in a diaphragm compressor for a hydrogen refueling station. Int. J. Hydrogen Energy 2016, 41, 6412–6421. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, X.; Wang, W. A new cavity profile for a diaphragm compressor used in hydrogen fueling stations. Int. J. Hydrogen Energy 2017, 42, 24458–24469. [Google Scholar] [CrossRef]
- Zamiri, A.; Lee, B.J.; Chung, J.T. Numerical evaluation of transient flow characteristics in a transonic centrifugal compressor with vaned diffuser. Aerosp. Sci. Technol. 2017, 70, 244–256. [Google Scholar] [CrossRef]
- Wan, Y.; Guan, J.; Xu, S. Improved empirical parameters design method for centrifugal compressor in PEM fuel cell vehicle application. Int. J. Hydrogen Energy 2016, 42, 5590–5605. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, B.; Zheng, X.; Kawakubo, T.; Numakura, R. Effect of bent inlet pipe on the flow instability behavior of centrifugal compressors. Chin. J. Aeronaut. 2020, 33, 2099–2109. [Google Scholar] [CrossRef]
- Martegani, A.D.; Nicolich, M.; Pierdomenico, P. Periphery Compressor Performance; Fluid, Italy, 1990. (In Italian)
- Hollenberg, J.; Potter, J. An investigation of regenerative blowers and pumps. J. Manuf. Sci. Eng. 1979, 101, 147–152. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kang, S.H. Performance Evaluation of a Regenerative Blower for Hydrogen Recirculation Application in Fuel Cell Vehicles. Fluids Eng. Div. Summer Meet. 2006, 47519, 311–318. [Google Scholar] [CrossRef]
- Badami, M.; Mura, R. Theoretical model with experimental validation of a regenerative blower for hydrogen recirculation in a PEM fuel cell system. Energy Convers. Manag. 2010, 51, 553–560. [Google Scholar] [CrossRef]
- Badami, M.; Mura, M. Leakage effects on the performance characteristics of a regenerative blower for the hydrogen recirculation of a PEM fuel cell. Energy Convers. Manag. 2012, 55, 20–25. [Google Scholar] [CrossRef]
- Badami, M.; Mura, M. Comparison between 3D and 1D simulations of a regenerative blower for fuel cell applications. Energy Convers. Manag. 2012, 55, 93–100. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B 1951, 13, 1–38. [Google Scholar] [CrossRef]
- Sung Yang Deok, S.; Soo, H.; Yoon Yong, J. Multi-objective optimization of a Stairmand cyclone separator using response surface methodology and computational fluid dynamics. Powder Technol. 2017, 320, 51–65. [Google Scholar] [CrossRef]
- Singh, D.K.; Tirkey, J.V. Performance optimization through response surface methodology of an integrated coal gasification and CI engine fuelled with diesel and low-grade coal-based producer gas. Energy 2022, 238, 121982. [Google Scholar] [CrossRef]
- Kumar, V.; Jha, K. Multi-objective shape optimization of vortex finders in cyclone separators using response surface methodology and genetic algorithms. Sep. Purif. Technol. 2019, 215, 25–31. [Google Scholar] [CrossRef]
- Arjmandi, H.; Amiri, P.; Pour, M.S. Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study. Therm. Sci. Eng. Prog. 2020, 18, 100514. [Google Scholar] [CrossRef]
- Taghavifar, H.; Jafarmadar, S.; Taghavifar, H.; Navid, A. Application of DoE evaluation to introduce the optimum injection strategy-chamber geometry of diesel engine using surrogate epsilon-SVR. Appl. Therm. Eng. 2016, 106, 56–66. [Google Scholar] [CrossRef]
- Niu, X.; Wang, H.; Hu, S.; Yang, C.; Wang, Y. Multi-objective online optimization of a marine diesel engine using NSGA-II coupled with enhancing trained support vector machine. Appl. Therm. Eng. 2018, 137, 218–227. [Google Scholar] [CrossRef]
- Pfleiderer, C. Centrifugal Pumps for Fluids and Gas; Springer: Berlin, Germany, 1955. (In German) [Google Scholar]
- ANSYS Fluent Reference Guide; 2021R1. Available online: https://forum.ansys.com/forums/topic/ansys-fluent-tutorial-guide-2021-r1/ (accessed on 18 February 2024).
- Nejad, J. Parametric study and performance improvement of regenerative flow pump considering the modification in blade and casing geometry. Int. J. Numer. Methods Heat Fluid Flow 2018, 27, 1887–1906. [Google Scholar] [CrossRef]
- Jang, C.M.; Jeon, H.J. Performance Enhancement of 20kW Regenerative Blower Using Design Parameters. Int. J. Fluid Mach. Syst. 2014, 7, 86–93. [Google Scholar] [CrossRef]
- Nejadrajabali, J.; Riasi, A.; Nourbakhsh, S. Flow pattern analysis and performance improvement of regenerative flow pump using blade geometry modification. Int. J. Rotating Mach. 2016, 2016, 8628467. [Google Scholar] [CrossRef]
- Sreekanth, M.; Sivakumar, R.; Kumar, M.S.S.P.; Karunamurthy, K.; Kumar, M.S.; Harish, R. Regenerative flow pumps, blowers and compressors—A review. Proc. Inst. Mech. Eng. Part A J. Power Energy 2021, 235, 1992–2013. [Google Scholar] [CrossRef]
- Karanth, V.K.; Manjunath, M.S.; Shivakumar Sharma, Y.N. Numerical Study of a Self Priming Regenerative Pump for Improved Performance using Geometric Modifications. Int. J. Curr. Eng. Technol. 2015, 5, 104–109. [Google Scholar]
- Elsayed, K.; Lacor, C. CFD modeling and multi-objective optimization of cyclone geometry using desirability function, artificial neural networks and genetic algorithms. Appl. Math. Model. 2013, 37, 5680–5704. [Google Scholar] [CrossRef]
- MathWorks, MATLAB R2019b, 2019. Available online: https://ww2.mathworks.cn/help/matlab/release-notes-R2019b.html (accessed on 18 February 2024).
- Kock, F.; Herwig, H. Entropy production calculation for turbulent shear flows and their implementation in cfd codes. Int. J. Heat Fluid Flow 2005, 26, 672–680. [Google Scholar] [CrossRef]
Case | Anode Inlet Gauge Pressure (kPa) | Anode Outlet Gauge Pressure (kPa) | Pressure Drop (kPa) | Anode Outlet Flow (g s−1) |
---|---|---|---|---|
1 | 95 | 86 | 9 | 1.8 |
2 | 115 | 106 | 9 | 2.17 |
3 | 125 | 116 | 9 | 2.53 |
4 | 125 | 114 | 11 | 2.89 |
5 | 135 | 120 | 15 | 3.24 |
6 | 141 | 124 | 17 | 3.61 |
7 | 145 | 126 | 19 | 3.97 |
Parameters | Unit | Value |
---|---|---|
External radius of the impeller, r | mm | 60 |
Inner radius of the impeller, | mm | 35 |
Number of vanes, z | / | 40 |
Thickness of the vanes, t | mm | 1.5 |
Angle of the vanes, θ | ° | 90 |
Height of the vanes, h | mm | 25 |
Width of the vanes, w | mm | 12.5 |
Height of the side channel, | mm | 25 |
Width of the side channel, | mm | 12.5 |
Angle of the septum, | ° | 30 |
Axial clearance, G | mm | 0.2 |
Components of the Mixed Gas | Mole Fraction |
---|---|
Hydrogen | 0.78 |
Water vapour | 0.15 |
Nitrogen | 0.07 |
Boundary | Type | Values |
---|---|---|
Inlet | Pressure inlet (gauge pressure) (kPa) | 120 |
Inlet temperature (k) | 338.15 | |
Outlet | Mass flow outlet (g s−1) | 3.24 |
Factors | Levels | ||
---|---|---|---|
Minimum | Center | Maximum | |
X1—blade number | 30 | 40 | 50 |
X2—blade thickness (mm) | 1.2 | 1.5 | 1.8 |
X3—blade angle (°) | 65 | 90 | 115 |
X4—blade height (mm) | 6 | 12.5 | 19 |
X5—septum angle (°) | 20 | 30 | 40 |
X6—impeller inner radius (mm) | 25 | 35 | 45 |
Run No. | X1 | X2 (mm) | X3 (°) | X4 (mm) | X5 (°) | X6 (mm) | Efficiency |
---|---|---|---|---|---|---|---|
1 | 30 | 1.2 | 65 | 6 | 20 | 45 | 0.40928579 |
2 | 30 | 1.2 | 65 | 6 | 40 | 25 | 0.200770184 |
3 | 30 | 1.2 | 65 | 19 | 20 | 25 | 0.120497948 |
4 | 30 | 1.2 | 65 | 19 | 40 | 45 | 0.246498134 |
5 | 30 | 1.2 | 115 | 6 | 20 | 25 | 0.341640751 |
6 | 30 | 1.2 | 115 | 6 | 40 | 45 | 0.458714092 |
7 | 30 | 1.2 | 115 | 19 | 20 | 45 | 0.15887235 |
8 | 30 | 1.2 | 115 | 19 | 40 | 25 | 0.173147889 |
9 | 30 | 1.5 | 90 | 12.5 | 30 | 35 | 0.348244397 |
10 | 30 | 1.8 | 65 | 6 | 20 | 25 | 0.191898097 |
11 | 30 | 1.8 | 65 | 6 | 40 | 45 | 0.396547499 |
12 | 30 | 1.8 | 65 | 19 | 20 | 45 | 0.243721755 |
13 | 30 | 1.8 | 65 | 19 | 40 | 25 | 0.107089095 |
14 | 30 | 1.8 | 115 | 6 | 20 | 45 | 0.435775139 |
15 | 30 | 1.8 | 115 | 6 | 40 | 25 | 0.363056597 |
16 | 30 | 1.8 | 115 | 19 | 20 | 25 | 0.166561326 |
17 | 30 | 1.8 | 115 | 19 | 40 | 45 | 0.152661839 |
18 | 40 | 1.2 | 90 | 12.5 | 30 | 35 | 0.350472998 |
19 | 40 | 1.5 | 65 | 12.5 | 30 | 35 | 0.273482662 |
20 | 40 | 1.5 | 90 | 6 | 30 | 35 | 0.441897407 |
21 | 40 | 1.5 | 90 | 12.5 | 20 | 35 | 0.348708564 |
22 | 40 | 1.5 | 90 | 12.5 | 30 | 25 | 0.25003547 |
23 | 40 | 1.5 | 90 | 12.5 | 30 | 35 | 0.34650808 |
24 | 40 | 1.5 | 90 | 12.5 | 30 | 35 | 0.34650808 |
25 | 40 | 1.5 | 90 | 12.5 | 30 | 45 | 0.361969866 |
26 | 40 | 1.5 | 90 | 12.5 | 40 | 35 | 0.352848489 |
27 | 40 | 1.5 | 90 | 19 | 30 | 35 | 0.248057191 |
28 | 40 | 1.5 | 115 | 12.5 | 30 | 35 | 0.323974013 |
29 | 40 | 1.8 | 90 | 12.5 | 30 | 35 | 0.33798766 |
30 | 50 | 1.2 | 65 | 6 | 20 | 25 | 0.199783815 |
31 | 50 | 1.2 | 65 | 6 | 40 | 45 | 0.445831944 |
32 | 50 | 1.2 | 65 | 19 | 20 | 45 | 0.246366933 |
33 | 50 | 1.2 | 65 | 19 | 40 | 25 | 0.103496536 |
34 | 50 | 1.2 | 115 | 6 | 20 | 45 | 0.479062563 |
35 | 50 | 1.2 | 115 | 6 | 40 | 25 | 0.400106285 |
36 | 50 | 1.2 | 115 | 19 | 20 | 25 | 0.156971746 |
37 | 50 | 1.2 | 115 | 19 | 40 | 45 | 0.184470987 |
38 | 50 | 1.5 | 90 | 12.5 | 30 | 35 | 0.355606491 |
39 | 50 | 1.8 | 65 | 6 | 20 | 45 | 0.419167978 |
40 | 50 | 1.8 | 65 | 6 | 40 | 25 | 0.1893035 |
41 | 50 | 1.8 | 65 | 19 | 20 | 25 | 0.09318496 |
42 | 50 | 1.8 | 65 | 19 | 40 | 45 | 0.208260261 |
43 | 50 | 1.8 | 115 | 6 | 20 | 25 | 0.369632136 |
44 | 50 | 1.8 | 115 | 6 | 40 | 45 | 0.475780591 |
45 | 50 | 1.8 | 115 | 19 | 20 | 45 | 0.160092546 |
46 | 50 | 1.8 | 115 | 19 | 40 | 25 | 0.153019213 |
Source | Sum of Squares | F Ratio | p-Value |
---|---|---|---|
Main effect | |||
X1 | 0.00046070 | 1.2295 | 0.2821 ^ |
X2 | 0.00132501 | 3.5360 | 0.0763 |
X3 | 0.02166970 | 57.8297 | <0.0001 * |
X4 | 0.31937925 | 852.3246 | <0.0001 * |
X5 | 0.00014568 | 0.3888 | 0.5408 |
X6 | 0.10649912 | 284.2133 | <0.0001 * |
Quadratic effect | |||
X12 | 0.00006979 | 0.1862 | 0.6712 |
X22 | 0.00001234 | 0.0329 | 0.8580 |
X32 | 0.00542872 | 14.4876 | 0.0013 * |
X42 | 0.00000557 | 0.0149 | 0.9043 |
X52 | 0.00004337 | 0.1157 | 0.7376 |
X62 | 0.00390154 | 10.4120 | 0.0047 * |
Interaction effect | |||
X1 × X2 | 0.00028521 | 0.7611 | 0.3945 |
X1 × X3 | 0.00060917 | 1.6257 | 0.2185 |
X2 × X3 | 0.00006889 | 0.1838 | 0.6732 |
X1 × X4 | 0.00186306 | 4.9719 | 0.0387 * |
X2 × X4 | 0.00000428 | 0.0114 | 0.9161 |
X3 × X4 | 0.02729015 | 72.8290 | <0.0001 * |
X1 × X5 | 0.00000104 | 0.0028 | 0.9585 |
X2 × X5 | 0.00056843 | 1.5170 | 0.2339 |
X3 × X5 | 0.00043852 | 1.1703 | 0.2936 |
X4 × X5 | 0.00032188 | 0.8590 | 0.3663 |
X1 × X6 | 0.00042138 | 1.1245 | 0.3030 |
X2 × X6 | 0.00017310 | 0.4619 | 0.5054 |
X3 × X6 | 0.03304776 | 88.1943 | <0.0001 * |
X4 × X6 | 0.01697395 | 45.2982 | <0.0001 * |
X5 × X6 | 0.00003486 | 0.0930 | 0.7639 |
Coefficients | Values | Coefficients | Values |
---|---|---|---|
−1.63152610063982 | −0.000405054122967807 | ||
−0.00390063332551235 | −0.000117388373557692 | ||
0.0200801062130153 | −0.000179710975576923 | ||
0.0210109275408922 | −0.000128545249375 | ||
0.0499731432023873 | −0.000354326028365385 | ||
−0.0000764475884748491 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Kang, H.; Zeng, R.; Pang, Y.; Yang, Y.; Qiu, Y.; Tao, Y.; Shen, J. Impact of the Structural Parameters on the Performance of a Regenerative-Type Hydrogen Recirculation Blower for Vehicular Proton Exchange Membrane Fuel Cells. Sustainability 2024, 16, 1856. https://doi.org/10.3390/su16051856
Liang X, Kang H, Zeng R, Pang Y, Yang Y, Qiu Y, Tao Y, Shen J. Impact of the Structural Parameters on the Performance of a Regenerative-Type Hydrogen Recirculation Blower for Vehicular Proton Exchange Membrane Fuel Cells. Sustainability. 2024; 16(5):1856. https://doi.org/10.3390/su16051856
Chicago/Turabian StyleLiang, Xu, Huifang Kang, Rui Zeng, Yue Pang, Yun Yang, Yunlu Qiu, Yuanxu Tao, and Jun Shen. 2024. "Impact of the Structural Parameters on the Performance of a Regenerative-Type Hydrogen Recirculation Blower for Vehicular Proton Exchange Membrane Fuel Cells" Sustainability 16, no. 5: 1856. https://doi.org/10.3390/su16051856
APA StyleLiang, X., Kang, H., Zeng, R., Pang, Y., Yang, Y., Qiu, Y., Tao, Y., & Shen, J. (2024). Impact of the Structural Parameters on the Performance of a Regenerative-Type Hydrogen Recirculation Blower for Vehicular Proton Exchange Membrane Fuel Cells. Sustainability, 16(5), 1856. https://doi.org/10.3390/su16051856