Foresight for Sustainable Water Futures in Sub-Saharan Africa: A Systematic Review
Abstract
:1. Introduction
2. Methodology
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Information Sources
2.4. Results from Databases
3. Results
3.1. Year of Publication
3.2. Country/Region
Author | Year | Country/Region | Main Theme | Scale | Foresight Approach | Foresight Tool or Methodology | Time Horizon |
---|---|---|---|---|---|---|---|
Jenkins et al. [28] | 2005 | Kenya | Group A | Local | Exploratory, Quantitative, Participatory | WEAP model | NA (Not Applicable) |
Bengtsson et al. [29] | 2005 | Developing countries | Group A | Continental | Normative, Qualitative, Expert-driven | Trend analysis | NA |
Ochola et al. [30] | 2006 | Africa | Group A | Continental | Exploratory, Qualitative Quantitative, Expert-driven | PoleStar, T21 | NA |
Brumbelow and Georgakakos [31] | 2007 | Kenya, Tanzania, Uganda | Group B | Regional | Exploratory, Quantitative, Expert-driven | GCMs | NA |
Christoph et al. [32] | 2008 | Benin | Group A | Local | Exploratory, Quantitative, Expert-driven | IPCC SRES and a combination of different GCMs | 2025 |
Cullis et al. [33] | 2011 | South Africa | Group A | Local | Exploratory, Quantitative, Participatory | GCMs | 2050 |
Cinderby et al. [34] | 2011 | Tanzania | Group B | National | Exploratory, Qualitative, Participatory | GIS | NA |
Spies [35] | 2011 | SSA | Group A | Continental | Normative, Qualitative, Expert-driven | Development planning | NA |
Claassen et al. [36] | 2013 | South Africa | Group A | National | Exploratory, Qualitative, Participatory | Scenario development | 2025 |
Strzepek et al. [37] | 2013 | Developing countries | Group A | Global | Exploratory, Quantitative, Expert-driven | GCM/SRES model combinations | 2030, 2050, and 2080 |
Mantel et al. [38] | 2015 | South Africa | Group A | National | Exploratory, Quantitative, Expert-driven | WEAP model | 2065 |
Slaughter et al. [39] | 2016 | South Africa | Group A | National | Exploratory, Quantitative, Expert-driven | WEAP model | 2065 |
Rodina et al. [40] | 2017 | Southern Africa | Group A | National | Normative, Qualitative, Participatory | Resilience | NA |
Hirpa et al. [41] | 2018 | Kenya | Group A | Local | Exploratory, Quantitative, Expert-driven | GCMs and WEAP model | 2030/2080 |
Kahil et al. [42] | 2018 | Africa | Area C | Continental | Exploratory, Quantitative, Expert-driven | ECHO model | 2050 |
Kanyerere et al. [43] | 2018 | SSA | Group A | Continental | Normative, Qualitative, Expert-driven | IWRM | NA |
Gedefaw et al. [44] | 2019 | Ethiopia | Groups A and B | Local | Exploratory, Quantitative, Expert-driven | WEAP model | 2030/2050 |
Miraji et al. [45] | 2019 | Tanzania | Group A | Local | Exploratory, Quantitative, Expert-driven | WEAP model | 2035 |
Bekele et al. [46] | 2019 | Ethiopia | Groups A and B | Local | Exploratory, Quantitative, Expert-driven | GCMs: HadGEM2-ES, HBV model | 2050 |
van Puijenbroek et al. [47] | 2019 | Developing countries | Group D | Global | Exploratory, Quantitative, Expert-driven | Shared socio-economic pathways | 2050 |
Hughes [48] | 2019 | SSA | Group A | Continental | Exploratory, Quantitative, Expert-driven | Pitman models | NA |
Alemu and Dioha [49] | 2020 | Ethiopia | Group A | Local | Exploratory, Quantitative, Expert-driven | WEAP model | 2030 |
Amoo et al. [50] | 2020 | South Africa | Group A | Local | Exploratory, Quantitative, Expert-driven | System dynamics allocation | 30 years/2050 |
Fuente et al. [51] | 2020 | SSA | Group D | Continental | Exploratory, Quantitative, Expert-driven | Monte Carlo and regression analysis | 2050 |
Tadese et al. [52] | 2020 | Ethiopia | Group A | Local | Exploratory, Quantitative, Expert-driven | GCM: HadGEM2 | 2050 and 2070 |
Aberilla et al. [53] | 2020 | Developing countries | Group C | Global | Exploratory, Quantitative, Expert-driven | Foresight and life cycle assessment | 2030 |
Kitessa et al. [54] | 2021 | Ethiopia | Group C | Local | Exploratory, Quantitative, Expert-driven | Regression model: WEKA | 2030 and 2050 |
Naidoo et al. [55] | 2021 | Southern Africa | Group C | Regional | Normative, Qualitative, Expert-driven | Theory of change | NA |
Remilekun et al. [56] | 2021 | South Africa | Groups A and B | Local | Exploratory, Quantitative, Expert-driven | WEAP model | 2100 |
Johansson [57] | 2021 | SSA | Group A | Continental | Exploratory, Qualitative, Participatory | Scenario development | NA |
Hamza and Getahun [58] | 2022 | Ethiopia | Group A | Local | Exploratory, Quantitative, Expert-driven | WEAP model | 2060 |
Bellwood-Howard et al. [59] | 2022 | Ethiopia/Tanzania/Niger | Group A | Regional | Exploratory, Qualitative, Participatory | Multicriteria mapping | NA |
Eshete et al. [60] | 2022 | Ethiopia | Group A | Local | Exploratory, Quantitative, Expert-driven | GCMS and SWAT model | 2050 and 2080 |
Saketa [61] | 2022 | Ethiopia | Group A | Local | Exploratory, Quantitative, Expert-driven | WEAP model | 2035 |
Simukonda et al. [62] | 2022 | Zambia | Group A | National | Exploratory, Qualitative Quantitative, Expert-driven | Scenario development | 2035 |
van Puijenbroek et al. [63] | 2023 | Developing countries | Group D | Global | Exploratory, Quantitative, Expert-driven | Shared socio-economic pathways | NA |
3.3. Themes
- Water Resource Management (Group A);
- Water for Agriculture and Industry (Group B);
- Food–Water–Energy Nexus (Group C);
- Sanitation and Wastewater Management (Group D).
3.4. Scale
3.5. Foresight Approach, Tools, and Methodologies
3.6. Time Horizon
4. Discussion
4.1. Driver of Change
4.2. Approaches to Foresight Analysis
4.2.1. Normative vs. Exploratory Techniques
4.2.2. Expert-Driven vs. Participatory
4.2.3. Qualitative vs. Quantitative
4.3. Water Resource Management
4.4. Water for Agriculture and Industry
4.5. Water–Food–Energy Nexus
4.6. Sanitation and Wastewater Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cosgrove, W. Water Futures: The evolution of water scenarios. Curr. Opin. Environ. Sustain. 2013, 5, 559–565. [Google Scholar] [CrossRef]
- Chang, H. Foresight in Scientific Method. In Foresight; Feller, D.A., Sherman, L.W., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 82–100. [Google Scholar] [CrossRef]
- Glenn, J.C.; Gordon, T.J. Futures Research Methodology-Version 3-0; Editorial Desconocida: Washington, DC, USA, 2009. [Google Scholar]
- Cook, C.N.; Inayatullah, S.; Burgman, M.A.; Sutherland, W.J.; Wintle, B.A. Strategic foresight: How planning for the unpredictable can improve environmental decision-making. Trends Ecol. Evol. 2014, 29, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Bingley, K. Foresight and International Development. Inst. Dev. Stud. 2016, 47, 4. [Google Scholar] [CrossRef]
- Amanatidou, E.; Butter, M.; Carabias, V.; Könnölä, T.; Leis, M.; Saritas, O.; Schaper-Rinkel, P.; van Rij, V. On concepts and methods in horizon scanning: Lessons from initiating policy dialogues on emerging issues. Sci. Public Policy 2012, 39, 208–221. [Google Scholar] [CrossRef]
- Ratcliffe, J.; Sirr, L. Futures thinking for the built and human environment-The Prospective Process Through Scenario Thinking for the Built and Human Environment: A tool for exploring urban futures. Futures 2003. [Google Scholar] [CrossRef]
- Hunt, D.; Lombardi, D.; Atkinson, S.; Barber, A.; Barnes, M.; Boyko, C.; Brown, J.; Bryson, J.; Butler, D.; Caputo, S. Using Scenarios to Explore Urban UK Futures: A Review of Futures Literature from 1997 to 2011. Working Document 2012. Available online: https://www.researchgate.net/publication/259935870_URBAN_FUTURES_MONOGRAPH_Using_Scenarios_to_Explore_Urban_UK_Futures_A_review_of_Futures_Literature_from_1997_to_2011 (accessed on 1 August 2024).
- Iversen, J.S. Futures Thinking Methodologies–Options Relevant for “Schooling for Tomorrow”; Organization for Economic Cooperation and Development: Paris, France, 2005. [Google Scholar]
- Conallin, J.C.; Dickens, C.; Hearne, D.; Allan, C. Chapter 7—Stakeholder Engagement in Environmental Water Management. In Water for the Environment; Horne, A.C., Webb, J.A., Stewardson, M.J., Richter, B., Acreman, M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 129–150. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. World Water Resources: A New Appraisal and Assessment for the 21st Century. 1998. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000112671 (accessed on 7 August 2024).
- Cosgrove, W.J.; Rijsberman, F.R. World Water Vision: Making Water Everybody’s Business; Routledge: London, UK, 2014. [Google Scholar]
- Cosgrove, C.E.; Cosgrove, W.J. Foresight as a tool in water resource development. Development 2013, 56, 484–490. [Google Scholar] [CrossRef]
- Magnuszewski, P.; Wiberg, D.; Cosgrove, W.; Fischer, G.; Floerke, M.; Hizsnyik, E.; Pahl-Wostl, C.; Segrave, A.; Toth, G.; Tramberend, S. Conceptual Framework for Scenarios Development in the Water Futures and Solutions Project. 2015. Available online: https://library.kwrwater.nl/publication/55875060/conceptual-framework-for-scenarios-development-in-the-water-futures-and-solutions-project/ (accessed on 7 August 2024).
- Cosgrove, W.; Fischer, G.; Floerke, M.; Hizsnyik, E.; Magnuszewski, P.; Pahl-Wostl, C.; Scherzer, A.; Segrave, A.; Toth, G.; Tramberend, S. Towards Innovative Solutions through Integrative Futures Analysis-Preliminary Qualitative Scenarios. IIASA Interim Report; IIASA: Laxenburg, Austria, 2015; IR-15-012. [Google Scholar]
- van Vliet, M.; Kok, K. Combining backcasting and exploratory scenarios to develop robust water strategies in face of uncertain futures. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 43–74. [Google Scholar] [CrossRef]
- Batisha, A. Horizon scanning process to foresight emerging issues in Arabsphere’s water vision. Sci. Rep. 2022, 12, 12709. [Google Scholar] [CrossRef]
- Lienert, J.; Monstadt, J.; Truffer, B. Future Scenarios for a Sustainable Water Sector: A Case Study from Switzerland. Environ. Sci. Technol. 2006, 40, 436–442. [Google Scholar] [CrossRef]
- Shakweer, A.; Youssef, R.M. Futures studies in Egypt: Water foresight 2025. Foresight 2007, 9, 22–32. [Google Scholar] [CrossRef]
- George-Williams, H.E.; Hunt, D.V.; Rogers, C.D. Sustainable Water Infrastructure: Visions and Options for Sub-Saharan Africa. Sustainability 2024, 16, 1592. [Google Scholar] [CrossRef]
- Briscoe, J. The Challenges of Providing Water in Developing Countries. Available online: http://web.worldbank.org/archive/website00528/WEB/PDF/THECHALL.PDF (accessed on 8 February 2024).
- Dangui, K.; Jia, S. Water Infrastructure Performance in Sub-Saharan Africa: An Investigation of the Drivers and Impact on Economic Growth. Water 2022, 14, 3522. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. bmj 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.S. Formulating the Evidence Based Practice Question: A Review of the Frameworks. 2011. Available online: https://journals.library.ualberta.ca/eblip/index.php/EBLIP/article/view/9741 (accessed on 7 August 2024).
- Hines, A. When did it start? Origin of the foresight field. World Futures Rev. 2020, 12, 4–11. [Google Scholar] [CrossRef]
- Miles, I. The development of technology foresight: A review. Technol. Forecast. Soc. Chang. 2010, 77, 1448–1456. [Google Scholar] [CrossRef]
- Martin, B.R. The origins of the concept of ‘foresight’ in science and technology: An insider’s perspective. Technol. Forecast. Soc. Chang. 2010, 77, 1438–1447. [Google Scholar] [CrossRef]
- Jenkins, M.W.; Marques, G.F.; Lelo, F.K.; Miller, S.N. WEAP as a participatory tool for shared vision planning in the river njoro watershed in Kenya. In Proceedings of the 2005 World Water and Environmental Resources Congress, Anchorage, AK, USA, 15–19 May 2005; p. 510. [Google Scholar]
- Bengtsson, M.; Aramaki, T.; Otaki, M.; Otaki, Y. Learning from the future: What shifting trends in developed countries may imply for urban water systems in developing countries. Water Sci. Technol. Water Supply 2005, 5, 121–127. [Google Scholar] [CrossRef]
- Ochola, M.; Abdelrehim, A.; Ayugi, P.; Ayeni, B.; Asamoah, J.; Gowa, E.; Roberts, J. Africa Environment Outlook 2; United Nations Environment Programme: Washington, DC, USA, 2006; pp. 412–480. [Google Scholar]
- Brumbelow, K.; Georgakakos, A. Consideration of climate variability and change in agricultural water resources planning. J. Water Resour. Plan. Manag. 2007, 133, 275–785. [Google Scholar] [CrossRef]
- Christoph, M.; Fink, A.; Diekkruger, B.; Giertz, S.; Reichert, B.; Speth, P. IMPETUS: Implementing HELP in the upper ouémé basin. Water SA 2008, 34, 481–489. [Google Scholar] [CrossRef]
- Cullis, J.; Strzepek, K.; Tadross, M.; Sami, K.; Havenga, B.; Gildenhuys, B.; Smith, J. Incorporating climate change into water resources planning for the town of Polokwane, South Africa. Clim. Chang. 2011, 108, 437–456. [Google Scholar] [CrossRef]
- Cinderby, S.; Bruin, A.D.; Mbilinyi, B.; Kongo, V.; Barron, J. Participatory geographic information systems for agricultural water management scenario development: A Tanzanian case study. Phys. Chem. Earth 2011, 36, 1093–1102. [Google Scholar] [CrossRef]
- Spies, P.H. Sub-Saharan Africa’s future is not a given. Foresight J. Futures Stud. Strateg. Think. Policy 2011, 13, 85–99. [Google Scholar] [CrossRef]
- Claassen, M.; Funke, N.; Nienaber, S. Scenarios for the South African water sector in 2025. Water SA 2013, 39, 143–150. [Google Scholar] [CrossRef]
- Strzepek, K.; Jacobsen, M.; Boehlert, B.; Neumann, J. Toward evaluating the effect of climate change on investments in the water resources sector: Insights from the forecast and analysis of hydrological indicators in developing countries. Environ. Res. Lett. 2013, 8, 044014. [Google Scholar] [CrossRef]
- Mantel, S.K.; Hughes, D.A.; Slaughter, A.S. Water resources management in the context of future climate and development changes: A South African case study. J. Water Clim. Chang. 2015, 6, 772–786. [Google Scholar] [CrossRef]
- Slaughter, A.S.; Mantel, S.K.; Hughes, D.A. Water quality management in the context of future climate and development changes: A South African case study. J. Water Clim. Chang. 2016, 7, 775–787. [Google Scholar] [CrossRef]
- Rodina, L.; Sutherland, C.; Ziervogel, G.; Goldin, J.; Baker, L.A.; Harris, L.M.; Galvin, M.; Musemwa, M.; Manungufala, T. Water, equity and resilience in Southern Africa: Future directions for research and practice. Curr. Opin. Environ. Sustain. 2017, 26–27, 143–151. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Olago, D.O.; Dyer, E.; Hope, R.; Dadson, S.J. Finding sustainable water futures in data-sparse regions under climate change: Insights from the Turkwel River basin, Kenya. J. Hydrol. 2018, 19, 124–135. [Google Scholar] [CrossRef]
- Kahil, T.; Parkinson, S.; Satoh, Y.; Greve, P.; Burek, P.; Veldkamp, T.I.E.; Burtscher, R.; Byers, E.; Djilali, N.; Fischer, G.; et al. A Continental-Scale Hydroeconomic Model for Integrating Water-Energy-Land Nexus Solutions. Water Resour. Res. 2018, 54, 7511–7533. [Google Scholar] [CrossRef]
- Kanyerere, T.; Tramberend, S.; Levine, A.D.; Mokoena, P.; Mensah, P.; Chingombe, W.; Goldin, J.; Fatima, S.; Prakash, M. Water Futures and Solutions: Options to Enhance Water Security in Sub-Saharan Africa; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 93–111. [Google Scholar] [CrossRef]
- Gedefaw, M.; Wang, H.; Yan, D.; Qin, T.; Wang, K.; Girma, A.; Batsuren, D.; Abiyu, A. Water resources allocation systems under irrigation expansion and climate change scenario in Awash River Basin of Ethiopia. Water 2019, 11, 1966. [Google Scholar] [CrossRef]
- Miraji, M.; Liu, J.; Zheng, C. The impacts of water demand and its implications for future surface water resource management: The case of Tanzania’s Wami Ruvu Basin (WRB). Water 2019, 11, 1280. [Google Scholar] [CrossRef]
- Bekele, A.A.; Pingale, S.M.; Hatiye, S.D.; Tilahun, A.K. Impact of climate change on surface water availability and crop water demand for the sub-watershed of Abbay Basin, Ethiopia. Sustain. Water Resour. Manag. 2019, 5, 1859–1875. [Google Scholar] [CrossRef]
- van Puijenbroek, P.J.T.M.; Beusen, A.H.W.; Bouwman, A.F. Global nitrogen and phosphorus in urban waste water based on the Shared Socio-economic pathways. J. Environ. Manag. 2019, 231, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.A. Facing a future water resources management crisis in sub-Saharan Africa. J. Hydrol. Reg. Stud. 2019, 23, 100600. [Google Scholar] [CrossRef]
- Alemu, A.Z.; Dioha, M.O. Modelling scenarios for sustainable water supply and demand in Addis Ababa city, Ethiopia. Environ. Syst. Res. 2020, 9, 7. [Google Scholar] [CrossRef]
- Amoo, O.T.; Nakin, M.D.V.; Abayomi, A.; Ojugbele, H.O.; Salami, A.W. System dynamics approach for evaluating existing and future water allocation planning among conflicting users. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Virtual, Turkey, 7–8 October 2020; pp. 44–51. [Google Scholar]
- Fuente, D.; Allaire, M.; Jeuland, M.; Whittington, D. Forecasts of mortality and economic losses from poor water and sanitation in sub-Saharan Africa. PLoS ONE 2020, 15, e0227611. [Google Scholar] [CrossRef]
- Tadese, M.T.; Kumar, L.; Koech, R. Climate change projections in the Awash River Basin of Ethiopia using Global and Regional Climate Models. Int. J. Climatol. 2020, 40, 3649–3666. [Google Scholar] [CrossRef]
- Aberilla, J.M.; Gallego-Schmid, A.; Stamford, L.; Azapagic, A. Synergistic generation of energy and water in remote communities: Economic and environmental assessment of current situation and future scenarios. Energy Convers. Manag. 2020, 207, 112543. [Google Scholar] [CrossRef]
- Kitessa, B.D.; Ayalew, S.M.; Gebrie, G.S.; Teferi, S.T. Assessing the supply for a basic urban service demand-with a focus on water-energy management in Addis Ababa city. PLoS ONE 2021, 16, e0249643. [Google Scholar] [CrossRef]
- Naidoo, D.; Nhamo, L.; Mpandeli, S.; Sobratee, N.; Senzanje, A.; Liphadzi, S.; Slotow, R.; Jacobson, M.; Modi, A.T.; Mabhaudhi, T. Operationalising the water-energy-food nexus through the theory of change. Renew. Sustain. Energy Rev. 2021, 149, 111416. [Google Scholar] [CrossRef]
- Remilekun, A.T.; Thando, N.; Nerhene, D.; Archer, E. Integrated assessment of the influence of climate change on current and future intra-annual water availability in the Vaal River catchment. J. Water Clim. Chang. 2021, 12, 533–551. [Google Scholar] [CrossRef]
- Johansson, E.L. Participatory futures thinking in the African context of sustainability challenges and socio-environmental change. Ecol. Soc. 2021, 26, 3. [Google Scholar] [CrossRef]
- Hamza, A.A.; Getahun, B.A. Assessment of water resource and forecasting water demand using WEAP model in Beles river, Abbay river basin, Ethiopia. Sustain. Water Resour. Manag. 2022, 8, 22. [Google Scholar] [CrossRef]
- Bellwood-Howard, I.; Thompson, J.; Shamsudduha, M.; Taylor, R.G.; Mosha, D.B.; Gebrezgi, G.; Tarimo, A.K.P.R.; Kashaigili, J.J.; Nazoumou, Y.; Tiékoura, O. A multicriteria analysis of groundwater development pathways in three river basins in Sub-Saharan Africa. Environ. Sci. Policy 2022, 138, 26–43. [Google Scholar] [CrossRef]
- Eshete, D.G.; Rigler, G.; Shinshaw, B.G.; Belete, A.M.; Bayeh, B.A. Evaluation of streamflow response to climate change in the data-scarce region, Ethiopia. Sustain. Water Resour. Manag. 2022, 8, 187. [Google Scholar] [CrossRef]
- Saketa, Y. Assessment of future urban water demand and supply under socioeconomic scenarios: A case of Assosa town. Water Supply 2022, 22, 7405–7415. [Google Scholar] [CrossRef]
- Simukonda, K.; Farmani, R.; Butler, D. Development of scenarios for evaluating conversion from intermittent to continuous water supply strategies’ sustainability implications. Urban Water J. 2022, 19, 410–421. [Google Scholar] [CrossRef]
- van Puijenbroek, P.J.T.M.; Beusen, A.H.W.; Bouwman, A.F.; Ayeri, T.; Strokal, M.; Hofstra, N. Quantifying future sanitation scenarios and progress towards SDG targets in the shared socioeconomic pathways. J. Environ. Manag. 2023, 346, 118921. [Google Scholar] [CrossRef]
- Destatte, P. Foresight: A major tool in tackling sustainable development. Technol. Forecast. Soc. Chang. 2010, 77, 1575–1587. [Google Scholar] [CrossRef]
- Ratcliffe, J.; Krawczyk, E. Imagineering city futures: The use of prospective through scenarios in urban planning. Futures 2011, 43, 642–653. [Google Scholar] [CrossRef]
- Inayatullah, S. Anticipatory action learning: Theory and practice. Futures 2006, 38, 656–666. [Google Scholar] [CrossRef]
- Ainger, C.; Fenner, R. Sustainable Infrastructure: Principles into Practice; ICE Publishing: London, UK, 2014. [Google Scholar]
- Dong, C.; Schoups, G.; van de Giesen, N. Scenario development for water resource planning and management: A review. Technol. Forecast. Soc. Chang. 2013, 80, 749–761. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N. The SSP greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. Discuss. 2019, 2019, 1–77. [Google Scholar]
- Raskin, P.; Kemp-Benedict, E. Global Environment Outlook Scenario Framework: Background Paper for UNEP’s Third Global Environment Outlook Report (GEO-3); UNEP/Earthprint: Nairobi, Kenya, 2004; Volume 6. [Google Scholar]
- Raskin, P. Great Transition: The Promise and Lure of the Times Ahead; Stockholm Environment Institute: Boston, MA, USA, 2010. [Google Scholar]
- Jacobsen, M.; Webster, M.; Vairavamoorthy, K. The Future of Water in African Cities: Why Waste Water? World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Tadese, M.; Kumar, L.; Koech, R. Long-term variability in potential evapotranspiration, water availability and drought under climate change scenarios in the Awash River Basin, Ethiopia. Atmosphere 2020, 11, 883. [Google Scholar] [CrossRef]
- Bowman, B.M.; Hunt, D.V.L.; Rogers, C.D.F. Gazing into the Crystal Ball: A Review of Futures Analysis to Promote Environmental Justice in the UK Water Industry. Sustainability 2022, 14, 4586. [Google Scholar] [CrossRef]
- Parienté, W. Urbanization in Sub-Saharan Africa and the challenge of access to basic services. J. Demogr. Econ. 2017, 83, 31–39. [Google Scholar] [CrossRef]
- Rogers, C.D.F.; Makana, L.; Leach, J. Theory of Change Little Book; University of Birmingham: Birmingham, UK, 2022. [Google Scholar]
- Ghodsvali, M.; Krishnamurthy, S.; de Vries, B. Review of transdisciplinary approaches to food-water-energy nexus: A guide towards sustainable development. Environ. Sci. Policy 2019, 101, 266–278. [Google Scholar] [CrossRef]
- Botai, J.O.; Botai, C.M.; Ncongwane, K.P.; Mpandeli, S.; Nhamo, L.; Masinde, M.; Adeola, A.M.; Mengistu, M.G.; Tazvinga, H.; Murambadoro, M.D.; et al. A Review of the Water–Energy–Food Nexus Research in Africa. Sustainability 2021, 13, 1762. [Google Scholar] [CrossRef]
- Biswas, A.K. Integrated Water Resources Management: Is It Working? Int. J. Water Resour. Dev. 2008, 24, 5–22. [Google Scholar] [CrossRef]
- Onu, M.A.; Ayeleru, O.O.; Modekwe, H.U.; Oboirien, B.; Olubambi, P.A. Chapter 10—Water and wastewater safety plan in sub-Saharan Africa. In Water, The Environment, and the Sustainable Development Goals; Dehghani, M.H., Karri, R.R., Tyagi, I., Scholz, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 223–240. [Google Scholar] [CrossRef]
Item No | Description | Search Terms |
---|---|---|
1 | Problem Sustainable Water | (Sustainab * OR resilien * OR smart) AND (water) |
2 | Context Sub-Saharan Africa | “Sub-Saharan Africa” OR “low-income countr *” OR “developing countr *” OR Africa OR Angola OR Benin OR Botswana OR “Burkina Faso” OR Burundi OR Cameroon OR “Cape Verde” OR Chad OR “Central African Republic” OR “Democratic Republic of Congo” OR “Republic of Congo” OR Congo OR “DRC” OR “Cote D’Ivoire” OR Eswatini OR Eritrea OR “Equatorial Guinea” OR Ethiopia OR Gabon OR “The Gambia” OR Gambia OR Ghana OR Guinea OR Kenya OR “Guinea Bissau” OR Lesotho OR Liberia OR Madagascar OR Malawi OR Mali OR Mauritania OR Mauritius OR Mozambique OR Namibia OR Niger OR Nigeria OR Rwanda OR “Sao Tome and Principe” OR Senegal OR Seychelles OR “South Africa” OR “Sierra Leone” OR Somalia OR “South Sudan” OR Sudan OR Swaziland OR Tanzania OR Togo OR Uganda OR Zambia OR Zimbabwe |
3 | Concept Foresight | Foresight OR forecast * OR future * OR scenario OR vision OR backcast * OR “horizon scan *” OR “black swan” OR “wild card” OR roadmap OR “worldview” OR Delphi OR pathway OR “Theory of change” OR “causal layered” OR predict * OR trend * |
Item No | Description | Web of Science | Scopus | ProQuest | Compendex |
---|---|---|---|---|---|
4 | T = 1 | 18,004 | 12,105 | 34,851 | 43,846 |
5 | T = 2 | 933,499 | 656,326 | 5,846,146 | 61,077 |
6 | T = 3 | 3,076,516 | 2,261,716 | 12,076,779 | 837,882 |
7 | K = 1 | 12,536 | 64,088 | 10,560 | 71,883 |
8 | K = 2 | 278,734 | 995,879 | 841,514 | 6192 |
9 | K = 3 | 906,677 | 2,996,953 | 1,312,075 | 696,555 |
10 | 4 OR 7 | 27,246 | 69,215 | 42,923 | 88,719 |
11 | 5 OR 8 | 1,045,903 | 1,214,361 | 6,219,731 | 64,696 |
12 | 6 OR 9 | 3,588,422 | 4,273,212 | 12,996,663 | 1,195,561 |
13 | 10 AND 11 AND 12 | 86 | 417 | 87 | 76 |
Tools | Developer | Application |
---|---|---|
ECHO | Extended Continental-scale Hydro-economic Optimisation—developed by the Water programme at the International Institute for Applied Science Analysis (IIASA) | ECHO is used for understanding the complex interactions in the management of water resources and for designing sustainable pathways under various socio-economic and climate futures [42] |
GCMs | General Circulation Models—the first model was developed by Norman Philip, followed by several other models, with the Hadley Centre for Climate Prediction and Research’s HadCM3 being one of the most recent | GCMs are used for representing the physical processes of the atmosphere and ocean and for simulating and studying the Earth’s climate system [31] |
IPCC SRES | Special Report on Emissions Scenarios by the Intergovernmental Panel on Climate Change | A set of scenarios to explore different future projections of greenhouse gas emissions, atmospheric concentrations, and their impact on climate change [32] |
Pitmans | Developed by A. J. Pitman, University of Witwatersrand | A conceptual hydrological model used for simulating water flow through a catchment [48] |
PoleStar System | Developed by the Stockholm Environment Institute | A system used for synthesising resource, economic, and environmental information and for developing and examining alternative scenarios [30] |
SSPs | Shared Socio-economic Pathways—developed as part of the 5th assessment report of the Intergovernmental Panel on Climate Change | A set of five scenarios that describe potential pathways of future socio-economic development for use in climate change research [47] |
WEAP | Water Evaluation and Planning—developed by the Stockholm Environment Institute | A forecasting tool for conducting integrated water resource planning assessments [49] |
WEKA | Waikato Environment for Knowledge Analysis—developed at the University of Waikato in New Zealand | A set of machine learning tools and algorithms for data mining tasks [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George-Williams, H.E.M.; Hunt, D.V.L.; Rogers, C.D.F. Foresight for Sustainable Water Futures in Sub-Saharan Africa: A Systematic Review. Sustainability 2024, 16, 8874. https://doi.org/10.3390/su16208874
George-Williams HEM, Hunt DVL, Rogers CDF. Foresight for Sustainable Water Futures in Sub-Saharan Africa: A Systematic Review. Sustainability. 2024; 16(20):8874. https://doi.org/10.3390/su16208874
Chicago/Turabian StyleGeorge-Williams, Henrietta E. M., Dexter V. L. Hunt, and Christopher D. F. Rogers. 2024. "Foresight for Sustainable Water Futures in Sub-Saharan Africa: A Systematic Review" Sustainability 16, no. 20: 8874. https://doi.org/10.3390/su16208874
APA StyleGeorge-Williams, H. E. M., Hunt, D. V. L., & Rogers, C. D. F. (2024). Foresight for Sustainable Water Futures in Sub-Saharan Africa: A Systematic Review. Sustainability, 16(20), 8874. https://doi.org/10.3390/su16208874